Abstract
We prove limit theorems for random walks with n steps in the d-dimensional Euclidean space as both n and d tend to infinity. One of our results states that the path of such a random walk, viewed as a compact subset of the infinite-dimensional Hilbert space , converges in probability in the Hausdorff distance up to isometry and also in the Gromov–Hausdorff sense to the Wiener spiral, as . Another group of results describes various possible limit distributions for the squared distance between the random walker at time n and the origin.
Nous démontrons des théorèmes limite pour des marches aléatoires de longueur n dans l’espace euclidien d-dimensionnel, lorsque n et d tendent vers l’infini. Nous établissons notamment que la trajectoire de telles marches aléatoires, vue comme un sous-ensemble compact de l’espace de Hilbert de dimension infinie, converge en probabilité vers la spirale de Wiener quand n et d tendent vers l’infini, à la fois pour la distance de Hausdorff à isométries près et la distance de Gromov–Hausdorff. Nous décrivons également les limites en loi possibles pour le carré de la distance entre la marche aléatoire au temps n et l’origine.
Funding Statement
ZK was supported by the German Research Foundation under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics – Geometry – Structure and by the DFG priority program SPP 2265 Random Geometric Systems. AM was supported by the Alexander von Humboldt Foundation.
Acknowledgments
The authors would like to thank two anonymous referees for numerous comments and suggestions that led to significant improvement of the manuscript. In particular, the referees pointed out several important references, including [13], where Theorem 3.3 has been derived for the first time.
Citation
Zakhar Kabluchko. Alexander Marynych. "Random walks in the high-dimensional limit I: The Wiener spiral." Ann. Inst. H. Poincaré Probab. Statist. 60 (4) 2945 - 2974, November 2024. https://doi.org/10.1214/23-AIHP1406
Information