Open Access
November 2023 Variability of paths and differential equations with BV-coefficients
Michael Hinz, Jonas M. Tölle, Lauri Viitasaari
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 59(4): 2036-2082 (November 2023). DOI: 10.1214/22-AIHP1308

Abstract

We define compositions φ(X) of Hölder paths X in Rn and functions of bounded variation φ under a relative condition involving the path and the gradient measure of φ. We show the existence and properties of generalized Lebesgue–Stieltjes integrals of compositions φ(X) with respect to a given Hölder path Y. These results are then used, together with Doss’ transform, to obtain existence and, in a certain sense, uniqueness results for differential equations in Rn driven by Hölder paths and involving coefficients of bounded variation. Examples include equations with discontinuous coefficients driven by paths of two-dimensional fractional Brownian motions.

Nous définissons les compositions φ(X) de trajectoires Hölder X dans Rn et les fonctions de variation bornée φ sous une condition relative qui fait intervenir la trajectoire et la mesure de gradient de φ. Nous montrons l’existence et les propriétés des intégrales généralisées de Lebesgue–Stieltjes des compositions de φ(X) par rapport à un trajectoire donnée de Hölder Y. Ces résultats sont ensuite utilisés, ensemble avec la transformation de Doss, pour obtenir des résultats d’existence et d’unicité pour des équations différentielles dans Rn conduites par des trajectoires Hölder et avec des coefficients de variation bornée. Les exemples incluent des équations avec des coefficients discontinus conduits par des trajectoires de mouvement brownien fractionnaire à deux dimensions.

Funding Statement

The research of the first author was supported in part by the DFG IRTG 2235 ‘Searching for the regular in the irregular: Analysis of singular and random systems’ and by the DFG CRC 1283, ‘Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications’.
The second author was supported by the Academy of Finland and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements no. 741487 and no. 818437). Financial support by the Dean’s Office, Faculty of Mathematics and Economics, Universität Ulm is gratefully acknowledged.

Acknowledgements

The second author would like to thank Panu Lahti and Mario Santilli for sharing their insight into the world of BV-functions. All three authors would like to thank the anonymous referees for their kind interest and their helpful suggestions.

Citation

Download Citation

Michael Hinz. Jonas M. Tölle. Lauri Viitasaari. "Variability of paths and differential equations with BV-coefficients." Ann. Inst. H. Poincaré Probab. Statist. 59 (4) 2036 - 2082, November 2023. https://doi.org/10.1214/22-AIHP1308

Information

Received: 16 July 2021; Revised: 12 August 2022; Accepted: 23 August 2022; Published: November 2023
First available in Project Euclid: 3 November 2023

Digital Object Identifier: 10.1214/22-AIHP1308

Subjects:
Primary: 31B10 , 34A12 , 34A34
Secondary: 26A33 , 26A42 , 26B30 , 26B35 , 28A78 , 31B99 , 60G22

Keywords: Functions of bounded variation , Generalized Lebesgue–Stieltjes integrals , Hölder path , occupation measure , Riesz potential , Systems of nonlinear differential equations

Rights: This research was funded, in whole or in part, by [European Research Council, 741487, 818437]. A CC BY 4.0 license is applied to this article arising from this submission, in accordance with the grant's open access conditions

Vol.59 • No. 4 • November 2023
Back to Top