Abstract
We consider the Gibbs sampler, or heat bath dynamics associated to log-concave measures on describing interfaces with convex potentials. Under minimal assumptions on the potential, we find that the spectral gap of the process is always given by , and that for all , its ϵ-mixing time satisfies as , thus establishing the cutoff phenomenon. The results reveal a universal behavior in that they do not depend on the choice of the potential.
Nous considérons l’échantillonneur de Gibbs, aussi appelé dynamique “heat bath”, associé à des mesures log-concaves sur et décrivant des interfaces avec potentiels convexes. Sous des hypothèses minimales sur le potentiel, nous montrons que le trou spectral du processus est toujours donné par , et que pour tout , le temps de mélange de seuil ϵ satisfait quand , ce qui établit un phénomène de cutoff. Ces résultats exhibent un comportement universel, en ce qu’ils ne dépendent pas du potentiel choisi.
Acknowledgements
P.C. thanks University Paris-Dauphine for a funding of “Professeur Invité” and IMPA for the hospitality in the early stage of this work. C.L. acknowledges support from the grant SINGULAR ANR-16-CE40-0020-01. This work was realized in part during H.L. extended stay in Aix-Marseille University funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 837793.
Citation
Pietro Caputo. Cyril Labbé. Hubert Lacoin. "Spectral gap and cutoff phenomenon for the Gibbs sampler of interfaces with convex potential." Ann. Inst. H. Poincaré Probab. Statist. 58 (2) 794 - 826, May 2022. https://doi.org/10.1214/21-AIHP1174
Information