Abstract
Consider the intersection measure of p independent Brownian motions on . We prove the large deviation principle for the normalized intersection measure as , before exiting a (possibly unbounded) domain with smooth boundary. This is an extension of the result of König and Mukherjee [Comm. Pure Appl. Math. 66 (2013) 263–306] which deals with the case D is bounded. The essential contribution of this paper is to prove the so-called super-exponential estimate for the intersection measure of killed Brownian motions on such D by an application of the Chapman–Kolmogorov relation. As a consequence, the new argument in this paper gives not only an extension to unbounded domains but also a simpler proof even for bounded domains.
Nous considérons la mesure d’intersection de p mouvements browniens indépendants sur . Nous prouvons un principe de grande déviation pour la mesure d’intersection normalisée lorsque t tend vers l’infini, avant de sortir d’un domaine (qui peut être non borné) avec une frontière lisse. Ce travail généralise [Comm. Pure Appl. Math. 66 (2013) 263–306] dans lequel D est borné. La contribution essentielle de cet article est de prouver, par une application de la relation de Chapman–Kolmogorov, une estimation sur-exponentielle pour la mesure d’intersection des mouvements browniens tués sur un tel D. Ce nouvel argument apporte aussi une preuve plus simple dans le cas des domaines bornés.
Acknowledgements
The author would like to thank Professor Takashi Kumagai and Professor Ryoki Fukushima for helpful discussions and anonymous referees for helpful comments. He is also grateful to Professor Chiranjib Mukherjee for explaining the content of [21]. This work was supported by JSPS KAKENHI Grant Number JP18J21141.
Citation
Takahiro Mori. "Large deviation principle for the intersection measure of Brownian motions on unbounded domains." Ann. Inst. H. Poincaré Probab. Statist. 59 (1) 345 - 363, February 2023. https://doi.org/10.1214/22-AIHP1244
Information