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IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS
OF RANDOM EQUATIONS!

By CHARLES M. GOLDIE
Queen Mary & Westfield College, University of London

For the solutions of certain random equations, or equivalently the
stationary solutions of certain random recurrences, the distribution tails
are evaluated by renewal-theoretic methods. Six such equations, including
one arising in queueing theory, are studied in detail. Implications in
extreme-value theory are discussed by way of an illustration from eco-
nomics.

1. Introduction. Standard renewal theory can be seen as the study of
the asymptotics of a function f: R — R that satisfies a renewal equation

f-fxn=g
in which u is a known probability measure and g a known function. By
“implicit renewal theory’’ is meant a variant in which g is not known and
indeed is an integral involving f itself. Renewal-theoretic methods can still
give conclusions about f in those circumstances. In what follows we establish

a specific implicit renewal theorem in order to study certain random equations,
including the following examples which will be discussed in detail:

(1.1) R= Q@+ MR, R independent of (M, Q)

(=, denoting equality of probability laws);

(1.2) R =, max(Q@, MR), R independent of (M, @);
(13) R= @+ Mmax(L,R), R independent of (L, M, Q);
(1.4) R= QV MR, R independent of (M, Q),
where

(1.5) - avbh= {(bl,’ :)i{?(alr:vilzl;’

(1.6) R = [@ + MR], R independent of (M, @)

Received October 1989; revised March 1990.

'Research supported in part by the U.S. Army Research Office through the Cornell Mathemati-
cal Sciences Institute and the Cornell Center for Applied Mathematics (special year on Extremes,
Stable Processes and Heavy-Tailed Phenomena). The hospitality of S. I. Resnick and the Depart-
ment of Operations Research, Cornell University, is also acknowledged.

AMS 1980 subject classifications. Primary 60H25; secondary 60K05, 60K25.

Key words and phrases. Additive Markov process, autoregressive conditional heteroscedastic
sequence, composition of random functions, queues, random equations, random recurrence rela-
tions, renewal theory, Tauberian remainder theory.

126

%8 (€
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%
The Annals of Applied Probability . STOR

i

®

www.jstor.org
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([ ] being integer part);
(1.7 R =, VMR?®+NR +Q, R independentof (M, N,Q).

The first few of these equations are important for applications, while the
latter ones are included mainly to demonstrate the breadth of the method.
Their pattern is that ¥(-) is a given random real-valued function on R and R
is a random variable independent of W¥(:) such that ¥(R) has the same
probability law as R. The random function W(-) is such that ¥(#), for |¢| large,
is approximately M¢ where M is a random variable on which we shall impose
moment conditions. We shall prove that then the tails of the law of R are
asymptotic to a power, and under extra conditions evaluate the rate of
approach.

The plan of the paper is as follows. Implicit renewal theory is set out in
Section 2 and the rate results in Section 3. They are specialized to the above
random equations in Sections 4-8, proofs are in Section 9 and the paper ends
with Section 10, a brief discussion of the implications for extreme-value
theory, with an illustration from economics.

We close this section with a list, to be referred to as needed, of notation and
conventions that will apply throughout.

xt=xVv0,x=(—-x)V0 xR

aVb+c=(@Vb)+caVbec:=aV(be),etc. Thus vV binds more tightly
than +, — but less tightly than -, /.

0%1log0 := 0 for a > 0.

An arithmetic probability law on R is one that is centred lattice: concen-
trated on {nA: n € Z} for some A > 0.

A spread-out law is one for which some convolution power has an abso-
lutely continuous component.

EIXP, if0<p <1,

1 X1l =
POl(EIXPYY?, if1 <p <.

* denotes one of three sorts of convolution; the arguments determine which
sort. For suitable real functions f, g on R,

fg(t) = fRf(t ~u)g(u)du, teR;

for measures w,v on %4, the Borel o-algebra in R,

wxv(B) = fj;( d(up Xv), B e %,

x,y): x+y<B}

for a function f and measure pu,

fxu() = fRf(t— u)u(du), teR,

all integrals assumed absolutely convergent.
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w™ denotes nth convolution power of w; u'® is unit mass at 0, also denoted
8.

f(2) = ft e " f(u)du, teR,
fi(6) = fRe‘"u(dt), A(8) = [Re"‘”u(dt), f(8) = [Rei‘"f(t) dt, 6eC.

2. Implicit renewal theory. Let (Q), &7, P) be a probability space and let
¥: RX Q- R be & X Hmeasurable. So ¥ can be considered a random
element of .#Z(R, R), the space of Borel-measurable functions from R to R, and
each ¥(¢) = ¥(¢, - ) is a r.v. Suppose R is a r.v. independent of ¥ and such
that the composite r.v. ¥ - R, that is, the map Q - R, v —» ¥Y(R(w), ), has
the same probability law as R. So R is to satisfy the random equation

(2.1) R=Y-R, Vand R independent.

The classical random equation S =, (X + S)* of random walk and queue-
ing theory leads to exponential decay of the tail of its solution under suitable
circumstances, and this model is included in our framework by making an
exponential transformation of (1.2) (see Section 5). The only other equation for
which power-law tail decay has previously been proved appears to be the
random difference equation of Kesten (1973), of which the one-dimensional
case is (1.1). We discuss it in Section 4.

Questions of existence and uniqueness of R need not delay us in the general
setting as they have been discussed elsewhere: see Borovkov [(1984, Section
4.6], Brandt, Franken and Lisek (1984), Letac (1986) and references therein.
For our purposes a result of Letac suffices. On a suitably enlarged probability
space we may suppose independent copies ¥, V,,... of ¥ to exist, and may
define

Z,(1) = WyeWyo oW (1) = Wy(Wy( - W(1) 7)), m=1,2,....

THEOREM 2.1 (Letac’s principle). Assume ¥ has continuous paths, i.e., for
each o € Q) the map t —» V(¢, w) is continuous. Suppose Z = lim, _,, Z (¢)
exists a.s. and does not depend on t. Then the law of Z is a law for R satisfying
(2.1) and is the unique such law. Also the sequence W,(t) =¥,V _ o

- oW(¢t), where n = 1,2,..., has this law as its limit law, whatever the
initial ¢.

[The formulation of Letac (1986) is in terms of environmental variables: (2.1)
is replaced by

(2.2) R = f(R,Y), Y and R independent,

where Y is an F-valued r.v. for some measurable space (F, #) and f:
R X F' — R s a fixed product-measurable function. Our formulation can be put
in that way, for one can let F be .Z(R, R) and define f(¢, g) = g(¢t) for g € F,
t € R; thus (2.2) becomes (2.1) on identifying ¥ with Y]
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The last statement of the above result identifies R as having the limit
stationary law for the random recurrence relation W, = ¥, (W, _), W, = ¢.
The sorts of recurrence relations to be considered are those in which the action
of ¥ on its argument ¢, for [¢| large, is close to multiplication by a r.v. M that
satisfies a “Cramér condition” E|M|* = 1, for some k > 0. If the range-space
is R* we may set V, := log W,, ®,(¢) = log ¥,(e). Then the recurrence rela-
tion becomes V, = ®(V, _,) and we have for large ¢ that ®(¢) = L + ¢ where
Ee*L = 1. This formulation is essentially that of the Markov additive processes
of Aldous (1989). The content of Aldous (1989), Sections C11 and C33, thus
provides a heuristic for some cases of our results.

Conditions and preliminary properties for M are as follows.

LeEMMA 2.2. Let M be a r.v. such that, for some k > 0,

(2.3) EM“=1,
(2.4) E|M|"log* M| <
and

(2.5)  the conditional law of loglM|, given M + 0, is nonarithmetic.
Then

(2.6) — o< EloglM| <0
and
(2.7 m = E|M|“logIM| € (0,x).

The following implicit renewal theorem says that, if the tails of R satisfy a
certain integrability condition involving M, then they are asymptotic to a
power.

THEOREM 2.3. Let M satisfy the conditions of Lemma 2.2 and let R be
independent of M.

Case 1. Suppose M > 0 a.s. If

(2.8) [IP(R > 1) - P(MR > )}t dt <
0
or, respectively,
(2.9) JIP(R < =t) - P(MR < —t)l*~" dt < ,
0
then
(2.10) P(R>t) ~C,t™", t— ,
respectively

(2.11) P(R< —t) ~C_t™, t-o,
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where
1 ® -1
(2.12) C.= -”:[O (P(R>t) — P(MR > t))t< 1dt,
1
(2.13) C_= -”:[0 (P(R < —t) — P(MR < —t))t*"1dt.

CASE 2. Suppose P(M < 0) > 0. If both (2.8) and (2.9) are satisfied, then
both (2.10) and (2.11) hold, with

(2.14) c,=C_= Eln—lfow(P(lRl >t) — P(IMR| > t))t<~1dt.

Note that in Case 1 when both conditions are satisfied, and in Case 2,
1l =
(215)  C:=C,+C_=— [ (P(RI>1t) - P(MR| > 1))¢*""dt.
0

The theorem has content only when R has infinite absolute moment of
order k. For, if E|R| < », (2.15) yields C = («km)~ Y E|R|“ — EIMR|"), which,
by the independence of M and R and (2.3), is zero. (2.10) is then to be
interpreted as P(|R| > ¢) = o(¢ %), which we have in any case from E|R|* < o,

The last remark makes it clear that instances where C,+ C_= 0 are those
to be avoided. Choice of the correct M, and hence «, is crucial.

For use in random equations it will be convenient to specialize Theorem 2.3
to the following form.

CoROLLARY 2.4. Suppose R satisfies (2.1) and that M is defined on
(Q, o7, P), satisfies the conditions of Lemma 2.2 and is such that R is
independent of (¥, M). Then in Theorem 2.3 conditions (2.8) and (2.9) may
be replaced, respectively, by

(2.16) E(W(R)") - (MR)" ) <o,
(2.17) E(¥(R)™) - ((MR)™)| <
and the formulae (2.12), (2.13) and (2.14), respectively, by
1 K Ak
(2.18) C.= —E((¥(R)") - (MR)")'),
1 K _\K
(2.19) C.= —E((¥(R)") - (MR)")'),
(2.20) C,=C_= E%IEE(I\P(R)I" — IMRI").

[Although ¥(R) =; R you cannot replace ¥(R) by R in these expressions, for
the pair (¥(R), MR) does not have the same law as (R, MR).]
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Only for one particular ¥ does it appear that these formulae can yield
explicit expressions for C, or C_, not involving the unknown R: see Corollary
4.4. But they will give bounds on C, and C_ for most ¥. We calculate such
bounds for one case in Corollary 4.3 and leave others to the reader.

Our method for the core result above, Theorem 2.3, has benefitted from
ideas in Grincevid¢ius (1975). The results of the latter are partly rediscoveries
of the content of Kesten (1973), but Grincevidius’s approach is distinct. We
have taken care to avoid any version of one step in his approach that seems to
be incomplete: The need for an extended form of Choquet-Deny lemma to
obtain a smoothed version of t“P(R > t), not known to be bounded, from a
renewal equation in which it appears.

The basis for the renewal theory in the present section is ultimately the
(two-sided) key renewal theorem. For various reason we have been unable to
use other authors’ renewal-theoretic superstructures built similarly on that
base. Thus in part of the proof of Theorem 2.3 we could have employed results
about renewal theory for Markov chains from Kesten (1974), but had to avoid
doing so because a later proof (of Theorem 3.2) would then have fallen foul of
the lack of a Stone-type decomposition of renewal measures in the Markov-
chain case. The explicit proof of Theorem 2.3 is needed to build on. However,
we have followed Kesten (1974) for a number of steps, and have kept mostly to
its notation so that the dependence is visible.

3. Rates of approach. This section contains the rate results for implicit
renewal theory, in which we quantify the approach of ¢t*P(R > ¢) to C . The
tools employed are an explicit-rate version of Stone’s (1966) decomposition of
an exponentially decaying renewal measure, and Tauberian remainder theory.
We give the Stone decomposition first, as its conditions will be needed in the
substantive theorems.

THEOREM 3.1. Let n be a probability law on R with finite second moment
and positive first moment m, such that 7(B) < « for some B > 0. Suppose that
n is spread out, so for some n, we have

(3.1) N = (1 - 8)¢, + d¢,

where 8 €[0,1) is constant and ¢,, ¢, are probability measures with ¢,
absolutely continuous. Suppose that B has been taken so small that 86(B) < 1.
Suppose also that 7(8) + 1on 0 = —B. Then the renewal measure v = Lyn™
may be written v = v, + v, where v, is a finite measure such that 7,(B) < o,
and v, is absolutely continuous with a continuous bounded density p(-) such
that

1 , de
(3.2) p(¢) = E - —é';f eiletl——'ﬁ(())- +o(e ), t — oo,

(Here ¢ is a simple closed contour in the domain D = {0: —B < &6 < 0},
enclosing all the zeroes of 1 — 1 in D.)
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Regarding (3.2), note that #(B) <  implies 1 is holomorphic in D and
continuous in its closure D. By the Riemann- Lebesgue lemma, $4(6) > 0 as
|R6] — o, uniformly in —B < §6 < 0. Since 166,(0)| < 86,(B) < 1, the values
of 0 where 1 — 7(9) = 0 are restricted to some bounded subset of D. On the
real axis, 1 — 7(8) = 0 only at 6 =0, and since 7(8) =1 + im8 + o(8) as
0 — 0, the origin is an isolated zero of #. All this together with our assump-
tion that 1 — %(0) + 0 on 6 = —B implies that there can be at most finitely
many zeroes of 1 — 7 in D. So we may find a suitable contour ¢ enclosing
them. If there are no such zeros in D the value of the contour integral in (3.2)
is 0. Otherwise, let the zeroes be 6, ..., 6, , say, with respective multiplicities

ki, ..., k, . Then (3.2) may be written more explicitly as

ny Ry Jj-1

L Lo

1 .
£) = — — Rfe-0t(—iVa, )+ -Bt
p(t) = — E LG (et (=i)a, ;) + o(e™?),
where a, ; is the residue of (6 — 01)1_1/(1 — 1(9)) at 6,.

It is also worth remarking that the condition that #(6) # 1 on the line
&6 = —B is merely a technicality. We could allow zeroes on that line by
imposing analyticity and other conditions there. Alternatively, if 7(8) < «,
then for suitable small £ > 0 it will be the case that #(6) # 1 on {0 =
—(B — ¢), and so the theorem will hold with the error term worsened to
o(e~B=ex),

Our first rate result is for the M > 0 case, as follows. [Modulus signs appear
in (3.3) and (3.4) for later re-use of these equations.]

THEOREM 3.2. Let M > 0 be independent of R and satisfy (2.3). Suppose
that

(3.3) EIM|""? < »
for some B > 0 and that
(3.4) the conditional law of loglM|, given M # 0, is spread out.

Then the probability measure n(dx) := e**P(log M € dx) is spread out. Sup-
pose it satisfies (3.1) and the subsequent conditions in Theorem 3.1. Let ¢ be
as in Theorem 3.1 and set

(3.5) g.(t) = e*(P(R > ¢') — P(MR > ¢')),

(3.6) g_.(t) =e(P(R < —e') — P(MR < —e")).
W If

(3.7) f0°°|P(R > —t) — P(MR > £)lt**#~1 dt < w,

then

8.(60)

1
) t“P t)y=C,— —R|[ e 0 —B/2 .
(3.8) (R>1)=C,— — /{e l_ﬁ(a)d +O0(tP?), tox
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Gi) If
(3.9) JP(R < ~t) = P(MR < ~)l**#~ " dt < =,
0

then

) ’ - 1 et 8_.(0)
(3.10) t“P(R< —t) =C_— gmfj 1-7(6)

(iii) If R satisfies (2.1) and is independent of (M,V), then the assumpttons
(8.7) and (3.9) may be replaced, respectively, by

do+O0(t P/?), t— o,

K+B

(3.11) E(¥(R)")™" - (MR)" )™ <=,

- ((MR)")

Kk+B K+B

(3.12) E|(¥(R) )

In the above we have left the contour ¢ enclosing all the zeroes of 1 — 1 in

={0: 0 < —F6 < B}, but it needs only to lie in D and enclose all the zeroes
in {#: 0 < — %0 < B/2}, as the contributions of any others are covered by the
O(¢t#/2) remainder term. The latter term is probably not sharp, however, and
probably should be O(¢7#), but it seems to be the best that a method
employing Tauberian remainder theory can do. An example in Lyttkens [(1956),
Section 12] shows that the factor 3 is sharp in the Tauberian remainder
theorem we use.

Tauberian remainder theory is needed because we obtain (3.8) and (3.10) in
a smoothed form and have to unsmooth. The Beurling—Ganelius Tauberian
remainder theorem is employed. As it comes from the rather inaccessible
Ganelius (1962), we restate it as Theorem 9.6. [It does not unfortunately
appear in Ganelius (1971), the most readable introduction to the area.]

A more explicit form of (3.8) is

n; kl tj—l
(3.13) t“P(R>t)=C,+ Y, Z '
I=1j= 1 - 1)

where the 6, are the zeroes of 1 — 7(8) in 0 < —%60 < B/2, with respective
multiplicities k;, and r, ; is the residue of (6 — 6,)’~'4,(6)/(1 — /(0)) at §,.
The constants r; ; thus depend, through g,, on the unknown probability law
of R; however the form of the right-hand side of (3.13) does not.

We remark that if |M| satisfies the conditions on M in the above theorem,
then the conclusion

R(r, ;(—i) e7) + O(7F72),

g( )
1-4(8)
where g(¢) = e*(P(|R| > e') — P(IMR| > e')), may be established with the

tP(IRl >t) =C,+ C_— —m[ s o+ O(tP), o,
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conditions (3.7) and (3.9) replaced by
(3.14) JIP(RI > t) ~ P(MRI > t)lt=*#=1 dt < .
0

For this follows by simply applying the result to |[M|, |R|. The expectation
formula that can here be used in place of (3.14) is E||W(R)|“*# — IMR|“*?| < o,

Our second rate result, for M that can take negative values, involves a
probability law 1 now defined as follows. Let M,, M,,... be independent, all
with the law of M, and let N{* = inf{n > 1: M, --- M, > 0}. Then

N
M, - MN{+>I"1{ Y. loglM,| € B

Jj=1

(3.15) n(B) =E , Be4,

where the integrand is to be interpreted as 0 on the event that M, --- M, <0
for all n > 1.

THEOREM 3.3. Suppose P(M < 0) > 0. Let M be independent of R and
satisfy (2.3), (3.4) and (3.3) for some B > 0, and suppose B is so small that

(3.16) EM<*F1,,_, < 1.

Then m, defined in (3.15), is spread out. Suppose it satisfies (3.1) and the
subsequent conditions in Theorem 3.1. Let ¢ be as in Theorem 3.1, define &;
forj =1, — 1 as in Theorem 3.2 and define measures u ,,u_ on R by

,U«+(B) = EMK1M>0110gMeB’

m_(B) = EIMI"Ly _oLiogaric 5> Be #.
@ If (3.7) and (3.9) aold, then

1 . 0) +45_.0
t“P(R>t)=C,— —fﬁfge'“"( 20 ‘fl(ﬁi(g)g_lfi_)(a))
(3.17) 8.(0) — & _4(9)
2(1 - 2.(6) +4_(6))
+O0(t7F7?), towm,

and the same formula holds for t“P(R < —t). (Recall that C,= C_ in this
case.)

(ii) If R satisfies (2.1) and is independent of (M, V), then (3.7) and (3.9)
may be replaced by (3.11) and (3.12).

de

An expansion of the conclusion along the lines of (3.13) can also be given.
However, the zeroes of 1 — # are likely to be hard to locate exactly, so the
following corollary sums up the main import of the result.
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COROLLARY 3.4. Suppose P(M < 0) > 0. Let M be independent of R and
satisfy (2.3), (3.4) and (3.3) for some B > 0. If (3.7) and (3.9) hold, then, for
some y > 0,

t"P(R>t)=C,+0(t7), .
t"P(R< —t)=C_+0(t7), t—> oo,

4. Random difference equations. In the present section ¥(-) is given
by

(4.1) V(t) = Q@ + Mt, teR,

where @ and M arer.v.s. So R =, ¥5_,Q,I1,_,, where (@,, M) for £ =1, ...
are independent with the same law as (@, M), and I, =M, --- M,,.

We obtain a new proof of Kesten [(1973), Theorem 5] and some extensions
of the result. Admittedly this concerns only the ‘“not so hard to prove”
one-dimensional case of Kesten’s theorems [(1973), page 208], but the proof of
Kesten’s Theorem 4, which is needed for Theorem 5, is formidable enough
even in that case (occupying pages 236-244) that the present simpler alterna-
tive is worth having. The placing of (4.1) as one case of a general picture is also
valuable, but for the random difference equation the real strength of the
present approach lies in the extensions it allows. Thus bounds on C, and C_
in (2.10) and (2.11) will be obtained in all cases, and explicit values in some
cases. A qualitative difference emerges between the case when M > 0 a.s.,
when C, and C_ will in general differ, and otherwise, when they coincide.
The rates of approach of the tails to their asymptotes are also found.

The method presented here should extend to higher-dimensional cases, and
further work is intended in that direction, where recent results of LePage
(1983) are relevant. However the explicit extensions to Kesten’s results that
our method allows in the one-dimensional case make it appropriate to concen-
trate on that case first.

THEOREM 4.1. Let @ and M be r.v.s on a common probability space and
suppose that M satisfies the conditions of Lemma 2.2 and that

(4.2) E|QI* < .

Then there is a unique law for R satisfying (1.1). For this law both (2.10) and
(2.11) hold. If M > 0 a.s. then

o _ Ell@+Mr)") - (MR)")')

+ Kkm ’

(4.3)

o Bl +MR)" ) - (MR)")')

B Kkm
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while otherwise

1
(4.4) C,=C_= —E(IQ + MR|* — [MRI").
2km
Finally, C,+ C_> 0 if and only if
(4.5) for each fixed ¢ € R, P(Q=(1-M)c) <1.

Apart from the formulae for C, and C_, this is Kesten [(1973), Theorem 5].
Existence and uniqueness of the probability law solving (1.1) is fully discussed
in Vervaat (1979) [see also Grincevidius (1981)] and follows under the given
conditions from Letac’s principle. Our proof of the remaining assertions is in
Section 9. For the last assertion we use Grincevifius’s extension of Lévy’s
symmetrization inequality, in which med denotes median.

ProPOSITION 4.2 [Grincevi¢ius (1980)]. Suppose (Q,, M,), forn =1,2,...,
are independent and each has the law of (@, M). Let

J n
Hj = l:IMk, R, = E I, 1@y,
k=1

n n
Hj,n = an: Rj,n = E Hj,k—le

J+1 k=j+1

(sothatR, =R; +1I,R; ). Then
P( ~max (R;+I;med(R; , +1I, ,y)) > x)
J
<2P(R,+ 1,y >x), x,y €R.

[The assumption P(M = 0) = 0, needed for other purposes in Grincevitius
(1981), is superfluous and has been removed.]

The following consequences of Proposition 4.2 are interesting in their own
right and include the form that we will use later. Under the conditions of
Letac’s principle, in particular under the conditions of Theorem 4.1, one may
let n — « in the inequality. Then R, — R a.s. and R has the law of R. For
each fixed j, R; , > L5_;,111; ,_1@, a.s., and the limit also has the law of R.
Thus the y = 0 case gives

P(sup(Rj+HjmedR)>x)52P(R>x), x> 0.
JjeN
Combine this with the corresponding version with the signs of R, R ; reversed
to get
(4.6) P(supIRj+1'[j med R)| >x) < 2P(|R| > x), x>0.
JEN

Now we investigate consequences of Theorem 4.1, in particular of the

formulae for C,,C_ there.
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CoROLLARY 4.3. When 0 <k <1,
1 K
C.+ C_< —E|qQl,
Km

while when k > 1,

k—1

(4.7) C.,+C_< (EIQI* + EIQIIM|I“"'EIR™").

m

The latter bound is finite because E|Q|IM|*"! < by the assumptions of
Theorem 4.1 and Hélder’s inequality, while E|R|“~" < « by the conclusions of
Theorem 4.1.

When P(M < 0) > 0 the constants C, and C_, being equal, are individu-
ally bounded by half the above amounts.

To make the bound (4.7) explicit, employ (1.1) to bound E|R“"!. Thus,
since || |I, as defined in Section 1 satisfies the triangle inequality, we are led to

(4.8) IRllc-1 < IQllx-1/(1 = IMllc-1) <,

whence a bound in (4.7) involving only @ and M.
The next two results detail all cases when the constants in Theorem 4.1 can
be made explicit, that is, not involving the unknown probability law of R.

COROLLARY 4.4. In Theorem 4.1 assume that M > 0, @ > 0 a.s., so that
R >0 a.s. and C_= 0. If « is an integer, then
1 «-1 K . . .
(4.9) c.=—7Y (j)EMJQ"‘JERJ,

km ;7

where the moments ER’ may be found iteratively [Vervaat (1979), Theorem
5.1] from the equations

J .
(410) ER/ =Y (z)EMkQJ"kERk, j=1,2,...,k — 1.
k=0

In particular, when k=1, i.e., EM =1, C,= EQ/EM log M, while when
k=2 i.e, EM?=1,
1/1 EQEQM

= — | — 24 - "
(4.11) C. m(zEQ T )

CoOROLLARY 4.5. In Theorem 4.1 suppose « is an even integer. Then
C.+ C_ equals the right-hand side of (4.9). If, additionally, P(M < 0) > 0,
then both of C, and C_ are equal to half that quantity. The ER’ are again
available from (4.10).

In particular, when k = 2, i.e., EM? =1, C + C_ equals the right-hand
side of (4.11).
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There seems to be just one class of random difference equations to which
our results apply and whose stationary laws are known explicitly. We give it
here because it provides a useful check on our formula for C,. The % = 1,2
cases of the next result are due to Chamayou and Letac (1989). By the
notation X ~ B, ,, where a,b > 0, is meant that X has probability density
x* Y1 +x)"*°1,_. ,/B(a,b).

ProrosiTiION 4.6. Fix k €N, and positive numbers a,...,a,,b. Put
@y =0, LetR,Y,,...,Y, beindependent with R ~ B, , andY; ~ B
forj=1,...,k.SetM =Y, --- Y, and

Q=Y,+YY, +Y,Y, Y, »+ - +YY,_, - Y.
Then @ + MR =, R.

a1+1,aj+b

For this model we have P(R > r) ~ 5~'r~%/B(a, b), so k = b and the claim
made by (4.3) is that, whatever £,

1 E((Q + MR)" - (MR)®)
bB(a,,b) bm

One may verify this directly. It is left as an exercise.
Consider now the rates of approach of the tails of R to their asymptotes.

THEOREM 4.7.  Suppose that R solves (1.1), where M satisfies (2.3) for some
k > 0 and, for some B € (0, 1), (3.3) and (3.4) hold and E|Q|"** < «. Define
n(dx) = e*P(log M € dx) if M > 0 a.s., and otherwise define n by (3.15).
Suppose it satisfies (3.1) and the subsequent conditions in Theorem 3.1. If
P(M < 0) > 0, suppose (3.16) also. Then if M > 0 a.s., both (3.8) and (3.10)
hold, while otherwise (3.17) holds and t*P(R < —t) satisfies the same for-
mula.

Applications of random difference equations are listed in Kesten (1973). We
discuss one new application in Section 10. There is also a statistical litera-
ture on random difference equations: see Nicholls and Quinn (1982),
Potzelberger (1990) and references therein.

5. A random extremal equation. Here ¥(-) is given by
¥(t) = max(Q, Mt), teR,
where M > 0 as. In the notation of Theorem 2.1, iteration of ¥ gives
Z,(¢) = max(¢11,,V §_,Q,T1,_,), where II, =M, --- M,, and (M,,Q,) are
independent, each with the law of (M, Q). (Without the insistence on M > 0,

no straightforward iteration of ¥ is valid.) An easy application of Letac’s
principle gives the following:

ProposiTioN 5.1. IfM >0a.s.,, —o» < Elog M < 0 and E log(1 v Q) < o,
then R ==V 75_,Q,I1,_, is a.s. finite and its law is the unique law such that
(1.2) holds.
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If Q=1 as., then on writing S:=1log R, X:=1logM we find S =
Vi o(X, + -+ +X,) so that we have the classical setup of the overall maxi-
mum of a downward-drifting random walk, the stationary waiting time of a
G/G/1 queue and so on. Alternatively, if M =e5 4 and @ = e”, then
S = log R satisfies S =, B + (S — A)", which is the recurrence relation for
the stationary queueing time (waiting time plus service time) in a G/G/1
queue. In either case our first theorem below then gives exponential decay of
the upper tail of S, retrieving the well-known estimates found in Feller
[(1971), Section XII.5]. We follow it with the rate result.

THEOREM 5.2. Suppose that M > 0 a.s., that M satisfies the conditions of
Lemma 2.2 and that E(Q*)* < . Then there is a unique law for R satisfying
(1.2), and P(R > t) ~ C,t™* as t > », where C,.= (km) 'E(Q*V MR*)* —
(MR™*)%). Also C.> 0 if and only if P(Q > 0) > 0.

THEOREM 5.3. Suppose that R solves (1.2), where M > 0 satisfies (2.3) for
some k > 0 and, for some B > 0, (3.3) and (38.4) hold and E(Q*)™F < .
Suppose n(dx) = e**P(log M € dx) satisfies (3.1) and the subsequent condi-
tions in Theorem 3.1. Then both (3.8) and (3.10) hold.

Specializing this to the stationary waiting time S of a G/G/1 queue as
above, we obtain

e“P(S >1t) =C,—I(e") + O(t7F/%), t— o,

where I(¢) is the term following C, in (3.8). This extends the known asymp-
totic behaviour of S, where one has [Borovkov (1976), Section 22.3] that
e“'P(S > t) = C .+ O(e™"") for some unidentified y.

6. A model due to Letac. Model E of Letac (1986) is
(6.1) V(t) =Q + Mmax(L,t), teR,

where M > 0 a.s. From Letac (1986) we obtain, with a slight correction, the
following formula for iteration of ¥, in the notation of Theorem 2.1:

(62) Zn(t) = max Z ank—l + tHn? Z ank—l + LmHm) )7
k=1 k=1 m=1

where I, == M, -+ M,, and (M,, Q,, L,) are independent, each with the law
of (M, Q, L). [The restriction M > 0 a.s. is not given in Letac (1986), but it is
necessary for validity of (6.2).]

ProPOSITION 6.1. IfM >0a.s., —» <ElogM <0, Elog(1 Vv Q) <xand
Elog(1 Vv L) <, then R :=sup(Z5_1@Q,I1, 1, (Z7 1@, 11, 1 + L1107, 1)
is a.s. finite and its law is the unique law such that (1.3) holds.

With assumptions that include these we obtain a power-law tail for R.
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THEOREM 6.2. Suppose that M > 0 a.s., that M satisfies the conditions of
Lemma 2.2 and that

(6.3) E(ML*)  <», E|Q|< =,

Then there is a unique law for R satisfying (1.3), and P(R > ¢t) ~ C,t " as
t — o, where
1 K K
C.= —E(((Q + Mmax(L, R))")" - (MR)")").

Km

If, further, there is a constant c¢ such that @ — ¢(1 — M) > 0 a.s. and
P(Q—c(1-M)>0)+P(M(L—-c)>0)>0,
then C_ > 0.

A necessary and sufficient condition for positivity of C, is lacking here.
What is mainly needed is a criterion in Theorem 4.1 for the individual
coefficients C,,C_ to be positive. A sufficient condition is that @ — ¢(1 — M)
is symmetric for some ¢, and not a.s. zero, but this is far stronger than
necessary. Clearly, this is also sufficient for C, to be positive in Theorem 6.2.

We turn to the rate result.

THEOREM 6.3. Suppose R solves (1.3), where M > 0 satisfies (2.3) for some
k >0 and, for some B €(0,1), (3.3) and (3.4) hold and E|QI"™? < =,
EIML*|**? < . Suppose m(dx) := e**P(log M € dx) satisfies (3.1) and the
subsequent conditions in Theorem 3.1. Then both (3.8) and (3.10) hold.

Two special cases of the model are worth remarking. First, if @ = 0 a.s.,
then ¥ becomes W(¢) := ML VvV M¢, a special case of the setup of Section 5,
with @ = ML.

More interestingly, if @ = 0 a.s. and L > 0 a.s., then (1.3) becomes, in
terms of S :=log R, B :=log M and A =log L,

S=LB+AVS.

This model is discussed and applied in Helland and Nilsen (1976) and further
in Letac (1986). Thus S will have the law of V,* (A, + B; + -+ +B,), and
the results above give conditions for exponentially decaying upper tail, and
exponential rate of approach thereto.

7. A largest-modulus equation. A two-sided variant of the model of
Section 5 is obtainable in terms of the largest-modulus operator V defined in
(1.5). Set ¥(¢) := Q v Mt for ¢ € R, where we use the same conventions for Vv
as for V: thus a V be == a V (bc). As usual, let (M, Q),(M,,Q,),(M,,Q,), ...
be i.i.d. and set 1, :== M, --- M,. Application of Letac’s principle gives that if
—o < Elog|M| < 0 and Elog*|Q| < », then R = V,” @,II,_, is as. finite
and its law is the unique law such that (1.4) holds.
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ProposiTiON 7.1. Suppose that M satisfies the conditions of Lemma 2.2

and that E|Q|* < ». Then there is a unique law for R satisfying (1.4), and for
this law both (2.10) and (2.11) hold. If M > 0 a.s., then

_E(((@vMR)")" - ((MR)"))

cC, ,
Km
o _Ell@vmr)") - ((Mr)")')
- Kkm ’
while otherwise
C.=C_= ! E((1QI* — IMR|*)"
2= C= o —E((IQI" — IMRI)").

Further, C_+ C_> 0 if and only if P(Q # 0) > 0.

For a rate of approach we have the following result. Its proof is on the same
lines as those of Theorems 4.7 and 5.3, and is omitted.

ProPOSITION 7.2.  Suppose R solves (1.4), where M satisfies (2.3) for some
k >0 and, for some B > 0, (3.3) and (8.4) hold and E|Q|"*? < . Define
n(dx) == e**P(log M € dx) if M > 0 a.s., and otherwise define n by (3.15).
Suppose it satisfies (3.1) and the subsequent conditions in Theorem 3.1. If
P(M < 0) > 0, suppose (3.16) also. Then if M > 0 a.s., both (3.8) and (3.10)
hold, while otherwise (3.17) holds and t“P(R < —t) satisfies the same for-
mula.

8. Two more equations. The method extends to variants of Section 4’s
random difference equation such as (1.6). If one takes ¥(¢) := [@ + Mt] where
the domain for ¢ is Z rather than R, then the continuity requirement in
Letac’s principle (Theorem 2.1) is trivially satisfied and the conditions of the
principle are easily seen to hold if —« < E log|M| < 0 and E log™|Q| < .

Apart from its final statement, Theorem 4.1 remains true for this model,
[@ + MR] everywhere replacing @ + MR, with a virtually unchanged proof.
There remains the last statement, that is, the condition that ensures C, +
C_> 0. It seems to be less than obvious in the present case, and indeed the
only sufficient condition we have is that M > 0 a.s. and @ > 1 a.s. For then
R > 1 as., and, in the formula

1
C.= mE([Q + MR]" — (MR)"),

we have [@ + MR] > MR, so C,> 0.

The difficulty in finding a necessary and sufficient condition here, or even a
good sufficient condition, is again bound up with the lack of such a condition
for the individual constants C,,C_ in Theorem 4.1 to be positive.
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The rate result, Theorem 4.7, also carries over verbatim to (1.6), with an
essentially unchanged proof.

The other model for this section is (1.7), as an instance of a random
polynomial equation. Here M, N, @ and so also R, are a.s. nonnegative. One
may equivalently study S := R?, satisfying

(8.1) S =, MS +NVS + @, S independent of (@, N, M).
So the role of ¥ is now taken by E(t) := Mt + Nyt + Q. First we employ

Letac’s principle.

ProposiTION 8.1. Suppose M > 0, N >0, @ > 0 a.s. and that (Q, N, M),
Q,N,M), (Q,,N,,M,), ., are i.i.d. Set B, (¢) =M.t + Nt + @, for
t>0. If

(8.2) Elog" N<»
and
(8.3) —oosElog(M+ L) <0,
2/Q
then S =lim, B ,0Eyo -+ o5 (t) exists and is finite, almost surely, and

its law is the unique law on [0, x) satisfying (8.1).

Then S has power-law tail under suitable hypotheses and a rate of ap-
proach is available under stronger hypotheses.

THEOREM 8.2. Suppose that M satisfies the conditions of Lemma 2.2, that
the conditions of Proposition 8.1 hold, with (8.2) strengthened to EN* < o,
and that EQ* < ». Then P(S > t) ~ C,t™" as t - », where

1 K
(8.4) C.,= —E((MS + NVS + Q)" - (MS)").
Kkm
Also C > 0 if and only if P(Q > 0) + P(N > 0) > 0.

THEOREM 8.3. Suppose S solves (8.1), where M >0, N>0, @ >0 a.s.
and that (8.3) holds. Suppose that M satisfies (2.3) for some k > 0 and that
there exists B > 0, with B < min(1, k), such that (3.3) and (3.4) hold and
EN**F <, EQ“*P < . Suppose m(dx) = e**P(log M € dx) satisfies (3.1)
and the subsequent conditions in Theorem 3.1. Then, with S replacing R in
both (3.5) and (3.8), formula (3.8) holds.

9. Proofs.

Proor orF LEMMA 2.2. Write Y := log|M| € [ -, »). With the interpreta-
tion given in Section 1 of 0 log 0 one finds

9.1 EIM|*log™ M| = E|Yle*¥1y,_, < o, u > 0.
0



IMPLICIT RENEWAL THEORY 143

The Mellin—Stieltjes transform of |M| or Laplace—Stieltjes transform of Y is
f(u) = Ely,JM|* = E1,_ _,e*¥. Under (2.3) it is finite and continuous in
[0,«], and because of (9.1) has finite derivative E|M|* log|M| in the interior of
that interval. Similarly f has second derivative E|M|* log2|M| there. Now (2.3)
implies that P(M # 0) > 0, so (2.5) makes sense and implies in particular that
P(IM| € {0,1}) < 1. In turn that implies f” > 0 in (0, «) so f is strictly con-
vex in [0, k]. If P(M = 0) = 0, then f(0) = 1 = f(«), so by the convexity 0 >
f'(0) = E log|M|. On the other hand, if P(M = 0) > 0, then E log|lM| = —w
because E log*|M| < » as a consequence of (2.4). So (2.6) is established in
both cases.
By (2.4), (9.1) and the convexity we have also (2.7). O

Lemmas about the ~smoothing defined in Section 1 (which is just Cesaro
mean, with exponential arguments) are next. The same smoothing is used in
Grinceviéius {(1975).

Lemma 9.1. Iff> 0, f€ LXR) and f(t + &) > 6(¢) f(¢) for all £ > 0 and
t € R, where 6(¢) = 1 as € |0, then f is directly Riemann-integrable (dRi).

Proor. Without loss of generality it can be taken that 68(¢)11 as ¢ | 0. For
e>0,

X inf  faeb(e)T f(ne) 20%)L [ f=0%e)[F,

nez [ne,(n+1el]

and, similarly,

1
ey, sup fs?o-é—(—gs-[f.

neZ [ne,(n+1)el

Let ¢ | 0, then these upper and lower sums converge to [f. O
Lemma 9.2. Iff € LA(R), then fis dRi.

Proor. By considering f*, f~ separately, without loss of generality f may
be assumed nonnegative. Now, for § > 0,

fE+8) 2 e [* enf(u) du = e7f(t),
so the result follows from Lemma 9.1. O

Lemma 9.3. If [(u*P(R > u)du ~ C .t as t > », then P(R > t) ~ C t™~
ast — «,

Proor. One can use Bingham, Goldie and Teugels [(1987), Exercise 1.11.14]
with U(¢) = —¢t*P(R > t), p =0, 0 == k and I(-) = 1, but for completeness
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we give a direct proof. Fix 4 > 1. Then

bK+1_ 1 bt
———*P(R>¢) > [ wP(R>u)du~C.(b—1)t, ¢t— o,
k+1 ¢
so
b-1
liminf t*"P(R > t) > C+(K + I)ET].
t—o0 —

On letting 5|1 one sees that the liminf is at least C,. The proof that
lim sup t“P(R > ¢t) < C, is similar, starting from [;,u*P(R > u)du with 0 <
b<1l O

For the proof of Theorem 2.3 we may set up R, M, M', M,, M,,..., inde-
pendent r.v.s on a common probability space, where M’ and the M, all have
the law of M. Set

(9.2) Yk = lOgIMkI, Vk = 10g|Hk| = Y}, k (S N,

HMR“

(9.3) r(t) =e“P(R>e'), 8,(¢t) =e“P(I,R>e!), teR.

In the proofs of this theorem and of Corollary 2.4 we need establish only
(2.10) and the appropriate formula for C ,, as the conclusions for the other tail
follow on considering —R in place of R.

ProoF oF THEOREM 2.3.
CasE 1. M > 0 a.s. Start with a telescoping sum: For n € N, t € R,

n

P(R>e')= Y (P(Il,_ R >e') — P(II,R > ¢’)) + P(TI,R > &)

0.4) = (P(e"*1R > e’) — P(e"*'MR > e')) + P(e""R > )
9.4 k=1
n—1

[R(P(R >e'™*) — P(MR > ¢'™*))P(V, € du)
E=0

+ P(e""R > et).

The interval of integration does not include the point — though P(V, = —)
is permitted to be positive. Set

(9.5) v,(dt) =e ) P(V, €dt).
k=0
Then in terms also of g;, defined in (3.5), the above says
r(t) =g *v,_4(t) +8,(¢), teR,neN.
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Apply the smoothing operator ~ to this. As the operator is just Lebesgue
convolution with the kernel K(¢):=e ‘1, ,, it follows that (g,*v,_ ;)=
&1*v,_,, and we deduce that

(9.6) X(t) =& *v,_4(t) +8,(¢t), teR,neN.

Let n(du) == e**P(Y; € du). This measure places no mass at —, and by
(2.3), (2.5) and (2.7) is a proper nonarithmetic probability law on R with mean
m € (0,x). Further,

(9.7) v(dt) = T e"P(V, € dt)
0

is its renewal measure L5n). Because m # 0 this renewal measure has the
property that |f]|*v(¢) < « for all ¢ whenever f is dRi. By (2.8) and Lemma
9.2, &, is dRi, so |&;|* v(¢) < = for all £. Thus EX e "*|g (¢t — V,)| < . By the
Fubini-Tonelli theorem, EYX.5e*"*g,(t — V,) exists and the expectation and
sum in it may be interchanged, so it is the limit as n — ® of L3 Ee "+ g (¢ — V).
That is, for each fixed ¢, &, *v(¢) = lim,, _,, &, * v,(¢). So from (9.6) follows

(9.8) =§.1*V

provided we have §,(tf) > 0 as n — o for each fixed ¢. That follows by
dominated convergence from §,(¢) — 0, which in turn is immediate from the
fact that the Y, are i.i.d. with negative mean, so V, > —x a.s.

Apply the key renewal theorem [for two-sided walks on R, cf. Athreya,
McDonald and Ney (1978), Theorem 4.2] to (9.8):

¢

- — — o0,
r ( ) m '/I;Q gl’
The conclusion (2.10) now follows from Lemma 9.3. For (2.12) note that

Jr&1 = IrF * &1 = [xF[p81 = [r81-

Case 2a. P(M > 0)> 0 and P(M < 0) > 0. The notation set up before
Case 1 is retained. Set X, := sgn II,. Again starting from the first equality of
(9.4), this time

n—1
P(R>e')= ¥ (P(X,=1,R>e" %)~ P(X, =1, MR > ¢' %))
E=0

n—1
1Y (P(X, = ~1,R < —et™)
k=0

—P(X, = -1,MR < —e'™ %))
+ P(II,R > e*).
In terms also of g, and g_,, defined in (3.5) and (3.6), the above becomes

n—1

(9.9) r(t) = ¥ EeVigy(t —V;) +8,(8).
E=0
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Here 5,(t) is at most e“’P(|R| > e’~"») which tends to 0 as n — « for each
fixed ¢, for the same reasons as in the Case 1 proof.

We now give the M, a new probability law, under which probability and
expectation will be denoted ,E. Under P the rv.s M, M »M,, ... are to
remain i.i.d. with

P(M e dy) = y'P(M edy), ye<R.

The definitions of I1,, Y,, V, and X, in terms of the M, remain in force. (9.9)
becomes

n—1
r(t) = ¥ Egx(t—V,) +6,(t), teRneN.
k=0

The sum on the right is g, *v, ; (£) + g_;*v,_; _(¢) where v, (dt):=
Yr_oP(X, =2V, dt) Just as with (9.6) it follows that
#(t) = Z Egg(t—V,) +8,(t), teRneN.
E=0

Now X := (X,,), . o is a Markov chain on { -1, 1} with X, = 1 and transition

matrix (f; g) where

p=P(M>0) = El,,. M,
q=P(M<0)=E1,,_,JM"

Sop>0,q9g>0and p+q=1. Let n,,7n_ be the conditional laws of log|M|
under P given M > 0 and M < 0, respectively,

n.(dy) = P(M > 0,loglM| € dy) /p,
n_(dy) = P(M < 0,log|M| € dy) /q.
Conditional on X the r.v.s Y}, Y,,... are independent, with conditional laws
B(y, e -IX) = 1y x, n:() +1x .x m_().
Let 0 = N§ < N{") < N{*) < --- be those n for which X, = 1 and let

N{7 <N{?)<N§{’)< --- be those n for which X, = —1. Set I{") :=
max{i: N\*) <n — 1}, I{7) := max{i: N\ <n — 1}. Then
I:l+) 1'(1—)
(9.10) Ft)=EY g’1(t - Wk(+)) +E Y g—l(t - Wk(_)) +0,(1),
k=0 k=0
teR,neN,

where Wi*) = Vyy . The first aim will be to let n — « here; the second, to
apply the key renewal theorem to the result. Note that & W) > 0as n — = for
each ¢.

Let 7 be the law of Y; + -+ +Yyc». Then one sees that (W) is random
walk with step law 5. That is, W(“ = L4Z{") where the Z(* are indepen-
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dent, each with law n. We show that

(9.11) n=pn,+ ), ¢*p" Pxnp?
n=2

and from this derive the properties needed for renewal theory:

(9.12) [yn(dy) = 2m;
R
(9.13) n is nonarithmetic.
Now P(N{" =1)=p, B(N{") =n) = ¢?p" 2forall n > 2. If N{* = 1, then

Y, has law n_, while if n > 2, then Y; and Yy have law 7, and the Y, in
between if any, law n _. We conclude (9 11). For (9.12) write m ,, m_ for the
means of 1,,n_. Then

Jyn(dy) = pm + Xo_olzqu"‘z(2m_+(n - 2)m,)

=2(pm_ .+ qgm_).
This equals 2m because
m .= El, (|M|“logIM|/p, m_= E1, _,|M|" loglM|/q.

Since, under P, log|M| is nonarithmetic, we can find a subset B of its
support such that the additive group generated by B is dense in R. (By
Kronecker’s theorem, B needs to have but two elements.) Let B, B_ be the
intersections of B with the supports of 1;,. ,log|M| and 1,, _, log|M|, respec-
tively. Let B* consist of the elements of B, together with twice each element
of B_. So B* generates an additive group dense in R. For any b € B*, and any
e > 0, we have if b € B, that

P(Z" - bl <e)=pn,(b—¢,b+e) >0,
and if 1b € B_, that
P(Z(" — bl <) 2 q%(n_(L(b—¢),2(b +£)))* >0,

so b is contained in the support of Z{*), that is, of . This establishes (9.13).

Let v .= £5n'™ be the renewal measure generated by 7. By the properties
of n proved above, any dRi function is v-integrable and the key renewal
theorem gives its asymptotics. By Lemma 9.2, applied to (2.8), &, is dRi, so
|&,]# v(2) < o for all ¢. That is, EX5|&,(t — (“)I < o, and this in turn allows
us to use dominated convergence to show that for each fixed ¢,

5

(9.14) EY §(t-WP)>EYL &(t—-W™P), n-o,
k=0 k=0

since I{") - « a.s.
For the other expectation in (9.10), first, W™ = L§Z(™ where the Z{~’
are independent, Z{™ for j > 1 have law 7, but z§ has a different law Mo
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(= Z5qp" ' _*n@~Y). As with &,, &_, is dRi, whence by dominated conver-
gence the corresponding statement to (9.14) holds, with W™, §_, and I{™’ in
the appropriate positions. (9.10) now yields

oo

x W _ W
(9.15) ¥(t) = EZO: &t — Wy )+E2g (2 — W)

=g *v(t) + &§_1xmo*v(t), teR.

Now the key renewal theorem for the whole line, applied to each term on
the right, gives as ¢t — « that

r(t)—>—fg1 om fg 1* 7o

= ﬁ'/l;%(gl-i-g—l)

and this is the right-hand side of (2.14). The conclusion (2.10) follows from
Lemma 9.3.

Case 2b. M < 0 a.s. We first show that
(9.16) f0°°|P(R > ¢) — P(MM'R > )|t~ dt < .
This will follow from (2.8) and
f:IP(MR >¢) — P(MM'R > ¢)|t*" 1 dt <
if we can show the latter. But its left-hand side is

fwf— O)IP(uR >t) = P(uM'R > t)|P(M € du)t ™" dt
) f(—oo,o)f:'P(R < —v) = P(M'R < —v)|(-uv)""(-u) dvP(M € du)

= EIMI"fO IP(R < —v) — P(M'R < —v)lv*"!db,

which is finite by (2.3) and (2.9). So (9.16) is proved and we can apply Case 1 to
it. Thus (2.10) holds with

1l =
C,= —j (P(R>t) — P(MM'R > t))t< ' dt,
m2 0
where m, == E|MM'|" log|MM'|. The integral is the sum of

f:(P(R >t) — P(MR > t))t< 'dt
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and
[ (P(MR > t) - P(MM'R > 1))t~ dt,
0

and by the proof of (9.16), with modulus signs removed, this latter integral
equals

j:(P(R < —t) — P(MR < —¢))< ' dt.
So C, is as claimed in (2.14), since obviously m, = 2m. O
LEmMMA 9.4. For any r.v.s X,Y on a common probability space,
(9.17) f0°°|P(X > 1) - P(Y > t)lt~1dt = %EI(XJf)" —(YH)",
finite or infinite. When finite, we have further that

[} ]- K K
(9.18) fO(P(X>t)—P(Y> t)) et ldt = ;E((X*) - (Y")").

Proor. The values of P(X >¢) and P(X*>¢t) for ¢t > 0 coincide, so it
suffices to establish the formulae for nonnegative X, Y. The left-hand side of
(9.17) is the sum of [fP(X <t <Y)t* 'dt and [(P(Y <t < X)t“ ' d¢t. The
first of these is

1

Ely y [t Vdt = —Ely_y(Y* - X*)
X K

and the second similarly is (1/k)E1 . x(X* — Y*). Putting them together one

obtains (9.17). The calculations for (9.18) are then straightforward. O

PrOOF OF COROLLARY 2.4. The left-hand side of (2.8) equals
[IP(¥(R) > t) = P(MR > t)lt~ " dt,
0

whose finiteness follows from (2.16) and Lemma 9.4. Similarly (2.9) follows
from (2.17). So Theorem 2.3 applies, and its formulae for C, lead to (2.18) by
way of (9.18). O

Theorem 3.2 relies on the following inversion formula for the renewal
density of a suitable modified renewal process. It is in effect given in Stone
(1966), but as no proof is to be found there it seems appropriate to provide one.

LEmMmA 9.5. Let xy and u be probability measures on R. Suppose x is
absolutely continuous with density q € C%. Suppose [px?u(dx) < ©, m =
[rxu(dx) > 0 and that u has an absolutely continuous component. Then the
measure Lox * u™ is absolutely continuous with continuous density p(-)
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satisfying
- ] e ] ( - - do R
- — — 0 - ix02 _
p(x) = —x(=o,x 27TfRe x(6) 1=a(0)  —ime|% %€
ProoFr. Since ¥ € LY(R) it suffices to prove
1
p(x) = —x(—=,x] —q(x)
(9.19) .
1 —i0s g 1 1-imé6 26 R
- ix6 2 _ cR.
27rfRe XONT=28) ~ “ime |90 ©

Now, for real 6,
A(6) =1+ im6 + A(6)6?,

where A(6) = O(1) as 6 — 0. Take 6, so small that |0FA(0)| < i+m for
—0, < 0 < 6,. Then for such 8 and for ; < r < 1 we have

1 1—-imé6
1-ri(e) 1-r—iméo

ré%m? — (1 — im6) A(9)|
|1 —r —irm6 + rA(0)62||11 — r — im¥|
0%lm? — (1 — im0) A(8)l  4lm® — (1 — im0) A(6)|
<
lrm6 — ro2gF A(0)|lmo| ~ m?

b

which is bounded over the given range of 6§ and r. On the other hand, for
6] > 6yand $<r <1,

1 1—-imé6 1 1
A - . S A + + b
1-ra(e) 1-r—iméo 1 — supjg.. 4, 16(8)I mé,

which is finite because u has an absolutely continuous component (‘‘strongly
nonlattice” would suffice at this point). We may now, since ¥ € LX(R), apply
dominated convergence to conclude that

~ix04(5) 1 1-imé6 46
j[;&e X( 1-ra(e) 1-—r—imé
(9.20)
~ix0g(g) 1 1—-im6
ﬁ p—
fRe MONT a0 ~  Zime

as r 11. Let us write

p(®) = [a(x=2) T r(u(dy) - Bdy),  x<R,
n=0
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where E, (dy) = 1,.,me™™" dy. Then p, is continuous and
1 1—-:imé6
1 - ra(e) 1—-r—imé

[e*p,(x) dx = )3(9)( e L'(R).
R
So the left-hand side of (9.20) equals 27 p,(x), for each x. As r 11,
L rfq(x = y)u™(dy)1 L [a(x ~y)u™(dy) = p(x),
0 R 0 "R

while

?MS

a(x = NES (AT T [a(x - ) EL(dy)
0°R n=0"R

= qu(x —y)(ﬁo(dy) + -;—lpody)

1
= q(x) + _X( —®, x]’
m
so we find on subtracting that p,(x) — p(x), which proves (9.19) as desired. O

ProoOF OF THEOREM 3.1. (8.1) says that 7"? is the sum of an absolutely
continuous measure 7m,, with density d(-), say, and a measure n, that has
7,(B) < 1. We need to alter this decomposition to obtain one with additional
properties. First we replace the density d(-) by ¢ A d(-) and the measure 7, by
n,(dx) + (d(x) — ¢)* dx, where c is constant. This converts d(-) to a bounded
function and, if ¢ is taken large enough, the property 7,(8) < 1 is retained.
Thus we may assume d(-) is bounded. Then, for m > 2, n"*0 =9, +n, ,

where 1, ,, = L. z(, )n‘”* n{™ ) and 7, ,, = mny*n{" "V + ™. We may
take m so large that

T, m(B) = (mig(B) + 7(B))AT " H(B) < 1.

Now 7, ,, is the convolution of 7§’ with some other measure, and 7§ has
density d *d which, since d is bounded and integrable, is continuous [cf.
Hewitt and Stromberg (1965), Theorem 21.33]. So 7, , has a continuous
density. Finally, we may approximate this density from below, by a C2
function [ of compact support, so closely that [zeP*f(x)dx differs from
7o, m(B) by as little as desired. We gain a new decomposition 7" = u, + p,
where the measure p, has density f and the measure y, still has @,(B8) < 1.
In the formulation (3.1) we may thus assume additionally that the density of
¢o is C? with compact support.

Set v, == L5n™"?. Then vy, = §, + 7" * v, whence, on substituting (3.1),

(89— 8)) vy =85+ (1 —8)Ppg*v,
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and so
vy = (Z 3"¢(1n)) *(30 +(1—=08)py* Vz).
0
Set v, == (Zr0'n™)*(E%_08"¢(™) and v, = (1 — 8)y * v, *v,. Now v =
(250 ') vy, so on substituting the above expression for v, we find
v=v%(8,+ (1 —8)pp*vy) = v, + V.

This is the claimed decomposition. Observe that v, has total mass n,/(1 — 8)
and

ny—1 0
7(B) = X 7*(B) X 8"¢1(B) < .
k=0 n=0

By construction, v is absolutely continuous, with continuous density p, say,
and by way of Blackwell’s theorem applied to the renewal measure v, it is
clear that p(x) — 0 as x » —x. To find out about the behaviour of p at +
we set x = (1 — 8)ng'p, * v, and observe that y * L5n™"® has density nj'p,
so we may apply Lemma 9.5 with u, m, p therein replaced by 79, n,m,ny'p,
to conclude

1 X(_Oo’x] 1 %0
- - = —i1x0A 0
nop(x) nom 2 '/n;e x(6)

1
- dé.

From properties of ¢, and v; we find that y(x,») = o(e ™#*) as x — o, so

p(x) — —

(9.21) )

= ﬁfe""““(@) ! - d6 + o(e F¥)
27 g X 1 —%™(9) —inom0 '

To find how the integral behaves as x — it will be simplest to assume that
1 — 7(0) has just one zero in D, located at 9 = 0, and of order k, say. The
general case will follow immediately by adding in similar terms for the other
zeroes. Let a; be the residue of (6 — 6,)' /(1 — /(6)) at 6 = 6,. Then for
J=1,..., k the residue of no(8 — 8,)’~*/(1 — 7"°(6)) at 6 = 6, is also a;. So
ng 1 k a;

— Ao I - Z - N
1 —4"(6) imd T (6-06,)

w(6) =

is holomorphic in D, and bounded and continuous in D. By Cauchy’s theorem,
as in Stone [(1966), page 275],

[T R(0)w(8) db = [ +%(p — iB)w(6 - ip) do
R R

and the right-hand side is e #* times an integral that, by the Riemann-
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Lebesgue lemma, tends to 0 as x —» + . Returning to (9.21), we thus find that

1 1
(922)  p(a) - — = %f e~ 05(0 )21 (0 — 0 )J do+o(e %), x— o
0

Now

PO A MO (1 1 —7‘7”°(0))

1-386,(0) |

so £(8,) = 1 [note that |56,(6,)| < 6&,(B) < 1] and indeed £(0) — 1 has a kth
order zero at 6,. So the pr1nc1pal part of ()L ‘%a /(0 —6 o) at 0, is just

a;/(6— 6,) and the rest is disposed of by a further apphcatlon of Cauchy’s
theorem and the Riemann-Lebesgue lemma, as above. We conclude that (9.22)
continues to hold when #(6) is deleted from the integrand. We may then write

1

1
- 2= oo

ny

2 (0—1[3—0)J

_f o Zl (6 - 00)’ @ =gy ) o

since the introduced term is o(e “#*). By one more use of Cauchy’s theorem we
find

1 1
p(x) — — =——[e do + o(e P~ x — oo,
=) 21(0_00)1 (e7),
This integral is not altered if we extend the sum torun over j = 1,2, ..., since

to do so merely adds a holomorphic function to the integrand. The conclusion
(3.2) now follows. O

Proor oF THEOREM 3.2. (i) Assume (3.7). By Theorem 2.3, (2.10) holds.
(3.7) gives ePg/(¢) € LY(R). That is not enough to force eP’g (¢) to be o(1)
at + o, so we need a smoothing transform in the present proof also, despite the
spreadout assumption. Thus pick b > B8 and set

K(t) =be*1,., teR.

It is easy to check that eP’K % g/(¢) € L'(R). Further, one can prove that
eP'K = g,(¢) is dRi by the method of proof of Lemma 9.2. So e?’K * g/(¢) - 0 as
t— o,

In place of (9.8) we may prove

Kxr=K=g *v

by the same method, since the V smoothing is just convolution with the kernel
K in the case b = 1. Here v is the renewal measure of the proper law 1, which
under present assumptions satisfies the conditions of Theorem 3.1. In terms of
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the v, and p of that result we obtain
Kxr=K+g *v, + K*g *p.

Since (1/m)[pg, = C,, we can rewrite this as

(9.23) K*(r(')—C+)=K*g1*V1+K*g1*(p(')—l/m).

Write

1 —10t da
o(t) = o [ T

and observe that c(¢) is O(e %) as ¢t > » and O(e~*~9%) as { » —x, where
€ > 0 is a constant such that all the zeroes of 1 — 7(8) in D lie in the strip
e < —FO <P —¢e. Since g(t) =0(1) as t > —» and ePig/(t) € LY(R), the
convolution g, * ¢ is well defined and asymptotically is like ¢ in that
O(e™?), t— o,
gl*c(t) = { ( _(ﬁ)_ )t
O(e Y, > —x,
Write py(t) == p(¢) — 1/m + c(¢). Then by (3.2) and the above estimates on
¢(+) we obtain
0(1)3 t - %,
Bt t) =
e#py(t) {O(ee,)’ o

(9.23) becomes
Kx(r(:) - Citgi*xc(r)) =Kx*g *v, + K * g1%py.
The value of the right-hand side at ¢ is

feﬁ("“)K *g(t —u)ePv(du) + feﬁ(t'”)pl(t —u)ePK+g(u)du.
R R

The first integral tends to 0 as ¢ — « because ePK *g(t) —» 0 and
/re?*v(du) < . The second integral functions similarly and so

K+(Co—r—gxc)(t) =o(e™), t->w
Now put r(t) = C,— r(t) — g, *c(t)1,.,. Then, for ¢ >0, K % r(t) differs
from the above left-hand side by be % ° e%“g, * c(u) du, which is O(e ) as
t - . We conclude, taking the real part, that
(9.24) K+Rr(t) =o(e ), t->

The final task is to unpack the convolution with K, by use of Theorem 9.6
below. The function r; is bounded on R. The kernel K has K(8) = b/(b — i)
for 6 € R; hence it satisfies the theorem with p = 1 and @ = «. It remains
only to check that f:= Rr, satisfies (9.25) with p = 1. Now

r(x+y) —r(x) =e“*IP(R > e*™) — e**P(R > e*)
< (e = 1)e**P(R > e*)
<3ky-2C,
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for x > x4, say, and y < (1/«)log4. So —r satisfies (9.25). Next,

o 8 A0) a6,

1 -4(6)
which is a finite sum of terms of the form ¢, ;#/"'e~*%, where the j are
positive integers and the 6, are in D. It is easy to see that (the real parts of)
such terms satisfy (9.25). Hence so does Rr;. The Tauberian remainder
theorem then gives Rr (¢) = O(e™#/?) as ¢ — =, which is (3.8).

(ii) is of course the same result, for —R.
(iii)) Immediate, via Lemma 9.4. O

) 1 i
* = — :
81*¢( o fge

THEOREM 9.6 [Beurling-Ganelius Tauberian remainder theorem, Ganelius
(1962)]. Let K € L\(R) be such that K does not vanish for real arguments,
and suppose there exist constants p > %, a > 0, C and a function w holomor-
phic in the strip —a < §F¢ < 0, such that

w' (Ol <C(1+ )P, —a<§<0,
lim w(¢ — in) = 1/K(¢), ¢€R.
n

Let B be constant, with 0 < B < a, and let f: R - R be bounded and satisfy
the Tauberian condition

(9.25) f(x) —f(x +y) <Ae P=/®P+*D 0 <y <e P/PHD x>y,
for some constants A, x,. Then

K+ f(x) =0(e™®), x-om
implies

f(x) = O(e P=/®*Dy x - .

Proor or THEOREM 3.3. By Theorem 2.3, (2.10) and (2.11) hold. Suppose
P(M > 0) > 0 as well as P(M < 0) > 0. We use the notation of the proof of
Theorem 2.3, Case 2a.

We first check that E1,,.,M* <1 for xk < u < « + B. Because this is a

convex function of u and because the assertion holds, by assumption, at the
ends of the interval, it must hold within it also.
__ What we have just proved is that 4., (x) <1for0 <u <B,s0 2,(8) # 1in
D. Observe that u,=pn, and u_=gn_, hence 4 = 4.+ 4% /(1 — 4,), and
we see 7 is holomorphic in D and continuous in D. The same holds for
o =A_/(1 — Ai,). So we may now prove

Kxr=Kx*xgxv+K*g_;*my*v

similarly to (9.15), and work on each term on the right exactly as in the
previous proof.

The function g_;*n, is O(1) at — and has ePig_, *n,(t) € LYR), as
required. We conclude again (9.24), where now r(¢)=C, —r(t) — (g, +
&_1*mg)*c(t)l,, o, and Tauberian remainder theory gives Rr(¢) = O(e F!/2)
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as before. Now
o 8i(0) + 2_,(0)70(6)
1 - 4(6)
whence the claimed form of the remainder term on inserting the expressions
above for 7 and 7,,.
The result for P(R < —¢) is of course the same, for —R in place of R.
There remains the rather arcane case when M < 0 a.s. In fact the above

proof goes through, with u , the zero measure, so that n = u® and 1, = u_.
O

1
(g1+g_1*no)*0(t)=2—fe de,
T

See Schil (1971), Satz 4.1b, for a somewhat similar use of Stone’s decompo-
sition, without explicit rates.

Proor oF THEOREM 4.1. In (2.16), ¥(R) is now @ + MR and the left-hand
side is the sum of

1 K
I, = ;EI—Q<MR50(Q + MR)",

1 K
;E10<MR5—Q(MR) )

~
)
i

1 K K
Iy = ;E1Q>O,MR>O((Q + MR) - (MR) )

and

1 K K
I, = ;E10<—Q<MR((MR) - (@ + MR)").
In 1,0 <@ + MR < @7, so I, is finite by comparison with E(Q*)*. Similarly
I, is at most (1/k)E1, _ o(— @)%, which is finite. For the other two we need the
following elementary inequalities:

(9.26) lx +yI" < e,.(lxI” + Iyl"), x,y€R, r>0,

where ¢, = 2771 v 1;

lx — yI7, 0<r<l,

(9.27) |lxI" = Iyl"| < { x,y €R.

rle = yl(xl v Iy)"7F, 1<r<w,
When « < 1, (9.27) gives I3 < (1/k)E(Q™)* < », while when « > 1 it gives
I3 <Ely. o pr->o@(Q + MR)*!
<c1E(Q")" + ¢, EQ*IMRI!
=1 B(Q")" + ¢, E(QTIMI")EIRI"".

Now EQ*|M|*"! is finite by (2.3), (4.2) and Hélder’s inequality, while E|R|<"!
is finite by Vervaat (1979), Theorem 5.1.
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A similar use of the two cases (9.27) proves I, finite. Thus (2.16) is proved,
and (2.17) follows similarly because —R solves (1.1) with (—@, M) in place of
(@, M). Corollary 2.4 now gives all but the last conclusion.

For the nontrivial half of that, let us assume (4.5) and prove [¢|“"P(|R| > ¢) is
bounded away from O for all large ¢. To the notation of Proposition 4.2 add
m, = med R and

T,=R,+1,m,, n=12,..., T, = m,,

so that T,=T,_,+ U, where U, =11,_(Q, — my1 —M,)) for n=

1,2,... . Now, for ¢ > |m,l,
P(IT,| > ¢t for some n > 1) > P(|U,| > 2t for some n > 1),

since if |U,| > 2t, then either |T,_,| > ¢ or, if not, then |T,| > |U,| — |T,_,| >
2t — t. Then
P(IR| > t) = $P(IT,| > ¢t for some n > 1) [by (4.6)]
1P(|U,| > 2t for some n > 1)
1P(1Q — my(1 — M)| > ¢)P(|I1,| > 2t/¢ for some n > 1).

1\

1\

By (4.5), € can be chosen so that P(IQ — m (1 — M)| > &) > 0. So to finish off
it suffices to show P(|II,,| > e’ for some n > 1) is at least de ™~ for all large ¢,
where & > 0. But this probability is P(sup, <y V, > ?), and standard results on
the transient random walk (V) apply, notwithstanding that its step Y = log|M|
may have positive probability of being — . Let H be the right Wiener—Hopf
factor of the law of Y, in other words, the (improper) law of the strict upper
ladder height of (V,):

H(dy) = ¥ P(V,<0(k<n),V,€dy), 0<y<o.
n=1
Feller [(1971), Chapter XII, (5.13)] proves that
H(R")
Bk

where B = [gte*'H(dt). Now H(R*) > 0 because P(Y > 0) > 0 and B is the
expected value of the strict upper ladder height for the “associated”’ random
walk, that with step ,Y having law

P(,Y€dy) =e“P(Y€dy), y€<ER.

e_ t’ t_)w7

(9.28) . P(sup v, > t) ~

This ladder height is at most the value of one step of the random walk, so its
expected value is at most E,Y" [cf. Gut (1974), Theorem 2.1(c), with ¢ = 0,
r = 1]. Since E,Y*= EY*e"?, finiteness comes from (2.4). So the coefficient of
e~ in (9.28) is positive. O
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Proor or COROLLARY 4.3. Apply (9.27) to the expression inside the expecta-
tion in (4.4). That gives what is claimed when « < 1, while for « > 1,

1
C.+C_< EEIQI(IQ + MR| v IMR|)*"*

L BIQIIQIT! + IMRISY)

m .

<

and (4.7) follows. O
For Proposition 4.6 a lemma is needed.

Lemma 9.7. If X and Y are independent with X ~ B, , and Y ~ B, .4,
then Y(]. + X) ~ Bc,b'

Proor. For —c < s < b,
EY*=T(c+s)T(a+b—-5s)/(T'(c)T(a +b))
and
E(1+X)'=T(b-5s)T(a+b)/(T(a+b-s)(b)),
SO ‘
E(Y(1+ X)) =T(c+8)T(b~s)/(T(c)T(b))

which is the Mellin transform of the B, , law. O

Proor ofF ProposiTiON 4.6. Write R, :=R and R,,;:=Y,(1 +R,) for
[=1,...,k — 1. By induction, via the lemma, R, ~8, , for I =1,... k.
Since @ + MR = Y,(1 + R,), a final use of the lemma gives @ + MR ~ Ba, b

O

Proor oF THEOREM 4.7. In Theorems 3.2 and 3.3 all that remains to be
established is (3.11), for (3.12) is the same assertion but for (—-R, M, — Q).
The verification of (3.11) follows exactly the verification of (2.16) at the start of
the proof of Theorem 4.1, but with « + 8 replacing «. Finiteness of E|R|“*#~1
is needed. It holds, similarly to (4.8), because we have insisted B < 1, so
IMllc+p-1 < 1. O

Proor or PrROPOSITION 5.1. Choose ¢ such that E log M < —¢ < 0. Then
with probability 1 for all large n we have II, < e °". The moment assumption
on @ implies X5, _,P(log(Q, V 1) > cn/2) < =, so @, < e*/? for all large n,
almost surely. But these facts give that lim, _,., Z,(¢) exists a.s. and does not
depend on ¢. Theorem 2.1 now gives the result. O
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Proor or THEOREM 5.2. Proposition 5.1 gives existence of the law of R.
Now

EI(@VMR)") — ((MR)")'| = Elygq,950(Q — (MR*))

<E(Q")" <o,

so Corollary 2.4 gives (2.10) and the formula for C,. If @ <0 a.s., then
obviously C,= 0. Otherwise, choose ¢ > 0 so that P(Q >c) > 0 and set
N, == min{k: I1,_, > t/c}. Then, for ¢ > 0,

P(R>t¢t)=P Qle'Ik1>t

>§P =n,Q,>c)

=P(Q@ >c¢) i P(N,=n)=P(Q > c)P( \7 m,_, > t/c).
n=1 k=1

That P(V,;”,II, > t) is at least 8¢ for large ¢ now follows as shown in the
last part of the proof of Theorem 4.1. So C,> 0. O

Proor oF THEOREM 5.3. By the calculation at the beginning of the previous
proof, with « + B replacing «, we find that (3.11) holds for the present ¥. The
result follows by Theorem 3.2(iii). O

ProoF OF PrOPOSITION 6.1. One may simply copy the proof of Proposition
5.1, making use additionally of the fact that L, < e°"/2 for all large n, almost
surely. O

Proor oF THEOREM 6.2. Proposition 6.1 gives existence of the law of R. We
first check that

(9.29) E(R")" <w, 0<p<«k.
Since thg operator * is subadditive,
(Q + Mmax(L,R))" < @+ Mmax(L*,R")
<Q"+ ML*+ MR,
and then
IR, = I(Q + M max(L, R))"

<lQ*+ ML*+ MR,

<1Q7ll, + IML*|l, + IMI IR,
whence (9.29) since 0 < EMP? < 1.
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We verify (2.16). Its left-hand side is the sum of
I, = El_g m@rviy<o(@ + M(R V L))",
I, = E10<M(RVL)s—Q((MR)+ )K,
Iy = Elq. o mr v 1yso((@ + M(R V L))" - (MR)")")

and
IL=Ely. g mnrv1)(Q+M(RVL) - ((MR)")].

Obviously I, < E(Q ") < and I, < E(Q™)* < . Write I, = I, + I,, and
I, = 11, where

I3 = E1Q>0,R>0,R>L((Q + MR)" - (MR)K),

I3 = E1Q>0,L>0,R5L((Q +ML)" — ((MR)+)K),

I = E10<—Q<MR,R2L((MR)K -(Q + MR)K),

Iy, =Elg. _gomp r<o(@+ ML)",

I = E10<—Q<ML,0<R<L,MR<Q+ML((Q +ML)" - (MR)K),
Ly =Elo. gempro<r<r,mr>q+m((MR)" — (Q + ML)").

Finiteness of I;; and I,; follows just as for I; and I, in the proof of Theorem
4.1. For the others,

I <Elg. 5 1.0(Q + ML)" < =,

I; <El;,o(ML)" <

and the latter bound holds also for I,; and I,,.
With (2.16) established, Corollary 2.4 gives (2.10) and the formula for C,.
Now suppose also that @(c) = @ — c(1 — M) > 0 a.s. Since

R-c=, Q(c) + M(L —c)VM(R-c),

Proposition 6.1 gives

R-c=, sup(R*(c),( 2 QU+ (L - o), | )
k=1 m=1
where R*(c) = L%_,Q,(c)II,_,. Suppose first that P(Q(c) > 0) > 0. Then
R*(c) > 0 and
R*(c) = Q(c) + MR*(c), R*(c) independent of (Q(c), M),

so Theorem 4.1 applies to R*(c) and gives that P(R*(c) > ¢) ~ C,(c)t™*
where

C.(c) = E((Q(c) + MR*(¢))" — (MR*(c))") > 0.
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Thus
P(R>t) 2P(R*(c) >t—c) =2C,(c)(1+o0(1))t7~.
On the other hand, if @(c) =0 as. then R —c¢ =, V{(L,, — o)II,, and we

have the setup of Section 5 with @ := M(L — ¢). So, by Theorem 5.2, C_ > 0 if
P(M(L -¢)>0)>0.0

Proor oF THEOREM 6.3. This conforms to previous patterns. Since 8 < 1,
(9.29) gives E(R*)<*#~! < o, Retrace the middle part of the proof of Theorem
6.2, with k + B replacing «, to arrive at (3.11). Theorem 3.2(iii) now gives the
result. O

Proor or ProprosITION 7.1.
E[(Q vMR)") - (MR)")'|

= Elg. mr(Q° — (MR)” )") + Elg_ur((MR) )"

<E(Q")"+E(Q) =EIQI <.

The verification of the other conditions of Corollary 2.4 is similar, so the
convergence of ¢t“P(+R > t) follows. For nontriviality, take ¢ so that P(|Q| >
¢) > 0. Then

P(IR| > ¢t) = P(IQ,I1,_,| > ¢ for some k)
> P(1Q| > ¢) P(IT1,_,| > t/c for some k)
~ P(|Ql > ¢)dt™*, t - o,
for some & > 0, as shown at the end of the proof of Theorem 4.1. O

Proor oF ProposiTION 8.1. We have —x < Elog M < 0, and because of
this and (8.2) may find ¢ sufficiently large that E log(M + N/ Vc) < 0. Now

E(t)=Mc£+N\/E\/—§+Q

(9.30) < (Mc + N\/E)max(l, %) +Q

= (M + N/Vc)max(t,c) + @ = ¥(¢),

say, where ¥ is a particular case of that in Letac’s model E [see (6.1)] and
satisfies the conditions of Proposition 6.1. So Z,(¢) := E;o -+ «F,(¢) is a.s.
bounded as n — «, being nonnegative and bounded above by the a.s.-conver-
gent sequence W;o -+ oW (¢).

Further, Z,(0) is a nondecreasing sequence. For Z (0) = Z,_(Q,), while
Z,,(0=2, (@, +N,/Q,,, +M,Q,,,), so it suffices if Z,_,(¢) is nonde-
creasing in ¢. But that is so, as Z,_, is the composition of nondecreasing
functions By,...,E,_;.
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The facts adduced show Z (0) converges a.s. to some finite r.v. Z. [The
argument above is a variant of that of Loynes (1962), proof of Lemma 1.] We
must check that Z,(t) a.lso converges to Z, whatever t. Write E,, =
. form <n (¢) = t. Then since

’ "’nn

N
auo—mﬂ=(M+Efrﬁyf-g

we see by induction that

'-’m+1

n N
4“°‘ZJ”=(f‘”Jl( JE0) + VB U)y

whence

- N

n g Rp—"
2 Qm+1

Each of [T}, _ (M, + 3N,/ V@zm.1) and l—[fn=1(M2m—1 + gNopm_1/ V@2 )
is a product of independent terms, and by (8.3) and the strong law they both
tend to O exponentially fast, a.s. An easy Borel-Cantelli argument shows
M, + N,/ Vt = 0(e*") a.s. as n — o, for every & > 0, so (9.31) does indeed give
that Z (t) » Z. Letac’s principle now yields the result. O

(931) 0<Z,(¢) -Z,(0) <t|M,+—

Proor or THEOREM 8.2. The expression inside the expectation in (8.4) is
nonnegative, so to satisfy (2.16) we merely have to prove the right-hand side of
(8.4) finite. Then Corollary 2.4 gives the result apart from its last statement
which, though, is immediate.

We first show that ||S|, < » for all p < . Since M and N have finite «
moments, we may by taking c sufficiently large make c, = |M + N/ Vcl|, as
close to [M||, as we wish, and so less than 1. Then, with ¥ defined by (9.30),

1S, =IE(S)I,
< Iw(S)llp
<collS Vvell, +1Qll,
< ¢ollSllp + collell, + 1R,

whence [ S|, < .

If k <1 the right-hand side of (8.4) is by (9.27) at most E(NVS + @)~
which is in turn at most EN*ES*/2? + EQ* < «. If k > 1 it is by (9.27) and
(9.26) at most

E(NVS + Q)(MS + NVS + Q)"

<cE(NVS +Q)(MS) ' +¢,_,E(NVS +Q)".

In this last expression the first expectation is ENM*"1ES<-1/2 4
EQM*~'ES*~1, which is finite, while the second may be dealt with similarly
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after a further use of (9.26). So the right-hand side of (8.4) is finite, as
required. O

Proor oF THEOREM 8.3. Since k + 8 — 1 <k and (x + B)/2 <k, by the
previous proof ES<*#~! and ES**F)2 are finite. Hence, by the same calcula-
tion as in the previous proof, E[(MS + NVS + @)<*# — (MS)<*#| < ». The
result then follows by Theorem 3.2. O

10. Domains of attraction. A probability law whose upper tail is regu-
larly varying with negative index is in the extremal domain of attraction of a
Fisher-Tippett max-stable law. When the upper and lower tails are regularly
varying with common index less than 2 and a tail-balance condition is satisfied,
the law is also in the domain of attraction for sums of a classical (sum-) stable
law. The conclusions in Sections 2-8 can thus be seen as extremal domain-of-
attraction results, and, when both tails are treated, as sum-domain-of-attrac-
tion results as well.

To take the extremal case, the cumulative maximum of i.i.d. r.v.s with such
a law will thus converge, suitably normed, to a nondegenerate limit law.
Recent work has succeeded in relaxing the independence assumption here, to
various forms of weak or short-range dependence [cf. Leadbetter and Rootzén
(1988) and Leadbetter, Lindgren and Rootzén (1983)]. Now the sequence W,(¢)
of Theorem 2.1 is likely to have only short-range dependence for the models
that our results can handle, because the product M, --- M, of ii.d. r.v.s with
a law satisfying the conditions of Lemma 2.2 will almost surely converge to
zero geometrically fast. Also, the laws of W, (¢) converge by Letac’s principle to
the law of R satisfying (2.1), which our results show has upper tail asymptotic
to a power. Thus it is to be expected that, in specific models, our results and
the extreme-value theory may be applied to prove the sequence W,(¢), suitably
normed, convergent in law to a Fisher-Tippett limit. "

The case where this programme has been carried out is the random
difference equation. In the setup of Section 4 the W,(¢) become S, generated
by

(10.1) S, =@, +M,..S,, n=0,1,...,

where (@,, M,) for n =0,1,... are iid. and S, has an arbitrary law inde-
pendent of the sequence ((,, M,)). For nonnegative M and @ de Haan,
Resnick, Rootzén and de Vries (1989) prove that under the conditions of
Theorem 4.1 [i.e., Kesten (1973), Theorem 5],

lim P(n~Y* max(S,,...,S,) <x) =exp(-C,0x7), x>0.

n—ow

Here 6 = [fP(V;2,01; <y~ ky~*"'dy where Il; :== M, --- M;. In our Corol-

lary 4.3 there are thus bounds for the C', appearing in the limit law and in
Corollary 4.4 explicit values when « is an integer.
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The authors apply their results to the autoregressive conditional het-
eroscedastic (ARCH) sequence of Engle (1982), which is generated by

£, =2 a+AE2_,, n=1,2, ...,

where the Z, are independent standard Gaussian r.v.s, {;, > 0 and a > 0,
0 <A <1 are constants. Thus £ satisfies (10.1) with (Q,,, M,)) = (aZ2, AZ2)
and so
lim P(n~Y® max(£,,...,¢,) <x) =exp(-C,0x7%), x>0,
n-—o
where C,= (km) 'E(Q + MR)* — (MR)*) and R solves (1.1) with
(Q, M) := (aZ? AZ?) and Z standard Gaussian. Here « is the unique solution
in (0,) of EM* = 1, where now EM* = 7~ Y2(2))*T'(k + 3). For fixed 0 <
A <1 we see EM" equals A at k = 1 and tends to « as k — =, so equals 1 at
some k € (1, ), which is therefore the value of « required. So « is the unique
solution of

(10.2) k>1, T(k+3)=vVr/(20)".
Next, m = A*log A + A*E|Z|** log Z2. In terms of the digamma function
¢ =T"/T, ,
E|Z|* log Z% = 27~ /T (i + %)(log2 + y(k + 1)),

hence m. The formula for C, becomes (km) E((a + AR)< — (AR)*)E|Z|*",
where E|Z|** = 2%z~ 1/2(k + .

All values of k > 1 are attainable in (10.2) for some A € (0,1), since
I'(k + ) > 3V for all k > 1. For integer x one needs to take A == (1 -3 -
5.+ (2k — 1))"V/* which gives the first few values as

K 2 3 4 5 6 7 8 9 10
A 0577 0.406 0.312 0.254 0.214 0.185 0.163 0.145 0.105

As noted above, C, can in these cases be found explicitly for the ARCH model.

The rate result, Theorem 4.7, applies, whatever « > 1. Now #(8) =
EM~** = 7=1/2(20)**T'(k + % + i#). Choose any B € (0, 1) apart from the
at most finitely many for which #(z — i) = 1 for some u € R. Then since 1
is absolutely continuous, and EM**# < o, EQ“*P < =, all the conditions of
the M > 0 case of Theorem 4.7 are satisfied, and the limit law of the £2 (the
law of R) thus satisfies (3.8). However, a numerical study indicates the likely
nonexistence of any solutions of %(6) = 1 with 0 < —§60 < 1. Assuming that is
so, the contour integral in (3.8) vanishes, leaving only the O bound on rate of
approach to C,.
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