Abstract
In this paper, we consider the noise effects on a class of stochastic evolution equations including the stochastic Camassa–Holm equations with or without rotation. We first obtain the existence, uniqueness and a blow-up criterion of pathwise solutions in Sobolev space with . Then we prove that strong enough noise can prevent blow-up with probability 1, which justifies the regularization effect of strong nonlinear noise in preventing singularities. Besides, such strengths of noise are estimated in different examples. Finally, for the interplay between regularization effect induced by the noise and the dependence on initial conditions, we introduce and investigate the stability of the exiting time and construct an example to show that the multiplicative noise cannot improve both the stability of the exiting time and the continuity of the dependence on initial data simultaneously.
Dans cet article, nous considérons les effets du bruit sur une classe d’équations d’évolution stochastiques y compris les équations stochastiques de Camassa–Holm avec ou sans rotation. Nous obtenons d’abord l’existence, l’unicité et un critère d’explosion de solutions pathwise dans l’espace de Sobolev avec . Ensuite, nous prouvons qu’un bruit suffisamment fort peut empêcher l’explosion avec probabilité 1, ce qui justifie l’effet régularisant du bruit non linéaire fort dans la prévention des singularités. De plus, de telles forces de bruit sont estimées dans les différents exemples. Enfin, pour l’interaction entre l’effet de régularisation induit par le bruit et la dépendance par rapport aux conditions initiales, nous introduisons et étudions la stabilité du temps de sortie et construisons un exemple pour montrer que le bruit multiplicatif ne peut pas améliorer simultanément la stabilité du temps de sortie et la continuité de la dépendance par rapport aux données initiales.
Acknowledgements
The authors would like to express their great gratitude to the anonymous reviewers who provided significant suggestions and profound comments, which have led to an important improvement of the article. H. T. acknowledges support by the Alexander von Humboldt Foundation. H. T. has benefited greatly from many insightful discussions with Professor Christian Rohde. H. T. is also deeply indebted to Professor Feng-Yu Wang for his helpful ideas about the Lyapunov condition on the noise.
Citation
Hao Tang. Anita Yang. "Noise effects in some stochastic evolution equations: Global existence and dependence on initial data." Ann. Inst. H. Poincaré Probab. Statist. 59 (1) 378 - 410, February 2023. https://doi.org/10.1214/21-AIHP1241
Information