May 2022 Spectral gap and cutoff phenomenon for the Gibbs sampler of φ interfaces with convex potential
Pietro Caputo, Cyril Labbé, Hubert Lacoin
Author Affiliations +
Ann. Inst. H. Poincaré Probab. Statist. 58(2): 794-826 (May 2022). DOI: 10.1214/21-AIHP1174

Abstract

We consider the Gibbs sampler, or heat bath dynamics associated to log-concave measures on RN describing φ interfaces with convex potentials. Under minimal assumptions on the potential, we find that the spectral gap of the process is always given by gapN=1cos(π/N), and that for all ϵ(0,1), its ϵ-mixing time satisfies TN(ϵ)logN2gapN as N, thus establishing the cutoff phenomenon. The results reveal a universal behavior in that they do not depend on the choice of the potential.

Nous considérons l’échantillonneur de Gibbs, aussi appelé dynamique “heat bath”, associé à des mesures log-concaves sur RN et décrivant des interfaces φ avec potentiels convexes. Sous des hypothèses minimales sur le potentiel, nous montrons que le trou spectral du processus est toujours donné par gapN=1cos(π/N), et que pour tout ϵ(0,1), le temps de mélange de seuil ϵ satisfait TN(ϵ)logN2gapN quand N, ce qui établit un phénomène de cutoff. Ces résultats exhibent un comportement universel, en ce qu’ils ne dépendent pas du potentiel choisi.

Acknowledgements

P.C. thanks University Paris-Dauphine for a funding of “Professeur Invité” and IMPA for the hospitality in the early stage of this work. C.L. acknowledges support from the grant SINGULAR ANR-16-CE40-0020-01. This work was realized in part during H.L. extended stay in Aix-Marseille University funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 837793.

Citation

Download Citation

Pietro Caputo. Cyril Labbé. Hubert Lacoin. "Spectral gap and cutoff phenomenon for the Gibbs sampler of φ interfaces with convex potential." Ann. Inst. H. Poincaré Probab. Statist. 58 (2) 794 - 826, May 2022. https://doi.org/10.1214/21-AIHP1174

Information

Received: 20 July 2020; Revised: 23 March 2021; Accepted: 7 April 2021; Published: May 2022
First available in Project Euclid: 15 May 2022

MathSciNet: MR4421608
zbMATH: 1502.37032
Digital Object Identifier: 10.1214/21-AIHP1174

Subjects:
Primary: 60J25
Secondary: 37A25 , 82C22

Keywords: Cutoff , mixing time , spectral gap

Rights: Copyright © 2022 Association des Publications de l’Institut Henri Poincaré

Vol.58 • No. 2 • May 2022
Back to Top