Abstract
We study the solution of the Kardar–Parisi–Zhang (KPZ) equation in for :
Here is a parameter called the disorder strength, is a spatially smoothened (at scale ε) Gaussian space–time white noise and is a divergent constant as . When β is sufficiently small and , in probability where is the stationary solution of the KPZ equation – more precisely, solves the above equation with a random initial condition (that is independent of the driving noise ξ) and its marginal law is constant in . In the present article we quantify the rate of the above convergence in this regime and show that the fluctuations about the stationary solution converge pointwise (with finite dimensional distributions in space and time) to a Gaussian free field convoluted with the deterministic heat equation. We also identify the fluctuations of the stationary solution itself and show that the rescaled averages converge to that of the stationary solution of the stochastic heat equation with additive noise, but with (random) Gaussian free field marginals (instead of flat initial condition).
Nous étudions la solution de l’équation de Kardar–Parisi–Zhang (KPZ) sur avec :
Ici est un paramètre appelé la force du désordre, est un bruit blanc gaussien espace-temps régularisé en espace (à l’échelle ε) et est une constante qui diverge lorsque . Lorsque β est suffisamment petit et , en probabilité où est la solution stationnaire de l’équation KPZ – plus précisément, est solution de l’équation ci-dessus avc une condition initiale aléatoire (laquelle est indépendante du bruit ξ) et dont la loi marginale est constante en . Dans cet article nous quantifions la vitesse de la convergence ci-dessus et nous montrons que les fluctuations autour de la solution stationnaire converge ponctuellement (de manière jointe pour un nombre fini de points de l’espace et du temps) vers un champ libre gaussien convolé à l’équation de la chaleur déterministe. Nous identifions également les fluctuations de l’équation stationnaire autour de sa moyenne et montrons que converge vers la solution stationnaire de l’équation de la chaleur avec bruit additif, dont la loi marginale est donnée par le champ libre gaussien (au lieu de la condition initiale plate).
Funding Statement
The authors were partly supported by the French Agence Nationale de la Recherche under grant ANR-17-CE40-0032.
Dedication
Dedicated to the memory of Dima Ioffe
Acknowledgements
The authors would like to thank Ofer Zeitouni (Rehovot/ New York) for very useful feedback and discussions. Research of the third author is funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics-Geometry-Structure. The authors acknowledge the hospitality of ICTS-TIFR Bengaluru during the program Large deviation theory in statistical physics (ICTS/Prog-ldt/2017/8), where the present work was initiated. The second and the third author would like to thank the hospitality of NYU Shanghai where part of the present work was completed during the first author’s long term stay during the academic year 2018-19. Finally, we would like to thank two anonymous referees for very useful comments leading to substantial improvements of the presentation.
Citation
Francis Comets. Clément Cosco. Chiranjib Mukherjee. "Space–time fluctuation of the Kardar–Parisi–Zhang equation in and the Gaussian free field." Ann. Inst. H. Poincaré Probab. Statist. 60 (1) 82 - 112, February 2024. https://doi.org/10.1214/22-AIHP1272
Information