Abstract
We construct solutions to the stochastic thin-film equation with quadratic mobility and Stratonovich gradient noise in the physically relevant dimension and allow in particular for solutions with non-full support. The construction relies on a Trotter–Kato time-splitting scheme, which was recently employed in . The additional analytical challenges due to the higher spatial dimension are overcome using α-entropy estimates and corresponding tightness arguments.
Nous construisons des solutions de l’équation aux dérivées partielles stochastique des couches minces avec une mobilité quadratique et un forçage stochastique gradient de type Stratonovich en dimension , physiquement pertinente. Les solutions à support non plein sont autorisées. La construction repose sur une méthode de Trotter–Kato en fractionnant l’intervalle de temps, récemment utilisée dans le cas . Les difficultés supplémentaires, dues à la dimension spatiale supérieure, sont surmontées à l’aide d’estimations de l’α-entropie et d’arguments de tension correspondants.
Acknowledgements
The author thanks his doctoral advisor Manuel Gnann for many insightful discussions on this subject as well as the careful reading of this document. He thanks Mark Veraar for pointing out the possibility to relax integrability assumptions on the initial value. He also thanks the anonymous referees for the careful reading of this document and their valuable suggestions.
Citation
Max Sauerbrey. "Martingale solutions to the stochastic thin-film equation in two dimensions." Ann. Inst. H. Poincaré Probab. Statist. 60 (1) 373 - 412, February 2024. https://doi.org/10.1214/22-AIHP1328
Information