Abstract
We define compositions of Hölder paths X in and functions of bounded variation φ under a relative condition involving the path and the gradient measure of φ. We show the existence and properties of generalized Lebesgue–Stieltjes integrals of compositions with respect to a given Hölder path Y. These results are then used, together with Doss’ transform, to obtain existence and, in a certain sense, uniqueness results for differential equations in driven by Hölder paths and involving coefficients of bounded variation. Examples include equations with discontinuous coefficients driven by paths of two-dimensional fractional Brownian motions.
Nous définissons les compositions de trajectoires Hölder X dans et les fonctions de variation bornée φ sous une condition relative qui fait intervenir la trajectoire et la mesure de gradient de φ. Nous montrons l’existence et les propriétés des intégrales généralisées de Lebesgue–Stieltjes des compositions de par rapport à un trajectoire donnée de Hölder Y. Ces résultats sont ensuite utilisés, ensemble avec la transformation de Doss, pour obtenir des résultats d’existence et d’unicité pour des équations différentielles dans conduites par des trajectoires Hölder et avec des coefficients de variation bornée. Les exemples incluent des équations avec des coefficients discontinus conduits par des trajectoires de mouvement brownien fractionnaire à deux dimensions.
Funding Statement
The research of the first author was supported in part by the DFG IRTG 2235 ‘Searching for the regular in the irregular: Analysis of singular and random systems’ and by the DFG CRC 1283, ‘Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications’.
The second author was supported by the Academy of Finland and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements no. 741487 and no. 818437). Financial support by the Dean’s Office, Faculty of Mathematics and Economics, Universität Ulm is gratefully acknowledged.
Acknowledgements
The second author would like to thank Panu Lahti and Mario Santilli for sharing their insight into the world of -functions. All three authors would like to thank the anonymous referees for their kind interest and their helpful suggestions.
Citation
Michael Hinz. Jonas M. Tölle. Lauri Viitasaari. "Variability of paths and differential equations with -coefficients." Ann. Inst. H. Poincaré Probab. Statist. 59 (4) 2036 - 2082, November 2023. https://doi.org/10.1214/22-AIHP1308
Information