November 2022 The Erdős-Rényi-Shepp law of large numbers for ballistic random walk in random environment
Darcy Camargo, Yuri Kifer, Ofer Zeitouni
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 58(4): 2347-2381 (November 2022). DOI: 10.1214/21-AIHP1210

Abstract

We consider a one dimensional ballistic nearest-neighbor random walk in a random environment. We prove an Erdős-Rényi–Shepp strong law for the increments.

Nous considérons une marche aléatoire unidimensionnelle au plus proche voisin, en milieu aléatoire. Nous démontrons une loi forte de grands nombres de type Erdős-Rényi–Shepp pour les accroissements.

Funding Statement

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 692452)

Citation

Download Citation

Darcy Camargo. Yuri Kifer. Ofer Zeitouni. "The Erdős-Rényi-Shepp law of large numbers for ballistic random walk in random environment." Ann. Inst. H. Poincaré Probab. Statist. 58 (4) 2347 - 2381, November 2022. https://doi.org/10.1214/21-AIHP1210

Information

Received: 13 May 2020; Revised: 18 July 2021; Accepted: 27 August 2021; Published: November 2022
First available in Project Euclid: 6 October 2022

MathSciNet: MR4492981
zbMATH: 1498.60105
Digital Object Identifier: 10.1214/21-AIHP1210

Subjects:
Primary: 60F15 , 60G50
Secondary: 60F10

Keywords: large deviations , Random walks , strong limit theorems

Rights: Copyright © 2022 Association des Publications de l’Institut Henri Poincaré

JOURNAL ARTICLE
35 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.58 • No. 4 • November 2022
Back to Top