Translator Disclaimer
May 2001 Superprocesses over a stochastic flow
Robert J. Adler, Georgios Skoulakis
Ann. Appl. Probab. 11(2): 488-543 (May 2001). DOI: 10.1214/aoap/1015345302

Abstract

We study a specific particle system in which particles undergo random branchingand spatial motion. Such systems are best described, mathematically, via measure valued stochastic processes. As is now quite standard, we study the so-called superprocess limit of such a system as both the number of particles in the system and the branchingrate tend to infinity. What differentiates our system from the classical superprocess case, in which the particles move independently of each other, is that the motions of our particles are affected by the presence of a global stochastic flow. We establish weak convergence to the solution of a well-posed martingale problem. Usingthe particle picture formulation of the flow superprocess, we study some of its properties. We give formulas for its first two moments and consider two macroscopic quantities describing its average behavior, properties that have been studied in some detail previously in the pure flow situation, where branching was absent. Explicit formulas for these quantities are given and graphs are presented for a specific example of a linear flow of Ornstein–Uhlenbeck type.

Citation

Download Citation

Robert J. Adler. Georgios Skoulakis. "Superprocesses over a stochastic flow." Ann. Appl. Probab. 11 (2) 488 - 543, May 2001. https://doi.org/10.1214/aoap/1015345302

Information

Published: May 2001
First available in Project Euclid: 5 March 2002

zbMATH: 1018.60052
MathSciNet: MR1843056
Digital Object Identifier: 10.1214/aoap/1015345302

Subjects:
Primary: 60G57, 60H15
Secondary: 60J80, 62F05

Rights: Copyright © 2001 Institute of Mathematical Statistics

JOURNAL ARTICLE
56 PAGES


SHARE
Vol.11 • No. 2 • May 2001
Back to Top