November 2024 Random walks in the high-dimensional limit I: The Wiener spiral
Zakhar Kabluchko, Alexander Marynych
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 60(4): 2945-2974 (November 2024). DOI: 10.1214/23-AIHP1406

Abstract

We prove limit theorems for random walks with n steps in the d-dimensional Euclidean space as both n and d tend to infinity. One of our results states that the path of such a random walk, viewed as a compact subset of the infinite-dimensional Hilbert space 2, converges in probability in the Hausdorff distance up to isometry and also in the Gromov–Hausdorff sense to the Wiener spiral, as d,n. Another group of results describes various possible limit distributions for the squared distance between the random walker at time n and the origin.

Nous démontrons des théorèmes limite pour des marches aléatoires de longueur n dans l’espace euclidien d-dimensionnel, lorsque n et d tendent vers l’infini. Nous établissons notamment que la trajectoire de telles marches aléatoires, vue comme un sous-ensemble compact de l’espace de Hilbert 2 de dimension infinie, converge en probabilité vers la spirale de Wiener quand n et d tendent vers l’infini, à la fois pour la distance de Hausdorff à isométries près et la distance de Gromov–Hausdorff. Nous décrivons également les limites en loi possibles pour le carré de la distance entre la marche aléatoire au temps n et l’origine.

Funding Statement

ZK was supported by the German Research Foundation under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics – Geometry – Structure and by the DFG priority program SPP 2265 Random Geometric Systems. AM was supported by the Alexander von Humboldt Foundation.

Acknowledgments

The authors would like to thank two anonymous referees for numerous comments and suggestions that led to significant improvement of the manuscript. In particular, the referees pointed out several important references, including [13], where Theorem 3.3 has been derived for the first time.

Citation

Download Citation

Zakhar Kabluchko. Alexander Marynych. "Random walks in the high-dimensional limit I: The Wiener spiral." Ann. Inst. H. Poincaré Probab. Statist. 60 (4) 2945 - 2974, November 2024. https://doi.org/10.1214/23-AIHP1406

Information

Received: 16 November 2022; Revised: 14 May 2023; Accepted: 20 May 2023; Published: November 2024
First available in Project Euclid: 19 November 2024

Digital Object Identifier: 10.1214/23-AIHP1406

Subjects:
Primary: 60F05 , 60G50
Secondary: 60D05

Keywords: central limit theorem , Crinkled arc , Gromov–Hausdorff convergence , Hausdorff distance up to isometry , high-dimensional limit , Random metric space , Random walk , Wiener spiral

Rights: Copyright © 2024 Association des Publications de l’Institut Henri Poincaré

Vol.60 • No. 4 • November 2024
Back to Top