Translator Disclaimer
February 2023 Cutoff for permuted Markov chains
Anna Ben-Hamou, Yuval Peres
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 59(1): 230-243 (February 2023). DOI: 10.1214/22-AIHP1248


Let P be a bistochastic matrix of size n, and Π be a permutation matrix of size n. In this paper, we are interested in the mixing time of the Markov chain whose transition matrix is given by Q=PΠ. In other words, the chain alternates between random steps governed by P and deterministic steps governed by Π. We show that if the permutation Π is chosen uniformly at random, then under mild assumptions on P, with high probability, the chain Q exhibits cutoff at time lognh, where h is the entropic rate of P. Moreover, for deterministic permutations, we improve the upper bound on the mixing time obtained by Chatterjee and Diaconis (Probab. Theory Related Fields 178 (2020) 1193–1214).

Soit P une matrice bistochastique de taille n, et Π une matrice de permutation de taille n. Dans cet article, nous nous intéressons au temps de mélange de la chaîne de Markov dont la matrice de transition est donnée par Q=PΠ. En d’autres termes, la chaîne alterne entre des sauts aléatoires gouvernés par P et des sauts déterministes gouvernés par Π. Nous montrons que si la permutation Π est choisie uniformément au hasard, alors, sous de légères hypothèses sur P, avec grande probabilité, la chaîne Q présente un cutoff au temps lognh, où h est le taux entropique de P. De plus, pour des permutations déterministes, nous améliorons la borne supérieure sur le temps de mélange obtenue par Chatterjee and Diaconis (Probab. Theory Related Fields 178 (2020) 1193–1214).


We thank Charles Bordenave and Persi Diaconis for helpful discussions. We are also very grateful to Sam Olesker–Taylor for his careful reading and for pointing out to us confusing typos in a previous version.


Download Citation

Anna Ben-Hamou. Yuval Peres. "Cutoff for permuted Markov chains." Ann. Inst. H. Poincaré Probab. Statist. 59 (1) 230 - 243, February 2023.


Received: 20 October 2021; Revised: 5 January 2022; Accepted: 17 January 2022; Published: February 2023
First available in Project Euclid: 16 January 2023

Digital Object Identifier: 10.1214/22-AIHP1248

Primary: 60J10

Keywords: Markov chains , Mixing times , Random permutations

Rights: Copyright © 2023 Association des Publications de l’Institut Henri Poincaré


This article is only available to subscribers.
It is not available for individual sale.

Vol.59 • No. 1 • February 2023
Back to Top