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Abstract. We study the spread of information in finite and infinite inhomogeneous spatial random graphs. We assume that each edge
has a transmission cost that is a product of an i.i.d. random variable L and a penalty factor: edges between vertices of expected degrees
w1 and w2 are penalised by a factor of (w1w2)μ for all μ > 0. We study this process for scale-free percolation, for (finite and infinite)
Geometric Inhomogeneous Random Graphs, and for Hyperbolic Random Graphs, all with power law degree distributions with exponent
τ > 1. For τ < 3, we find a threshold behaviour, depending on how fast the cumulative distribution function of L decays at zero. If it
decays at most polynomially with exponent smaller than (3− τ )/(2μ) then explosion happens, i.e., with positive probability we can
reach infinitely many vertices with finite cost (for the infinite models), or reach a linear fraction of all vertices with bounded costs (for
the finite models). On the other hand, if the cdf of L decays at zero at least polynomially with exponent larger than (3− τ )/(2μ), then
no explosion happens. This behaviour is arguably a better representation of information spreading processes in social networks than
the case without penalising factor, in which explosion always happens unless the cdf of L is doubly exponentially flat around zero.
Finally, we extend the results to other penalty functions, including arbitrary polynomials in w1 and w2. In some cases the interesting
phenomenon occurs that the model changes behaviour (from explosive to conservative and vice versa) when we reverse the role of w1
and w2. Intuitively, this could corresponds to reversing the flow of information: gathering information might take much longer than
sending it out.

Résumé. Nous étudions la propagation de l’information dans des graphes aléatoires spatiaux finis et infinis. Nous supposons que
chaque arête a un coût de transmission qui est un produit d’une variable aléatoire L i.i.d. et d’un facteur de pénalité : les arêtes
entre sommets de degrés moyens w1 et w2 sont pénalisées par un facteur de (w1w2)μ pour tout μ > 0. Nous étudions ce processus
pour la percolation sans échelle, pour des graphes aléatoires géométriques inhomogènes (finis ou non), et pour des graphes aléatoires
hyperboliques, tous avec des degrés suivant des lois de puissance d’exposant τ > 1. Pour τ < 3, nous déterminons un seuil, dépendant
de la vitesse à laquelle la fonction de répartition de L tend vers 0 en 0. Si cette vitesse est au plus polynomiale avec exposant plus petit
que (3− τ )/(2μ) alors on a l’explosion, au sens où avec probabilité strictement positive, une infinité de sommets peuvent être atteints
à coût fini (pour le modèle infini), ou un fraction linéaire de l’ensemble des sommets peut être atteint à coût borné (pour le modèle
fini). Par ailleurs, si la vitesse de décroissance en 0 de la fonction de répartition de L est au moins polynomiale avec un exposant plus
grand que (3− τ )/(2μ), alors on n’a pas d’explosion. Ce comportement des processus de transmission d’information dans les réseaux
sociaux est plus réaliste que dans les modèles sans facteur de pénalisation, où l’explosion a toujours lieu à moins que la fonction de
répartition de L n’ait une décroissance en 0 doublement exponentielle.

Enfin, nous étendons ces résultats à d’autres fonctions de pénalité, incluant des polynômes arbitraires en w1, w2. Dans certains
cas, nous observons l’intéressant phénomène que le modèle change de comportement (d’explosif à conservatif et vice-versa) lorsque
l’on échange les rôles de w1 et w2. Intuitivement, cela pourrait correspondre à un retournement du flot d’information : acquérir de
l’information peut prendre plus de temps que de l’envoyer.
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1. Introduction

Many real-world social and technological networks share a surprising number of fundamental properties, including a
heavy-tailed degree distribution, strong clustering, and community structures [3,10,52,53]. These features are known to
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have opposing effects on the spread of information or infections in such networks. On the one hand, nodes of large degree
(also called hubs, super-spreaders, or influencers) contribute to fast dissemination, and foster explosive propagation of
information or infections [27,33,56,57]. On the other hand, clustering and community structures provide natural barriers
that slow down the process [5,37,39,42,50].

The interplay of these effects is complex, but until recently there were no appropriate random graph models in which to
study it; many models exhibited heavy-tailed degree distributions, strong clustering, or community structures individually,
but none combined the three. Recently, this problem has been solved by a family of inhomogeneous spatial random graph
models which do combine these features, namely Scale-free Percolation (SFP) [25] and continuum scale-free percolation
[26], (finite and infinite) Geometric Inhomogeneous Random Graphs (GIRGs) [17,19], and Hyperbolic Random Graphs
(HRGs) [12,34,55] (see also [14,58] for earlier versions of the model). These models are closely related, and in fact the
results will apply to all of them.

Previous work studying infection processes in these models [45,60] focused on the first passage percolation (FPP)
infection process, including the variant in which transmission costs follow an arbitrary probability distribution with sup-
port starting at 0 (see below for a more detailed discussion). Essentially, for any reasonable choice of parameters, either
a constant proportion of vertices (for finite models) or infinitely many vertices (for infinite models) may be infected in
constant time. This does not match reality. While some processes can indeed spread this fast, there are others which do
not, such as the spread of diseases through physical social networks or the spread of behaviours [24].

In this paper, we follow the approach of [28,31,41], and assume that high-weight vertices have higher expected trans-
mission times. This reflects the fact that even large-degree nodes have a limited time budget and cannot scale up their
number of contacts per time unit arbitrarily, as has been observed in real-world communication [51] and disease spreading
[54]. By doing so, we will recover the rich variation in behaviour we might expect. We prove a precise phase transition
between the case in which infinitely many vertices may be infected in constant time and the case in which they may not,
depending on the parameters of the random graph, the distribution of possible transmission times, and the transmission
penalty for high-weight vertices.

We will define the GIRG, SFP and HRG models in detail in Sections 3.1 and 3.3. In a nutshell, each vertex v in a graph
G= (V ,E) following these models has a (possibly random) location in a geometric space and a weight Wv which models
its popularity. Then each pair of vertices is connected with a probability that depends on their geometric distance and on
their weights. The probability of connecting decreases polynomially with their distance, and increases polynomially with
their respective weights; Wv is equal to the expected degree of v up to constant factors.

1.1. A simple example: Infinite geometric inhomogeneous random graphs (IGIRGs) with symmetric monomial penalties

In the IGIRG model, the vertex set V is given by a homogeneous Poisson Point Process with intensity 1 on Rd . The
weights (Wv)v∈V of the vertices are i.i.d. copies of a random variable W with polynomially decaying tail,1

P(W ≥ x)= 1/xτ−1. (1.1)

Such distributions, for τ ∈ (2,3), are called power laws2 and τ is called the power-law exponent. Between every two
vertices u and v with weights Wu and Wv (respectively), we independently add an edge with probability 1∧c(WuWv/‖u−
v‖d)α for some c > 0. Here α ∈ (1,∞) is the long-range parameter of the model, and governs the prevalence of edges
between geographically-distant high-weight vertices; we require α > 1 to avoid infinite vertex degrees. The expected
degree of a vertex v, conditioned on its weight Wv , then coincides with Wv up to a constant factor. The constant c governs
the edge-density.

Two example graphs of this model3 are shown in Figure 1.
In defining the information- or infection-spreading process, we assume that each edge e = (u, v) has a transmission

cost (or transmission time) Ce, comprised of an i.i.d. random component and a deterministic weight penalty. The random
component is a non-negative random variable Le associated with the edge e; these variables are i.i.d. copies of a non-
negative random variable L. The deterministic weight penalty is a function of the weights Wu and Wv of the endpoints u

and v of the edge, and we form the cost by multiplying this by Le . We define the cost along any path as the sum of the

1The full model is more flexible, see Definition 3.8. E.g., a slowly-varying correction factor is allowed in (1.1).
2We will also include the cases τ ∈ (1,2] and τ ≥ 3 into our analysis, but this may lead to infinite vertex degrees or, in some models, to graphs without
giant components.
3Or rather, a finite, rescaled version of the model on the unit cube called GIRG, in which the number of vertices is fixed to be n, so the density is n

instead of 1, see Definitions 3.8 and 4.1.



1970 J. Komjáthy, J. Lapinskas and J. Lengler

Fig. 1. Two examples of Geometric Inhomogeneous Random Graphs (GIRGs). The n= 1000 vertices are placed randomly into a unit
cube of dimension d = 2 and each draws a random weight from a power law distribution with exponent τ = 2.9 (on the left) and
τ = 3.5 (on the right). We used the same vertex set and the same underlying uniform variables to simulate vertex weights in both

cases: for a uniform variable Uv , we set the weight of vertex v to W
(2.9)
v := U

−1/1.9
v , for the left picture, while W

(3.5)
v := U

−1/2.5
v

for the right picture. Each pair of vertices with positions x1, x2 and weights w1, w2, respectively, is connected with probability

p(τ) =min(1,0.1(w
(τ)
1 w

(τ)
2 |x1 − x2|−d/n)α), where α = 4. Connections are again generated in a coupled way, using the same set of

uniform variables for the two pictures, thresholded at p(2.9) and p(3.5), respectively. The pictures were generated by the open-source
software [40].

costs of all edges on the path, which gives a quasimetric on the graph.4 For this example, we fix a parameter μ > 0 that
we call the penalty strength, and set the cost of an edge e= {u,v} to be

Ce := Le(WuWv)
μ, (1.2)

resulting in a metric on IGIRG. Later we will generalize the results to arbitrary polynomial weight penalties.
We consider single-sourced spreading of information and investigate how long it takes for the information to spread to

another vertex, and how many vertices are reachable from the source within a given cost T . Since the underlying graph
is infinite, it may happen that for some finite cost T <∞, the number of vertices reachable from the source with cost at
most T is infinite. This phenomenon is called explosion, and the infimum of such costs T is called the explosion time of
the source vertex.

In this paper, we show that for all power law exponents τ ∈ (2,3), all long-range parameters α ∈ (1,∞), and all
penalty strengths μ > 0, explosion occurs with positive probability if and only if the cumulative distribution function FL

of L is sufficiently steep at the origin. More formally, we prove a phase transition. Suppose FL grows polynomially at the
origin, so that there exists a small interval [0, t0] and constants c1, c2 and β > 0 such that

c1t
β ≤ FL(t)≤ c2t

β for all t ∈ [0, t0]. (1.3)

Then the main result of this paper implies the following phase transition.

Theorem 1.1 (Main Case of Theorem 3.6 for IGIRG graphs). Let τ ∈ (2,3), let α ∈ (1,∞), and let L be a non-
negative random variable satisfying (1.3). In IGIRG graphs with degree power-law exponent τ , long-range parameter α,
and edge weights given by (1.2), explosion occurs with positive probability if β < βc(μ) := (3− τ)/2μ, and almost surely
does not occur if β > βc(μ).

Note that explosion only depends on the behaviour of FL close to 0, or equivalently the tail behaviour of the random
variable 1/L. Indeed, for all z≥ 0, P(1/L≥ z)= FL(1/z), so (1.3) is equivalent to the condition that c1z

−β ≤ P(1/L≥

4A quasimetric is a distance function that satisfies all axioms of a metric except symmetry. Symmetric penalty functions result in metrics, while
non-symmetric penalty functions result in quasimetrics.
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z)≤ c2z
−β for all z≥ 1/t0. Intuitively, this theorem says that explosion is determined entirely by three factors. The first

is the tail behaviour of 1/L as captured by β; the second is the strength of the weight penalty μ; and the third is the
exponent τ of the power law of the degree distribution.

1.2. Extensions

We defer a formal statement of the main results to Section 3, where we generalise the example above. Firstly, the results
also apply to related random graph models, including the infinite SFP model and the finite HRG and GIRG models. These
finite graphs are typically not connected, but with high probability they have a single giant (linear-size) component as
long as their degree distributions follows a power law with exponent τ ∈ (2,3). In finite graphs, the concept of explosion
translates to the cost-distance between two uniformly-chosen vertices in the giant not tending to infinity as the size of the
network grows (see Theorem 3.12 and Corollary 3.15). We show that explosion follows the same phase transition as in
Theorem 1.1. Moreover, under some additional conditions, that apply, among others, to hyperbolic random graphs, we
show that this cost-distance converges in distribution to the sum of two independent copies of the explosion time of a
related infinite model (Theorem 3.13 and Corollary 3.15).

We also consider other penalty functions, such as the maximum or the sum of the weights of the incident vertices,
or arbitrary (finite) polynomials of those two weights. For all μ > 0, the cases C̃e := Le max{Wu,Wv}μ, and Ĉe :=
Le(Wu +Wv)

μ behave similarly to the product penalty Ce = (WuWv)
μ of (1.2); the main difference is that the critical

penalty-strength βc(μ) changes from (3− τ)/2μ to (3− τ)/μ. In general, for an arbitrary polynomial penalty function
f with degree deg(f ), the threshold in β occurs at βc(f )= (3− τ)/deg(f ) whenever τ ∈ (2,3).

The results also cover the whole parameter space in τ and α, not just the ranges τ ∈ (2,3) and α ∈ (1,∞), but also
the “α =∞” (threshold) case when an edge is present when the Euclidean distance between the vertices is less then a
threshold value depending on the vertex-weights. For τ > 3, it follows from known results that explosion almost surely
does not occur in SFP [60], and we expect other models to exhibit the same behaviour. More interestingly, for the infinite
models the results also allow for τ ∈ (1,2], when every vertex has infinitely many neighbors almost surely [25]. Thus
without a weight penalty, explosion happens trivially. Nevertheless, a strong enough penalty factor can prevent explosion
even in this case. In fact, if f is a symmetric polynomial penalty function, then the threshold in β coincides with the
τ ∈ (2,3) case: βc(f )= (3− τ)/deg(f ).

For asymmetric polynomial penalty functions, the picture is a little more complicated and we no longer prove a full
phase transition in all cases (see Theorem 3.7). However, for monomial penalty functions, such as Ce = LeW

μ
u Wν

v , we
do prove a full phase transition and the critical value of β increases to βc(f )=max{(3− τ)/(μ+ ν), (2− τ)/ν}; thus
explosion becomes easier. By contrast, when α ∈ (0,1], explosion occurs almost surely.

Note that considering asymmetric penalty functions such as Ce = LeW
μ
u Wν

v raises an interesting issue. Explosion,
in its original definition, means outwards explosion. That is, infinitely many vertices are reachable from a fixed vertex
v within some finite cost T , with positive probability. However, one can also consider inwards explosion, in which
a fixed vertex v is reachable from infinitely many vertices within cost T , with positive probability. The threshold for
inwards explosion is the same as the threshold for the reversed penalty function Ce = LeW

ν
u W

μ
v , which is β inwards

c =
βc(fν,μ) = max{(3− τ)/(μ+ ν), (2− τ)/μ}. Interestingly, this implies that there are penalty functions which exhibit
inwards explosion but not outwards explosion and vice versa. This could be interpreted as an asymmetry between the two
possible directions of information flow: it is much quicker to send out information than to gather it, or vice versa. We
emphasise that this phenomenon only arises when τ ∈ (1,2].

1.3. Comparison to first passage percolation

The case that μ = 0, i.e., there is no weight penalty and Ce = Le, is also known as first-passage percolation (FPP)
[35]. This process has been studied in classical scale-free networks like the configuration model [6, Theorem 4] and [2,
Theorem 2.4], and also for the networks considered in this paper, SFP, GIRGs, and HRGs [45,60]. When the empirical
degree distribution has exponent τ ∈ (2,3), the authors in [45,60] showed that explosion happens if and only if the random
variable L representing the edge-costs is such that

I(L) :=
∞∑

k=1

F
(−1)
L

(
1/eek )

<∞, (1.4)

where F
(−1)
L (y) = inf{t ∈ R : P(L ≤ t) ≥ y} is the generalised inverse of the cdf FL of L. One can check that I(L) is

finite for almost every well-known distribution with support starting at 0, in fact, FL(t) has to be doubly-exponentially
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flat5 around 0 for I(L) to be infinite and thus for explosion not to happen. Observe also that the sum I(L) does not depend
on τ , only on L. This is a counterintuitive phenomenon as it suggests that explosion does not depend on vertex degrees.
The results suggest that allowing μ > 0 is a good way to fix this issue; the critical case occurs when FL is polynomially
flat at the origin, rather than doubly-exponentially flat as for FPP.

1.4. Proof techniques

Assume for simplicity that FL(t) grows at a polynomial rate around the origin,6 i.e., FL(t)� tβ in some small interval
[0, t0]. We show in Section 4 that explosion occurs in (continuum and ordinary) SFP and IGIRGs in the regime where
μβ < (3− τ)/2 by constructing a path with infinitely many vertices and finite total cost. We do this by constructing an
infinite sequence of annuli centred around the source vertex whose volumes grow doubly-exponentially. Each annulus
contains doubly-exponentially many vertices that we call ‘leaders’, which have weight that is doubly-exponential in the
index of the given annulus. We show that any leader within an annulus is connected to double-exponentially many leaders
in the next annulus. We then construct a finite-cost infinite path greedily by repeatedly choosing a least-cost edge to a
leader in the next annulus. This construction succeeds when μβ < (3−τ)/2, since in this case the penalty for transmission
through an edge between the leaders is not too high compared to the minimum of doubly-exponentially many copies of L.
This argument is similar to the one used in [45].

We show in Sections 5 and 6 that explosion cannot occur in SFP or IGIRGs when μβ > (3− τ)/2. The argument is
novel. We have to exclude both sideways explosion and lengthwise explosion. By sideways explosion, we mean that there
are infinitely many vertices within finite cost reachable using finite-length paths; this naturally requires that some vertices
have infinite degree. By lengthwise explosion we mean that there is a path of infinitely many edges with finite total cost.
We exclude sideways explosion by showing that for any finite cost t , each vertex has only finitely many edges attached to
with cost less than t when μβ > (3− τ)/2. To exclude lengthwise explosion, we show that if lengthwise explosion can
happen at all, then it can happen arbitrarily quickly. That is, writing Texp for the explosion time, if Texp <∞ with positive
probability, then for all t0 > 0 we also have Texp < t0 with positive probability. A similar phenomenon was previously
observed in branching processes, where it arises due to the independence of the subtrees of the root. In spatial random
graphs, the proof is more subtle. From here we argue by contradiction and show that when t0 is sufficiently small, the
probability that there is a vertex within graph distance k and cost-distance t0 of the source decays exponentially in k.
Hence, almost surely for some k no such vertex exists, and thus explosion does not occur.

Before we extend the results to finite GIRGs and HRGs, in Section 7 we give a novel proof that these models contain
a unique linear-sized giant component (see Theorem 3.11). This is necessary since we work under milder assumptions
on the edge connection probabilities than so far assumed in the literature (e.g. in [11,17,19,25,29,36]). The argument is
based on a bottom-to-top approach: the space is divided into boxes of growing size, and we show that each box contains,
independently of each other and with positive probability, a linear-sized “local giant”. These local giants are then merged
into a single linear-sized largest component via paths through the leaders as used in the explosive case above. Uniqueness
is shown by a two-stage uncovering argument.

Finally, in Section 3.3 we extend the results to finite GIRGs and HRGs. This process is rather subtle. Because of
the polynomial transmission penalties, many of the methods developed in [45] break down, and we must develop a new
argument for connecting two uniformly chosen vertices within their respective explosion times plus a negligible cost.
This argument depends crucially on the fact that the explosion time of any vertex is mostly determined by large-but-finite
neighborhoods of vertices with bounded weight. If we carefully maintain independence, edges between high-weight
vertices can then be used to establish the necessary low-cost connection between the two neighborhoods.

2. Notation

We write rhs and lhs for right-hand side and left-hand side respectively, wrt for with respect to, rv for random variable, i.i.d.
for independent and identically distributed, and cdf for cumulative probability distribution function. Generally, we write
FX for the cdf of an rv X, and F

(−1)
X for its generalised inverse function, defined as F

(−1)
X (y) := inf{t ∈ R : FX(t)≥ y}.

We say that an event A happens almost surely (a.s.) when P(A) = 1 and a sequence of events (An)n∈N holds with
high probability (whp) when limn→∞ P(An) = 1. We say a sequence of rvs (Xn)n∈N is tight if for every ε > 0 there
exists a Kε > 0 such that P(|Xn| > Kε) < ε for all n. We say that a real function f varies slowly at infinity if for all

5More precisely, on some small interval [0, t0] the distribution function FL(t) has to satisfy FL(t)≤ exp{−C1 exp{C2/tη}} for some η > 1 and positive

constants C1, C2. This corresponds to F
(−1)
L

(y)≥ 1/(log log(1/y))1/η which makes the sum infinite when the sequence 1/ exp(ek) is substituted for y.
6We allow for slowly varying function correction terms.
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c > 0, limx→∞ f (cx)/f (x)= 1; note in particular that by Potter’s bound [7] this implies that as x →∞, f (x)= o(xδ)

and ω(x−δ) for all δ > 0. We say that the positive random variable X has power-law tails with exponent τ if for all
sufficiently large x,

P(X ≥ x)= 
(x)/xτ−1 (2.1)

for some function 
(x) that varies slowly at infinity.
We write R+ = (0,∞) and Z+ for the set of positive integers. For n ∈ Z+, let [n] := {1, . . . , n}. If two functions f ,

g have range R+ and any of the domains R, Z, or [a,∞) for some a ∈ R, then we use the standard Landau notation
f = O(g), f = o(g), f = �(g), f = ω(g) and f = �(g) as in [38, Section 1.2]. We also abbreviate f = �(g) with
f � g. For all x ∈ R, we denote by 
x� and �x the lower and upper integer parts of x ∈ R, respectively. We write
x ∧ y :=min{x, y} and x ∨ y :=max{x, y}. We denote a graph by G= (V,E), where V is the vertex set and E ⊆ V2 is
the edge set. We will assign a geometric position xv ∈ Rd to each vertex v ∈ V , and for a subset A ⊆ Rd we will write
V ∩A := {v ∈ V | xv ∈A}, by slight abuse of notation. For two vertices u, v, let u↔ v denote the event that u and v are
connected by an edge e= (u, v). All these graphs are undirected, i.e., (u, v) ∈ E if and only if (v,u) ∈ E , for all u,v ∈ V .
However, when we wish to consider transmission along an edge, its direction will matter, so we define e− := u, e+ := v.
If two or more vertices are chosen uniformly at random from a set S ⊆ V , then we say that they are typical vertices in
S. A walk in G is a finite sequence of vertices π = (π0, . . . , πk) connected by edges (πi,πi+1), and a path is a walk in
which all vertices are distinct. We call |π | = k − 1 the length of a walk. As usual, the graph distance is defined by

dG(A,B) := inf
({|π | : π = (π0, . . . , πk) is a path with π0 ∈A and πk ∈ B

}∪ {∞}).
If A or B contains only a single vertex, we omit the surrounding braces, writing e.g. dG(u, v) instead of dG({u}, {v}). We
denote balls in this metric by BG(v, r) := {u ∈ V : dG(u, v)≤ r} for all v ∈ V and r ≥ 0, and we denote their boundaries
by ∂BG(v, k) := BG(v, k) \BG(v, k − 1) for all integers k ≥ 1.

For an integer d ≥ 1, we write Xd := [−1/2,1/2]d , Xd(n) := [−n1/d/2, n1/d/2]d . We write νd for d-dimensional
Lebesgue measure, and ‖x‖ for the Euclidean norm of x. We denote Euclidean balls by B2(x, r) := {y ∈Rd : ‖y−x‖ ≤ r}
for all x ∈Rd and all r ≥ 0.

3. Formal definitions and statements of results

3.1. Definitions of infinite models

We start by defining the two infinite models, scale-free percolation (SFP) and Infinite Geometric Inhomogeneous Random
Graphs (IGIRG). This latter contains, as a special case, continuum SFP [26]. Later, in Section 3.3, we define finite-sized
variants and discuss how the results on the infinite models carry through to their finite counterparts. SFP was introduced
by Deijfen, van der Hofstad and Hooghiemstra in [25] as an extension of long-range percolation [8,59]. First passage
percolation on SFP was studied in [60], and behaviour of random walks on SFP was studied in [36]. We consider a
version of the model which allows more general edge-connection probabilities.

Definition 3.1 (Generalised Scale-free Percolation). Let hS : Rd × R+ × R+ → [0,1] be a function, let W ≥ 1 and
L ≥ 0 be random variables, and let d ≥ 1 be an integer. For each vertex v ∈ Zd we draw a random vertex weight Wv ,
which is an i.i.d. copy of W . All pairs of orthogonally adjacent vertices are joined by an edge. Conditioned on (Wi)i∈Zd ,
all other edges are present independently with probability

P
(
u↔ v | ‖u− v‖> 1, (Wi)i∈Zd

)= hS(u− v,Wu,Wv). (3.1)

Finally, we assign to each present edge e an edge-length Le , an i.i.d. copy of L. We denote the resulting random graph on
Zd by SFPW,L.

In [25] the function hS was defined, for a long-range parameter αS > d and a percolation parameter λ > 0, to be

h
orig
S (x,w1,w2)= 1− exp

(−λw1w2/‖x‖αS
)
. (3.2)

This parametrisation of SFP is not very natural, since a vertex with weight Wv has degree approximately W
d/αS
v [25,

Proposition 2.3, Proof of Theorem 2.2] rather than Wv , and the exponent of the degree distribution’s power law is dif-
ferent from that of W ’s power law. To remedy this, we re-parametrise by taking W new =Wd/αS and α = αS/d , so that
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hS(x,w1,w2)= 1− exp(−λ(w1w2/‖x‖d)α)� 1∧ (w1w2/‖x‖d)α and each vertex v has degree approximately Wv . We
actually allow significantly more general choices of hS , which we will set out momentarily in Assumption 3.3.

The second model we consider is IGIRG. The main difference between IGIRG and SFP is that the vertex set of IGIRG
is given by a Poisson Point Process on Rd instead of the grid Zd . This model is the generalisation of (finite) Geometric
Inhomogeneous Random Graphs [19] (GIRGs) to infinite space Rd , and contains continuum SFP from [26] as a special
case.

Definition 3.2 (Infinite Geometric Inhomogeneous Random Graphs). Let hI :Rd ×R+ ×R+ → [0,1] be a function,
let W ≥ 1, L≥ 0 be random variables, let d ≥ 1 be an integer, and let λ > 0. We define the infinite random graph model
IGIRGW,L(λ) as follows. Let Vλ be a homogeneous Poisson Point Process (PPP) on Rd with intensity λ, forming the
positions of vertices. For each v ∈ Vλ draw a random weight Wv , an i.i.d. copy of W . Then, conditioned on (z,Wz)z∈Vλ

,
edges are present independently with probability

P
(
u↔ v in IGIRGW,L(λ) | (z,Wz)z∈Vλ

) := hI(u− v,Wu,Wv). (3.3)

Finally, we assign to each present edge e an edge-length Le, an i.i.d. copy of a random variable L≥ 0. We write (Vλ,Eλ)

for the vertex and edge set of the resulting graph, which we denote by IGIRGW,L(λ).

The edge-connectivity functions hS and hI as stated in Definitions 3.1 and 3.2 are too general, so we require the
following additional assumption. Write for some c2 > 0, γ ∈ (0,1),

lc2,γ (w) := exp
(−c2 log(w)γ

)
. (3.4)

Assumption 3.3 (Edge-connection bounds). We assume that there exist parameters α ∈ (0,∞] and γ ∈ (0,1), and
constants c, c, c1, c1, c2 > 0, such that for each q ∈ {S, I}, hq : Rd × R × R �→ [0,1] (considered as a deterministic
function) satisfies the following bounds. For α <∞, we require

c
(
lc2,γ (w1)lc2,γ (w2)∧

(
w1w2/‖x‖d

)α)≤ hq(x,w1,w2)≤ c
(
1∧ (

w1w2/‖x‖d
)α)

. (3.5)

For α =∞,7 we require

c
(
lc2,γ (w1)lc2,γ (w2)∧ 1{c1w1w2≥‖x‖d }

)≤ hq(x,w1,w2)≤ c · 1{c1w1w2≥‖x‖d }. (3.6)

Unless otherwise mentioned, we will also require that W has power-law tails (as defined in Section 2).

In order to formally define explosion, we must first define the cost of a walk. The notation here is analogous to the
notation we use for graph distance and Euclidean distance (see Section 2).

Definition 3.4 (Distances and metric balls). Let G = (V ,E) be a graph. Let {Le : e ∈ E} be an associated family of
edge lengths, where Le ∈ (0,∞) for all e. Let {Wv : v ∈ V } be an associated family of vertex weights, where Wv ∈ [1,∞)

for all v ∈ V . Let f : [1,∞)2 → R+ be a function, which we call the weight penalty function. For all directed edges
e = (u, v) ∈ E, we define the cost Ce of e to be Lef (Wu,Wv). For all walks π = (π0, . . . , πk) in G, we define the cost
of π to be

|π |f,L :=
k∑

i=1

C(πi−1,πi ) =
k∑

i=1

f (Wπi−1 ,Wπi
)L(πi−1,πi )

For all sets A,B ⊆ V , we define the cost-distance from A to B by

df,L(A,B) := inf
({|π |f,L : π = (π0, . . . , πk) is a path with π0 ∈A and πk ∈ B

}∪ {∞}).
As with graph distance, we write e.g. df,L(u, v) := df,L({u}, {v}). We denote balls by Bf,L(v, r) := {u ∈ V : df,L(v,u)≤
r} for all v ∈ V and r ≥ 0. For the special case f (x, y)= (xy)μ with μ≥ 0, we replace f by μ in the definitions above,
writing |π |f,L = |π |μ,L, dμ,L(A,B)= df,L(A,B), and Bμ,L(v, r)= Bf,L(v, r).

7In the related graph models GIRG and HRG, this is called the threshold case. We refrain from this terminology, to avoid confusion with other
thresholds.
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Note that df,L is a metric only if f is symmetric. For asymmetric f , we interpret df,L(v,u) as the transmission cost
from v to u. To define explosion time, we single out a vertex v ∈ Vλ and study the set of vertices that can be reached from
v within some cost distance T . To simplify the notation, we always condition on the event that an IGIRG’s PPP has a
vertex at the origin 0, and then choose v = 0. Conditioned on 0 ∈ Vλ, the set Vλ \ {0} is still a PPP of intensity λ, and by
translation invariance, the results generalise to arbitrary fixed vertices v ∈ Vλ.

Definition 3.5 (Explosion time). Consider IGIRGW,L(λ) from Definition 3.2, and let v ∈ Vλ. Let f be a weight penalty
function, and define σ I

f (v, k) := inf{t : |Bf,L(v, t)|> k in IGIRGW,L(λ)}. Let the explosion time of a vertex v (wrt cost-
distance) be defined as the (possibly infinite) limit:

Y I
f (v) := lim

k→∞σ I
f (v, k). (3.7)

The explosion time of the origin, Y I
f (0), is defined analogously when we condition on 0 ∈ Vλ. We call IGIRGW,L(λ)

explosive wrt to the cost-distance generated by f and L if P(Y I
f (0) <∞) > 0, otherwise we call it conservative. For short,

we write that IGIRGW,L(λ) is (f,L)-explosive or (f,L)-conservative, and for f = (xy)μ, we write (μ,L)-explosive vs.
(μ,L)-conservative, respectively. We call any infinite path π with |π |f,L <∞ an explosive path. We define the same
quantities analogously in the model SFPW,L, indicating the different model by replacing the superscript I with S: thus we
write σ S

f (v, k) and Y S
f (v).

In other words, σ I
f (v, k) is the smallest cost t such that k other vertices are reachable within cost t from v; similarly,

the explosion time Y I
f (v) is the infimum8 of all costs t such that the ball Bf,L(v, t) contains infinitely many vertices.

Thus Y I
f (v) is finite if and only if infinitely many vertices are reachable within bounded cost from v.

Explosion can either happen as lengthwise explosion, in which there is an explosive path from the origin. Or (non-
exclusively) there may be sideways explosion, in which there is a finite path from the origin to a vertex from which
there are infinitely many incident edges of bounded cost. Actually, we will show in Lemma 6.1 that whenever sideways
explosion occurs in IGIRGW,L(λ) or SFPW,L, then with positive probability from the origin itself there are already
infinitely many incident edges of bounded cost.

When the weight penalty function f is asymmetric, so that df,L is only a quasimetric, we call the phenomenon
described in Definition 3.5 outwards explosion. We define inwards explosion analogously, requiring that infinitely many
vertices have bounded-cost paths to 0 instead of the other way around. Thus we say that IGIRGW,L(λ) is (f,L)-inwards
explosive if

lim
k→∞

(
inf

{
t : ∣∣{u ∈ Vλ : df,L(u,0)≤ t

}∣∣> k
})

<∞.

The corresponding definition for SFPW,L is analogous.

3.2. Results for infinite models

With the definition of explosion at hand, we are now able to state the main results of this paper. We first consider the
special case where the weight penalty function is given by f (wu,wv)= (wuwv)

μ for some μ > 0. It is already known
[60] that when the exponent τ of the vertex weights’ power law is greater than 3, SFPW,L is (0,L)-conservative for
all distributions L satisfying P(L = 0) = 0; this implies that SFPW,L is also (μ,L)-conservative for all μ > 0, since
increasing μ only increases the cost of each path. We expect IGIRGW,L(λ) to exhibit the same behaviour, so we focus on
the τ < 3 regime.

Theorem 3.6. Consider the models IGIRGW,L(λ) and SFPW,L. Suppose the vertex-weight distribution W has power-law
tails with exponent τ ∈ (1,3), and that the connection functions hI and hS satisfy Assumption 3.3 for some α ∈ (0,∞].
Let the weight penalty function be f (w1,w2) := (w1w2)

μ, for some μ > 0. Then the following statements hold.

(i) Suppose α ≤ 1. Then IGIRGW,L(λ) and SFPW,L are (μ,L)-sideways explosive, and moreover explosion occurs
almost surely.

8This infimum is a minimum if all degrees are finite.
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(ii) Suppose α > 1 and that

β+ := lim sup
t→0

(
logFL(t)/ log t

)
< (3− τ)/(2μ). (3.8)

Then IGIRGW,L(λ) and SFPW,L are (μ,L)-lengthwise explosive.
(iii) Suppose α > 1 and that

β− := lim inf
t→0

(
logFL(t)/ log t

)
> (3− τ)/(2μ). (3.9)

Then IGIRGW,L(λ) and SFPW,L are (μ,L)-conservative.

Thus when α ≤ 1 both models are always explosive, and when α > 1 and β− = β+ the hyperbola curve μβ = (3−τ)/2
is the threshold between the explosive and conservative regimes. Observe that a smaller β means steeper cdf FL at the
origin, while a larger β means flatter behavior at the origin, hence the criterions (3.8) and (3.9) are quite natural. We expect
β− = β+ for any reasonable choice of L; in particular, when L∼ Exp(1) we have β− = β+ = 1. Note that β+ = 0 and
β− = ∞ are both allowed in Theorem 3.6. The case β+ = 0 occurs when FL(t) is steeper at 0 than any polynomial,
e.g. if FL(t)�−1/ log(t) as t → 0, and the case β− =∞ occurs when FL(t) is flatter at 0 than any polynomial, e.g. if
FL(t)� exp(−1/t) as t → 0. Thus Theorem 3.6 gives a partition of the parameter space into explosive and conservative
regimes whenever FL is suitably well-behaved near the origin.

Note that the parameter regimes α ≤ 1 and τ ≤ 2 are exceptional in the sense that Wv does not correspond to the
expected degree of v up to constant factors. Rather, whenever α ≤ 1 or τ ≤ 2 then all vertex degrees are a.s. infinite in both
IGIRGW,L(λ) and SFPW,L (see [25, Theorem 2.1] for the τ ≤ 2 regime). It is therefore immediate that without a weight
penalty (i.e. taking μ = 0), explosion occurs in time inf{t : FL(t) > 0} in these regimes. Despite this, Theorem 3.6(ii)
implies that the weight penalty is powerful enough that IGIRGW,L(λ) and SFPW,L may still be conservative when τ ≤ 2,
and indeed that the critical hyperbola is smooth at τ = 2. The reason for this is that in the τ ≤ 2 regime, the infinite
vertex degrees come from edges to high-weight vertices. Thus when (3.9) holds, the weight penalty ensures that for all
costs K , there are only finitely many edges from zero with cost at most K ; thus the cost-distance does not “see” the
infinite degree. By contrast, when α ≤ 1, the infinite vertex degrees come from low-weight neighbors and so the weight
penalty does not matter. In fact, when α ≤ 1 we prove explosion occurs under substantially weaker conditions than stated
in Theorem 3.6(i); see Theorem 5.2 for details. The different cases are depicted in Figure 2.

We now comment on the critical case, where α > 1 and β− = β+ = (3− τ)/2μ. In this case, the proof shows that
both models are (μ,L)-conservative whenever the moment E[W 2−2μβ ] = E[Wτ−1] is finite. This occurs when the slowly
varying function in the precise tail of the vertex-weight distribution W is sufficiently small, for example if P(W ≥ x)=

Fig. 2. The degree of any vertex v is infinite if α ≤ 1 or τ ≤ 2. In each panel, we draw the neighbors of v (fat dots), each of them twice:
once sorted according to their weight and once sorted according to the cost of the edge from v. The dashed lines between dots represent
identification of vertices, i.e., the two endpoints depict the same vertex. There are three different scenarios. Left panel: for α ≤ 1, v
has an infinite number of neighbors of weight at most w. Trivially, this leads to an infinite number of edges of cost at most T . We see
sideways explosion. Middle and right panel: for τ ≤ 2 and α > 1, v only has a finite number of neighbors of weight at most w, for any
w. If the cost penalty satisfies (3.9), and w is sufficiently large, then no vertices of weight greater than w have cost ≤ T . Thus v only
has a finite number of neighbors of cost ≤ T , and there is no sideways explosion (middle panel). If instead the cost penalty satisfies
(3.8), then there may be infinitely many edges from v to vertices of arbitrary high weight with cost ≤ T , in which case we also have
sideways explosion (right panel). This is a strict subcase of (3.8), so we do not list this case separately in Theorem 3.6.
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(log(x))−2/xτ−1. When the moment E[Wτ−1] is infinite, the proof technique we apply breaks down. This case is hard
even without a weight penalty, i.e. when μ= 0 and τ = 3: this threshold regime is not understood even in the simplest
case of branching processes [4].

Finally, we emphasise that the case μ= 0 (where there is no weight penalty and Ce = Le) implies entirely different
scaling from Theorem 3.6; in this case the criterion for both models to be explosive is for the sum I(L) in (1.4) to be
finite, a result that was established for SFP in [60] and for IGIRG in [45].

Asymmetric and polynomial penalty functions
Next, we generalise Theorem 3.6 to (possibly asymmetric) polynomial penalty functions. Let f (w1,w2) be any poly-
nomial of two variables with positive real coefficients and non-negative real exponents. Thus f can be written in the
form

f (w1,w2)=
∑
i∈I

aiw
μi

1 w
νi

2 (3.10)

for some finite set I , where ai > 0 and μi, νi ≥ 0 for all i ∈ I . We define the degree of f to be

deg(f )=max
i∈I

(μi + νi). (3.11)

Further, for some μ > 0 we define f∨,μ := (w1 ∨ w2)
μ and f+,μ(w1,w2) := (w1 + w2)

μ. As in the f (wu,wv) =
(wuwv)

μ case, the results of [60] directly imply that SFPW,L is conservative for any choice of f when τ > 3, so we
focus on the τ < 3 regime. Theorem 3.6 becomes the following:

Theorem 3.7. Consider the models IGIRGW,L(λ) and SFPW,L. Suppose the vertex-weight distribution W has power-law
tails with exponent τ ∈ (1,3), and that the connection functions hI and hS satisfy Assumption 3.3 for some α ∈ (0,∞].
Let the weight penalty function f be a polynomial as in (3.10). Define β− and β+ as in Theorem 3.6. Then the following
statements hold.

(i) Suppose α ≤ 1 or that for all i ∈ I , β+ < (2−τ)/νi . Then IGIRGW,L(λ) and SFPW,L are (f,L)-sideways explosive,
and moreover explosion occurs almost surely.

(ii) Suppose α > 1 and that β+ < (3− τ)/deg(f ). Then IGIRGW,L(λ) and SFPW,L are (f,L)-lengthwise explosive.
(iii) Suppose α > 1, that β− > (3− τ)/deg(f ), and that for some i ∈ I with μi+νi = deg(f ) we have β− > (2− τ)/νi .

Then IGIRGW,L(λ) and SFPW,L are (f,L)-conservative.

If f is a general asymmetric polynomial, then while the bounds of Theorem 3.7 still apply it need not give a partition
of the entire parameter space. For example, Theorem 3.7 does not apply (and the proof technique breaks down) if α > 1,
τ = 3/2, β− = β+ =: β , and f (wu,wv)=w

7/4β
u +w

3/4β
v . However, we do recover a partition in many special cases:

• When τ > 2, the condition β− > (2− τ)/νi is automatically satisfied for all i ∈ I , so it can be dropped.
• If f is a monomial, then conditions (i)–(iii) cover the whole of the parameter space.
• If f is symmetric and τ ∈ (1,2], then there exists i ∈ I with μi ≤ νi and μi + νi = deg(f ); thus

3− τ

deg(f )
= 3− τ

μi + νi

≥ 2(2− τ)

2νi

= 2− τ

νi

. (3.12)

It follows that the condition β− > (2− τ)/νi can be safely removed from condition (iii).

In particular, Theorem 3.7 yields a partition of the parameter space for f∗,μ(w1,w2) := w
μ
1 + w

μ
2 . Moreover, since

(w
μ
1 + w

μ
2 )/2 ≤ (w1 ∨ w2)

μ ≤ (w1 + w2)
μ ≤ 2μ(w

μ
1 + w

μ
2 ), for any walk π we have |π |f∗,μ,L/2 ≤ |π |f∨,μ,L ≤

|π |f+,μ,L ≤ 2μ|π |f∗,μ,L. Hence any given instance of IGIRGW,L(λ) or SFPW,L explodes under f∨,μ and f+,μ if and
only if it explodes under f∗,μ, and the same partition applies.

Finally, we note that Theorem 3.7 implies — perhaps surprisingly — that an asymmetric penalty function can yield
asymmetric explosive behaviour even in undirected models such as IGIRGW,L(λ) and SFPW,L. For example, taking
τ = 3/2 and β+ = β− = 1, Theorem 3.7(i) and (iii) imply that f (wu,wv) = w3

uw
1/4
v explodes almost surely, but the

reverse function f rev(wu,wv) = w
1/4
u w3

v does not. Equivalently, f demonstrates outwards explosion but not inwards
explosion, and f rev demonstrates inwards explosion but not outwards explosion. We emphasise that this behaviour is
only possible when τ ≤ 2.
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3.3. Finite models and results

In this section we define the finite version of the IGIRG model, as well as the Hyperbolic Random Graph model, and
explain how the results carry over to these finite versions. We start with Geometric Inhomogeneous Random Graphs
(GIRGs), introduced in [18,19]. Various aspects of the GIRG model have been studied, including average distances [17],
greedy routing [20], bootstrap percolation [44], first passage percolation [45], and how to sample from the graph model
efficiently [9]. Extensions to non-metric geometries were studied in [47].

Definition 3.8 (Geometric Inhomogeneous Random Graph). Let n ∈ Z+, and let W(n) ≥ 1, L≥ 0 be random variables.
Let V := [n], and consider X = [−1/2,1/2]d equipped with the Lebesgue measure ν. Assign to each vertex i ∈ [n] an
i.i.d. position vector xi ∈ X sampled from ν, and a vertex-weight W

(n)
i , an i.i.d. copy of W(n). Then, conditioned on

(xi,W
(n)
i )i∈[n] edges are present independently. For any u,v ∈ [n], we denote

P
(
u↔ v in GIRGW,L(n) | (xi,W

(n)
i

)
i∈[n]

)=: gu,v
n

(
xu, xv,

(
W

(n)
i

)
i∈[n]

)
, (3.13)

and we require g
u,v
n :X ×X × (R+)n →[0,1] to be ν-measurable. Finally, assign to each present edge e an edge-length

Le, an i.i.d. copy of L. We denote the resulting graph by GIRGW,L(n).

We next set out the properties we assume for g
u,v
n (Assumption 3.9) and for W(n) (Assumption 3.10). In [19], the

authors assumed that there is a parameter α ∈ (1,∞], and 0 < c, c, c1, c1 <∞, such that for all n and all u,v ∈ [n], the
edge-connectivity function g

u,v
n satisfies, as a deterministic function from X ×X × (R+)n to [0,1], that

c ≤ g
u,v
n (xu, xv, (wi)i∈[n])

1∧ (wuwv/(‖xu − xv‖d ∑n
i=1 wi))α

≤ c for 1 < α <∞; (3.14)

while for α =∞,

c1{c1wuwv≥‖xu−xv‖d ∑n
i=1 wi } ≤ gu,v

n

(
xu, xv, (wi)i∈[n]

)≤ c1{c1wuwv≥‖xu−xv‖d ∑n
i=1 wi }. (3.15)

The reason for the restriction α > 1 was that under the above conditions there are constants c,C,n0 > 0 such that
E[deg(v) |W(n)

i =w] ∈ [cw,Cw] holds in GIRGW,L(n) for all n≥ n0, v ∈ [n] and w ≥ 1. The same would not hold for
α ≤ 1, where the expected degrees grow with n.

Observe that conditions (3.14) and (3.15) are very similar to Assumption 3.3. There are two main differences. One is
the factor

∑n
i=1 wi in the denominator. In the finite GIRG model, the weights are i.i.d. random variables W

(n)
i . Writing

S :=∑n
i=1 W

(n)
i , whenever E[W(n)]<∞ (including the power-law case with exponent τ > 2, considered in [19]), there

are constants c,C > 0 such that whp S ∈ (cn,Cn). Hence it is natural to replace the sum in (3.14) and (3.15) by n and
compensate by changing the constant prefactors. As we will see later, this factor of n simply reflects the different scaling
of the models: the infinite model uses a Poisson point process of intensity one, while the finite model places n points
in a cube of volume one. Thus the factor of

∑n
i=1 wi does not constitute a major difference from Assumption 3.3 if

E[W(n)]<∞.
The second difference is that the lower bound in Assumption 3.3 is milder: Assumption 3.3 allows for a correction

term exp(−c2(logwu)
γ ) exp(−c2(logwv)

γ ). The weaker Assumption 3.9, stated below, incorporates this correction term.
It does not change any of the qualitative behaviour of the model, but it will be important in proving our results, as we
can discard edges from a GIRG satisfying Assumption 3.9 independently at random and still recover a GIRG satisfying
Assumption 3.9. This will allow us to use weight-dependent percolation, passing to a GIRG containing only low-cost
edges in order to connect two high-weight vertices with a low-cost path. Let l(w) := lc2,γ (w) from (3.4).

Assumption 3.9. Consider GIRGW,L(n) in Definition 3.8. We assume there exist parameters α ∈ (1,∞] and γ ∈ (0,1),
and constants 0 < c ≤ c <∞ and c2 > 0, such that for all n ∈ Z+, all u,v ∈ [n], all sequences (xi)i∈[n] in Rd , and all
sequences (wi)i∈[n] in [1,∞), the function g

u,v
n in (3.13) satisfies the following. If 1 < α <∞, we require

c ·
(

l(wu)l(wv)∧
(

wuwv

n‖xu − xv‖d
)α)

≤ gu,v
n

(
xu, xv, (wi)i∈[n]

)≤ c ·
(

1∧
(

wuwv

n‖xu − xv‖d
)α)

. (3.16)

If α =∞ then we require that for some constants c1, c1 ∈ (0,∞),

c · (l(wu)l(wv)∧ 1{c1wuwv≥n‖xu−xv‖d }
)≤ gu,v

n

(
xu, xv, (wi)i∈[n]

)≤ c · 1{c1wuwv≥{n‖xu−xv‖d }. (3.17)
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Note that we allow the weight distribution W(n) to depend on n in Definition 3.8. This is not generality for its own
sake – it will later allow us to extend the results to hyperbolic random graphs. In this paper, we make the following
assumption on (W(n))n≥0; it is milder than assuming, for instance, i.i.d. power-law weights, and it is satisfied by HRG
[45].

Assumption 3.10. There exists τ > 1 such that the following holds. Write 
(n)(x) := P(W(n) ≥ x)/x−(τ−1). Then there
exists a sequence (Mn : n≥ 1) of positive reals such that P(W(n) > Mn)= o(1/n) as n→∞, and functions 
, 
 : R+ →
R+ varying slowly at infinity, such that 
(x)≤ 
(n)(x)≤ 
(x) for all n and all x ∈ [1,Mn].

In words, we assume that W(n) does not vary too severely from a power-law with an exponent τ > 1 that does not
depend on n. (These variations are captured by the functions 
(n).) Note that this assumption trivially holds if W(n) ≡W

does not depend on n and W follows a power law.
In order to formulate the main results properly, we must first be sure that a linear-sized giant component exists with

high probability in the models we study under Assumptions 3.9 and 3.10, assuming 2 < τ < 3. An analogous result is
already known for HRG [11,29] (see Definition 3.14), which satisfies the stronger assumption (3.14) on its connection
probabilities, and for SFP the question does not arise as the model has only a single component. For GIRG, the result was
proved in [19] under (3.14), (3.15), and Assumption 3.10; recall that (3.14), (3.15) are stronger than Assumption 3.9.

Theorem 3.11. Consider GIRGW(n) as in Definition 3.8, with edge-connectivity functions g
u,v
n satisfying Assumption 3.9

and weight distribution satisfying Assumption 3.10 with 2 < τ < 3. Then whp there exists a unique linear-sized giant
component Cmax in GIRGW(n).

We prove Theorem 3.11 in Section 7. The proof is interesting in its own right, since it is novel and reveals the hierarchi-
cal structure of the graph. We sketch the core idea here: we call an arbitrary vertex u successful if it is connected by a path
to a ‘reasonably’ high-weight vertex ũ that is nearby (within a box that we specify). We show that a vertex is successful
with strictly positive probability. We then show that starting from ũ, whp we can construct a path of vertices of increasing
weight leading up to the highest-weight vertices in the graph. The graph induced by these highest-weight vertices is dom-
inated below by an Erdős–Rényi random graph, as the minima in (3.16) and (3.17) remove all position-dependent terms
from their respective lower bounds. It follows that all successful vertices lie in the same component.

We then use a boxing structure: we call a box successful if it contains linearly many successful vertices, and spatial
independence ensures that the number of boxes that are successful is linear, hence establishing the presence of the giant.

A similar hierarchy was described in a top-to-bottom fashion for scale-free percolation in [36]. However, in scale free
percolation, the connection probability gets arbitrarily close to one when wuwv/‖u− v‖ � 1, and hence almost every
hub is adjacent to every other hub that satisfies wuwv/‖u− v‖� 1.

This fact is crucial for [36], and it fails when the weaker lower bound in (3.16) is applied. Indeed, when two pre-
selected hubs are no longer adjacent whp, a top-to-bottom hierarchy is hard to describe as we can say very little about an
individual hub; this motivates the bottom-to-top approach used in the proof of Theorem 3.11.

With Theorem 3.11 in place, we arrive at the first result on finite-sized models:

Theorem 3.12 (Cost-distances in GIRG). Consider GIRGW,L(n), satisfying Assumptions 3.9 and 3.10 for some τ ∈
(2,3), and let f be a polynomial as in (3.10). Let v1

n, v2
n be two typical vertices in the giant component Cmax. Let β+ and

β− be defined as in Theorem 3.6.

(1) Suppose the edge weight distribution FL satisfies β+ < (3− τ)/deg(f ). Then (df,L(v1
n, v

2
n))n≥1 is a tight sequence

of random variables.
(2) Suppose the edge weight distribution FL satisfies β− > (3− τ)/deg(f ). Then(

df,L

(
v1
n, v

2
n

))
n≥1

P−→∞. (3.18)

The meaning of Part 1 of Theorem 3.12 is that when FL(t) is sufficiently steep close to 0, the typical cost-distance
does not grow with the network size. This implies the following: For every ε > 0 and p < 1 one can find a constant Kε,p ,
depending on ε and p but not on n, such that for sufficiently large n, with probability at least p all but an ε-proportion
of vertices within the giant component Cmax are within cost-distance Kε,p from the (uniformly chosen) source vertex.
This is the analogue of explosion in finite models. Part 2 tells us that when FL(t) is flatter at the origin, then the typical
cost-distance does grow with the network size; this is the analogue of the conservative case. We remark that for power-law
exponents τ ≥ 3, a giant (linear size) component need not exist when the edge-density is low, so we cannot hope for an
analogue of Theorem 3.12 for τ ≥ 3.
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With some extra assumptions, we obtain a finer result in the explosive case: distributional convergence of the typical
cost-distance. Since the model is not projective (i.e., the GIRG model with n + 1 vertices is not an extension of the
model with n vertices), this is best possible — one cannot hope for e.g. almost sure convergence. Even for distributional
convergence, one needs quite a few extra assumptions: we need that the edge-connection probabilities g

u,v
n converge

uniformly in u, v to some limiting function h satisfying Assumption 3.3 when the Euclidean distance between the two
vertices xu, xv under consideration is of order n1/d . Moreover, the distributions of the sequence of vertex-weights W(n)

must converge to a limiting distribution. The exact assumptions are rather technical since we want them to be general
enough to include hyperbolic random graphs. Since the transfer from infinite models to finite models closely follows the
proof in [45], we omit the full details of the assumptions on the convergence of W(n) and g

u,v
n and refer the reader to [45,

Assumptions 2.4 and 2.5]. We provide the proof for the following theorem in Section 8.

Theorem 3.13 (Cost-distances in GIRG, explosive case). Let n ∈ Z+, let f be a polynomial as in (3.10), and consider
GIRGW,L(n), satisfying [45, Assumptions 2.4 and 2.5] with some τ ∈ (2,3). Let v1

n, v2
n be two typical vertices in the giant

component Cmax. Suppose the edge weight distribution FL satisfies β+ < (3 − τ)/deg(f ), where β+ is defined as in
Theorem 3.6.

Let IGIRGW,L(1) be the corresponding infinite model, with connection probability function and weight distribution
given by the limiting probability function and limiting weight distribution of GIRGW,L(n), respectively. Let Y (1) and Y (2)

be two i.i.d. copies of the explosion time Y I
f (0) of IGIRGW,L(1) (see Definition 3.5), conditioned on Y I

f (0) <∞. Then

df,L

(
v1
n, v

2
n

) d−→ Y (1) + Y (2). (3.19)

Hyperbolic random graphs

As mentioned before, the GIRGW,L(n) model contains Hyperbolic Random Graphs (HRGs) as a special case. We first
summarise some related literature. The model originates from a hidden variable model, introduced by Boguná and Pastor-
Satorras in [13]. Inhomogeneous random graphs were studied slightly afterwards by Bollobás, Janson and Riordan in [16].
Space was then introduced with latent variables by Boguná in [14], and the pre-hyperbolic latent space paper by Serrano,
Krioukov and Boguná in [58]. The embedding into hyperbolic space first appeared in [12,46]. This is when the model
became popular, and gave rise to a sequence of papers, studying e.g.: degrees and clustering in [34], the size of the giant
component in [11,29], the clustering coefficient and bootstrap percolation in [21,22], competing First Passage Percolation
in [23], typical distances in the scale-free regime in [1], and the spectral gap in [43].

We now give the model’s formal definition. Let us denote by (φv, rv) the (hyperbolic) angle and radius of a vertex v

within a disk of radius R. Then the hyperbolic distance d
(n)
H (u, v) between two points (φu, ru), (φv, rv) is defined by the

equation

cosh
(
d

(n)
H (u, v)

) := cosh(ru) cosh(rv)− sinh(ru) sinh(rv) cos(φu − φv). (3.20)

Definition 3.14 (Hyperbolic Random Graphs). For parameters CH ,αH ,TH > 0, let us set Rn = 2 logn + CH , and
sample n vertices independently from a circle of radius Rn so that for each v ∈ [n], φv is uniform in [0,2π ], and rv ∈
[0,Rn] follows a density fn(r) := αH sinh(αH r)/(cosh(αH Rn)−1), independently of φv . In threshold hyperbolic random
graphs, two vertices u and v are connected whenever d

(n)
H (u, v) ≤ Rn, while in a parametrised version [46, Section VI]

they are connected independently of everything else, with probability

p
(n)
H

(
d

(n)
H (u, v)

) := (
1+ exp

{(
d

(n)
H (u, v)−Rn

)
/2TH

})−1
. (3.21)

We denote the resulting random graphs by HGαH ,CH ,TH
(n) when (3.21) applies and HGαH ,CH

(n) when the threshold
d

(n)
H (u, v)≤Rn is applied.

The connection to GIRGs is derived as follows: set d := 1, X1 := [−1/2,1/2]. For each vertex v = (φv, rv), let

xv := (φv − π)/(2π), W(n)
v := exp

{
(Rn − rv)/2

}
. (3.22)

In [45, Sections 8, 9] the authors show that with this transformation, Hyperbolic Random Graphs become GIRGs satis-
fying [45, Assumptions 2.4 and 2.5] with the following limiting parameters. The limiting weight distribution W ≥ 1 is
described by its tail,

P(W ≥ x)= x−2αH ; (3.23)
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that is, τ = 2αH + 1. In the parametrised case (3.21), the limiting connection probability function h is given by

hH(�,wu,wv)=
(
1+ (

eCH /2|�|π/(wuwv)
)1/TH

)−1
, (3.24)

implying that in this case α = 1/TH . In the threshold case, h is given by

hT(�,wu,wv)= 1
{|�| ≤ e−CH /2wuwv/π

}
, (3.25)

which corresponds to α =∞. Theorems 3.12 and 3.13 therefore carry over to HRGs.

Corollary 3.15. Consider HGαH ,CH ,TH
(n) or HGαH ,CH

(n) with αH ∈ (1/2,1), and equip every existing edge with Le,
an i.i.d. copy of a random variable L≥ 0. Let the penalty function f be a polynomial as in (3.10), i.e., the cost of edge
e= (u, v) is

Lef
(
W(n)

u ,W(n)
v

)= Lef
(
exp

[
(Rn − ru)/2

]
, exp

[
(Rn − rv)/2

])
.

Then, Theorems 3.12 and 3.13 stay valid with τ := 2αH + 1.
More precisely, for every n ≥ 1, let v1

n, v2
n be typical vertices in the giant component of HGαH ,CH ,TH

(n) or that of
HGαH ,CH

(n). Then their cost distances satisfy df,L(v1
n, v

2
n)→∞ almost surely if β− > (2− 2αH )/deg(f ). On the other

hand, if β+ < (2− 2αH )/deg(f ), then (df,L(v1
n, v

2
n))n≥1 converges in distribution to the sum of two i.i.d. copies of the

explosion time of the origin in a one-dimensional IGIRGW,L(1) with weights from distribution (3.23) and hI = hH from
(3.24) for HGαH ,CH ,TH

(n), or hI = hT in (3.25) for HGαH ,CH
(n), respectively.

4. Explosive greedy paths

In this section we prove Theorems 3.6(ii) and 3.7(ii). We will show that explosion occurs by constructing an infinite path
with finite total cost. As mentioned below Definition 3.5, the existence of such a path implies that σ I

f (v, k) stays bounded,

implying that Y I
f (v) is finite.

We consider expanding boxes (i.e. balls in the L∞ metric) around the origin, such that the kth box has doubly-
exponential volume eMDCk

for some suitably chosen C,D > 1 and arbitrary M > 0. We then partition the kth annulus
into roughly eM(D−1)Ck

disjoint sub-boxes, each of volume eMCk
. In each sub-box we find the vertex of maximum weight,

which we call the leader of the sub-box. We construct a path to infinity greedily as follows: suppose we have exposed the
kth annulus and reached some leader vertex vk therein. Then expose the contents of the (k+ 1)st annulus, and choose the
edge vkvk+1 from vk to a leader vertex of some sub-box of the (k+ 1)st annulus such that the assigned Le is minimal. To
prove explosion, it suffices to show that this path has finite cost almost surely. Figure 3 shows an illustration.

We start by describing the sequence of expanding boxes. For constants C,D > 1, to be defined shortly, and an arbitrary
parameter M , let us define a boxing system centered at u ∈Rd , by defining for k ≥ 0,

Boxk(u) := {
x ∈Rd : ‖x − u‖∞ ≤ eMDCk/d/2

}
,

�k(u) := Boxk(u)\Boxk−1(u) for k ≥ 1, �0(u) := Box0(u),
(4.1)

We ‘pack’ each annulus �k(u) with as many disjoint sub-boxes

SBk,i (u)= {
x ∈Rd : ‖x − zi‖∞ ≤ eMCk/d/2

}
of volume eMCk

as possible; here the zi ’s are appropriately-chosen points in Boxk(u). The exact choice of zi ’s will not
matter to us, but note that in general the side length of a sub-box will not divide the side length of an annulus so there will
be some volume left over. Let bk denote the number of sub-boxes in �k(u), and order the sub-boxes arbitrarily from 1 to
bk within each annulus. The ratio of the volumes of Boxk(u) and SBk,i (u) is eM(D−1)Ck

. Hence, for sufficiently large M ,

eM(D−1)Ck

/2≤ bk ≤ eM(D−1)Ck

for IGIRGW,L(λ), (4.2)

Within each sub-box SBk,i(u) which contains at least one vertex, we define the leader vertex ck,i to be the vertex with the
highest weight, i.e., ck,i := arg maxv∈SBk,i (u){Wv}. We say that SBk,i (u) is δ-good if it has a leader vertex and this leader
vertex has weight

Wck,i
∈ (e(1−δ)MCk/(τ−1), e(1+δ)MCk/(τ−1)

]
. (4.3)



1982 J. Komjáthy, J. Lapinskas and J. Lengler

Fig. 3. A depiction of the greedy path construction. The space is covered with growing annuli, and each annulus is packed with bk
sub-boxes (dotted boundaries), which cover a large portion of its volume, see (4.2) and (4.6). The highest-weight vertex in a sub-box
is called its leader, and a leader is δ-good if it has the right weight, see (4.3). Bad sub-boxes are shown in red. In Lemma 4.3 we show
that whp at least half of the sub-boxes have δ-good leaders, and every δ-good leader is adjacent to a large number of δ-good leaders in
the next annulus. The number grows doubly exponentially in k, and is so large that the cheapest such edge whp has decreasing cost in
k, and the total cost of a greedily chosen infinite box-increasing path is finite, see Lemma 4.6.

We will also say that the leader vertex itself is δ-good. We will see in Lemma 4.3 that for suitable choices of C, D and
δ, with high probability there are many δ-good sub-boxes in each �k(u). Moreover, again with high probability, each
δ-good leader vertex ck,i in �k(u) is connected to many δ-good leader vertices in �k+1(u). Since edge weights are chosen
independently, it will follow that with high probability there is a low-cost edge from ck,i to a δ-good leader in �k+1(u),
and we will use this to greedily construct an infinite path with finite cost-distance. The key to the proof of Lemma 4.3
is that the weights w1 and w2 of two δ-good leader vertices are so high relative to their Euclidean distance (which is
bounded above by the diameter of Boxk+1(u)) that their connection probability is bounded below by lc2,γ (w1)lc2,γ (w2),
by Assumption 3.3. A similar boxing scheme was used in [45], and we have adapted Lemma 4.3 from Lemma 6.3 of that
paper.

Even though it will only become relevant later, in Section 7, we note here that the same boxing method remains valid
when we consider GIRGW,L(n) instead of IGIRGW,L(λ). To keep the box sizes the same in the two models, we blow up
the original GIRGW,L(n) model as follows.

Definition 4.1 (Blown-up-GIRG). Consider a realisation of a GIRGW,L(n) from Definition 3.8, with vertices (xv)v∈[n].
Map each vertex-location to x̃v := n1/dxv . We denote the resulting model by BGIRGW,L(n). Let VB(n) := [n],
and the edge set by EB(n) := {(v,w) ∈ [n]2 : v ↔ w ∈ GIRGW,L(n), and its underlying state space by Xd(n) :=
[−n1/d/2, n1/d/2]d .

Note that BGIRGW,L(n) is the same graph as GIRGW,L(n). The two models differ only in the location of points,
observe that by blowing the model up, the density of points in BGIRGW,L(n) is constant (namely 1), while the density
of points in GIRGW,L(n) is n. The additional notation VB(n)= [n] seems superfluous, but it allows us to use the slightly
abusive notation VB(n) ∩ A := {v ∈ [n] | x̃v ∈ A} for A ⊆ Rd without ambiguity. We can actually realise the edges of
GIRGW,L(n), BGIRGW,L(n) by working with the new locations. This is convenient since by Assumption 3.9, using the
blown-up locations instead of the original ones, two vertices with blown-up locations x̃u, x̃v are connected with probability
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at least

gu,v
n

(̃
xu, x̃v, (wi)i≤n

)≥ {
c · (l(wu)l(wv)∧ ( wuwv

‖x̃u−x̃v‖d )α) if α <∞,

c · (l(wu)l(wv)∧ 1{c1wuwv≥‖xu−xv‖d }) otherwise,
(4.4)

where we wrote l(w) := lc2,γ (w) from (3.4). Observe the factor of n disappears from the denominator, and the bound
becomes the same as the bound in Assumption 3.3 for IGIRGW,L(λ). Since GIRGW,L(n) and BGIRGW,L(n) are equiv-
alent, from now on we work with the blown-up model instead of the original GIRGW,L(n), and use (4.4) instead of the
lower bound in Assumption 3.3. We construct boxing systems for BGIRGW,L(n) in precisely the same way as for IGIRG,
except that we require all sub-boxes to fix within Xd(n). For this reason, we define

k� = k�(n,M) :=max
{
k ∈N|eMDCk/d ≤ n1/d

}
, (4.5)

to be the largest k such that Boxk(0) in (4.1) fits within Xd(n), and thus, for any u ∈ Xd(n), at least9 a 2−d fraction of
Boxk�(u) fits into Xd(n). Observe that

eM(D−1)Ck

/2d+1 ≤ bk ≤ eM(D−1)Ck

for BGIRGW,L(n), (4.6)

where the factor 2−d in the lower bound comes from the fact that not all sub-boxes might be part of Xd(n), but at least a
1/2−d proportion of them are, if their centers are suitably chosen.

We use the following standard Chernoff bound.

Lemma 4.2 ([38, Corollary 2.3]). Let X be a binomial r.v. with mean μ. Then for all 0 < ε ≤ 3/2,

P
(|X−μ| ≥ εμ

)≤ 2e−ε2μ/3.

The next lemma is crucial to show explosion and also relevant to showing the existence of the unique giant component
in the finite case. As mentioned above, it shows that every δ-good leader has many δ-good leader neighbors in the next
annulus. This guarantees the existence of infinite paths, and enables the greedy construction of low-cost paths. Recall that
we denote by ck,i the vertex with the highest weight in sub-box SBk,i(u), for i ≤ bk .

Lemma 4.3 (Weights and subgraph of centers). Consider IGIRGW,L(λ) with parameters d ≥ 1, τ ∈ (1,3), α ∈ (0,∞],
and λ > 0. Let C,D > 1 and 0 < δ < 1 satisfy

1− δ

τ − 1
(1+C)−DC > 0. (4.7)

For every ε > 0 there exists M0 > 0 such that the following holds for all M ≥M0. Let u ∈ Rd , and consider the boxing
system centered at u with parameters C, D and M as described in (4.1). Define Nj(ck,i) to be the number of δ-good
leader vertices in �j (u) that are adjacent to ck,i , and define the events

F
(1)
k := {∣∣{i ∈ [bk] : SBk,i is δ-good

}∣∣≥ bk/2
}
,

F
(2)
k := F

(2)
k (ε) := {∀i ∈ [bk] such that SBk,i is δ-good :Nk+1(ck,i)≥ e(1−ε)MCk+1(D−1)

}
.

(4.8)

Then

P

(
¬
⋂
k≥0

(
F

(1)
k ∩ F

(2)
k

))≤ 3 exp
(−λeM((D−1)∧1)(1−ε)2−d/75

)=: pM. (4.9)

The same result holds for SFPW,L, taking λ= 1. It also holds for BGIRGW,L(n) when Assumptions 3.9 and 3.10 are
satisfied and λ= 1, replacing the intersection

⋂
k≥0 on the lhs of (4.9) by

⋂
k≤k�(M,n) and requiring that n is sufficiently

large and u ∈ Xd(n). (Here we take bk to be the number of sub-boxes contained in �k(u) ∩Xd(n) rather than in �k(u),
as discussed above.)

9In case u is in the corner of a sub-box.
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We remark that we will not use the assumption τ < 3 explicitly in the proof of Lemma 4.3. However, if τ ≥ 3 then
there is no choice of C,D > 1 and 0 < δ < 1 satisfying (4.7). For τ < 3 there is always such a choice, as we shall see in
Claim 4.4 below.

Proof. We first prove the result for BGIRGW,L(n), then discuss how to adjust the proof for SFPW,L and IGIRGW,L(λ).
For this reason, we will keep λ explicit in the calculation, even though for BGIRGW,L(n) we always have λ = 1. We
first bound the probability that a given sub-box is δ-good from below. Recall that n vertices are uniformly distributed
in Xd(n) (which has volume n), that SBk,i has volume eMCk

, and that vertex weights follow an approximate power
law as set out in Assumption 3.10. We condition throughout on the event that every vertex has weight at most Mn; by
Assumption 3.10, this event occurs whp and implies that the weight of every vertex independently follows a distribution
P(W ≥ x)= 
(n)(x)x−(τ−1), where 
(x) ≤ 
(n)(x) ≤ 
(x) for some functions 
 and 
 which vary slowly at infinity. We
require n to be large enough that Box1(0)⊆ [−n1/d/2, n1/d/2]d .

First we exclude the event that some sub-box has too many or too few vertices, then we study the maximal weight of
vertices in each sub-box. The number of vertices Vk,i in each sub-box is binomial with parameters n and Vol(SBk,i)/n,

so it has mean λeMCk/2. Hence, by the Chernoff bound of Lemma 4.2,

P
(¬E1

k

) := P
(∃i ≤ bk : Vk,i /∈ [λeMCk

/2,2λeMCk ])
≤ 2bk exp

(−λeMCk

/12
)

≤ exp
(−λeMCk

/24
)

(4.10)

for all sufficiently large M , since the second factor is doubly exponentially small in MCk while 2bk is only exponential
in MCk by (4.6). For any tuple (nk,i)

bk

i=1 such that λeMCk
/2 ≤ nk,i ≤ 2λeMCk

, let Enk,1,...,nk,bk
⊂ E1

k be the event that

{∀i ≤ bk : Vk,i = nk,i}. Then, for any Enk,1,...,nk,bk
⊆ E1

k , we have

P
(

max
v∈SBk,i∩VB(n)

W(n)
v ≤ y | Enk,1,...,nk,bk

)
= (

1− P
(
W(n) > y

))nk,i

≤ (
1− 
(y)y−(τ−1)

)λeMCk
/2

≤ exp
(−
(y)y−(τ−1) · λeMCk

/2
)
. (4.11)

Recall that since 
 varies slowly at infinity, Potter’s bound implies that for all η > 0, we have 
(y)= o(yη) and 
(y)=
ω(y−η) as y →∞. Thus when M is sufficiently large, taking y in (4.11) to be the lower bound in the definition of
δ-goodness in (4.3), we obtain

P
(

max
v∈SBk,i∩VB(n)

W(n)
v ≤ e

1−δ
τ−1 MCk ∣∣ Enk,1,...,nk,bk

)
≤ exp

(−

(
e

1−δ
τ−1 MCk )

e−(1−δ)MCk+MCk

λ/4
)

≤ exp
(−λeδMCk/2), (4.12)

where we have applied Potter’s bound to obtain the last line, and absorbed the factor of 4 in the same step. We now bound
the maximum weight above. By a union bound, for all y > 0,

P
(

max
v∈SBk,i∩VB(n)

W(n)
v > y

∣∣ Enk,1,...,nk,bk

)
≤

∑
v∈SBk,i∩VB(n)

P
(
W(n)

v > y | Enk,1,...,nk,bk

)
≤ 
(y)y−(τ−1)2λeMCk

.

Since 
 varies slowly at infinity, when M is sufficiently large, taking y to be the upper bound in the definition of δ-
goodness and applying Potter’s bound yields

P
(

max
v∈SBk,i∩VB(n)

W(n)
v > e

1+δ
τ−1 MCk ∣∣ Enk,1,...,nk,bk

)
≤ 


(
e

1+δ
τ−1 MCk )

e−(1+δ)MCk

2λeMCk

≤ 2λe−δMCk/2. (4.13)
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Combining (4.12) with the much weaker bound (4.13), when M is sufficiently large we see that in BGIRGW,L(n) (where
λ= 1),

P(SBk,i is not δ-good | Enk,1,...,nk,bk
)≤ 3λe−δMCk/2 (4.14)

holds uniformly over all Enk,1,...,nk,bk
⊆ E1

k . Note that for all k and i, the event of SBk,i being δ-good depends only on
the number of vertices and their (i.i.d.) weights in SBk,i ∩ VB(n), So, conditioned on any of the events Enk,1,...,nk,bk

, these

events are mutually independent. Thus (4.14) implies that, conditioned on any Enk,1,...,nk,bk
⊆ E1

k , the number of δ-good

sub-boxes in �k(u) is dominated below by a binomial random variable with parameters bk and 1− 3λe−δMCk/2 ≥ 3/4. It
follows by a standard Chernoff bound (namely Lemma 4.2 with ε = 1/3), (4.10), and (4.6) that

P
(¬F

(1)
k

)≤ P
(¬E1

k

)+ ∑
Enk,1,...,nk,bk

⊆E1
k

P
(¬F

(1)
k | Enk,1,...,nk,bk

)
P(Enk,1,...,nk,bk

)

≤ exp
(−λeMCk

/24
)+ 2e−bk/36 ≤ 2 exp

(−λeMCk((D−1)∧1)2−d/72
)
. (4.15)

Hence by a union bound over k, when M is sufficiently large we have

P

(⋂
k≥0

F
(1)
k

)
≥ 1− 2

∑
k≥0

exp
(−λeMCk((D−1)∧1)2−d/72

)
≥ 1− 2 exp

(−λeM((D−1)∧1)2−d/75
)
. (4.16)

since the sum is dominated by its first term and decays faster then a geometric sum.
We now turn to the events F

(2)
k . We condition on

⋂
k≥0 F

(1)
k , and expose VB(n). We will first study the connection

probability between any δ-good leader vertex ck,i in �k(u) to any given δ-good leader vertex in �k+1(u). (This is where
we will use (4.7).) We will then dominate the number of such vertices it is adjacent to, Nk+1(ck,i), below by a binomial
variable and use a Chernoff bound to show that Nk+1(ck,i) is likely to be large. We will then use a union bound to show
that

⋂
k≥0 F

(2)
k is likely to occur, proving the result.

Let ck,i be a δ-good leader vertex in �k(u), and let ck+1,j be a δ-good leader vertex in �k+1(u). Write w1 and w2
for the weights of ck,i and ck+1,j respectively, and write ‖x1 − x2‖ for the Euclidean distance between them. Recall
l(w) := lc2,γ (w) from (3.4). By Assumption 3.9, (4.4) holds, so the probability that ck,i and ck+1,j are adjacent is at least{

c(l(w1)l(w2)∧ (w1w2/‖x1 − x2‖d)α) if α <∞,

c(l(w1)l(w2)∧ 1{c1w1w2≥‖x1−x2‖d }) otherwise.
(4.17)

Since ck,i and ck+1,j both lie in Boxk+1(u), we have ‖x1− x2‖ ≤ deMDCk+1/d . Since both vertices are δ-good, it follows
that

w1w2

‖x1 − x2‖d ≥
1

dd
exp

(
1− δ

τ − 1
MCk + 1− δ

τ − 1
MCk+1 −MDCk+1

)
= 1

dd
exp

(
MCk

(
1− δ

τ − 1
(1+C)−DC

))
.

By (4.7), the exponent of the rhs is positive, so when M is sufficiently large we have w1w2 ≥ ‖x1 − x2‖d and c1w1w2 ≥
‖x1 − x2‖d . Thus by (4.17), whatever the value of α, whenever Wn := (xv,W

(n)
v )v∈VB(n) is such that ck,i and ck+1,j are

δ-good, we have

P(ck,i ↔ ck+1,j |Wn)≥ cl(w1)l(w2). (4.18)

Recall that l(w)= e−c2 logγ w . Thus since ck,i and ck+1,j are δ-good and C > 1, using the upper bound on their weights
in (4.3),

l(w1)l(w2)≥ exp

(
−c2

(
1+ δ

τ − 1
MCk

)γ

− c2

(
1+ δ

τ − 1
MCk+1

)γ)
≥ exp

(
−2c2

(
1+ δ

τ − 1
MCk+1

)γ)
.
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Since γ ∈ (0,1), when M0 is sufficiently large we can upper bound the absolute value of the exponent by εM(D −
1)Ck+1/4, where we include the factor ε(D− 1)/4 to prepare for the upcoming calculations. Thus it follows from (4.18)
that whenever Wn := (xv,W

(n)
v )v∈VB(n) is such that ck,i and ck+1,j are δ-good,

P(ck,i ↔ ck+1,j |Wn)≥ c exp
(−εM(D − 1)Ck+1/4

)
. (4.19)

Now, conditioned on Wn as above, edges between δ-good leaders are present independently. In the following, we fix a
Wn that implies

⋂

 F

(1)

 . Then there are at least bk+1/2≥ exp(M(D − 1)Ck+1)/2d+2 good leaders in �k+1(u) by (4.6).

Thus by (4.19), Nk+1(ck,i) is dominated below by a binomial random variable with mean c/2d+2 · exp((1− ε/4)M(D−
1)Ck+1). By a standard Chernoff bound (Lemma 4.2 with the ε of that Lemma chosen as 1/2), it follows that if ck,i is
δ-good,

P

(
Nk+1(ck,i)≤ c

2d+3
e(1−ε/4)M(D−1)Ck+1

∣∣∣Wn

)
≤ 2 exp

(
− c

3 · 2d+4
e(1−ε/4)M(D−1)Ck+1

)
.

If M is sufficiently large then the above bound on Nk+1(ck,i) is stronger than the bound required by F
(2)
k . Hence, by a

union bound over all δ-good i ∈ [bk], it follows that when M is sufficiently large,

P
(¬F

(2)
k |Wn

)≤ 2bk exp

(
− c

3 · 2d+4
e(1−ε/4)M(D−1)Ck+1

)
≤ exp

(−λe(1−ε/2)M(D−1)Ck+1)
,

where we have used the upper bound on bk from (4.6). By a union bound over all k ≥ 0, it follows that when M is
sufficiently large,

P

(
¬
⋂
k≥0

F
(2)
k

∣∣∣ dWn

)
≤

∞∑
k=0

exp
(−λe(1−ε/2)M(D−1)Ck+1)≤ exp

(−λe(1−ε)M(D−1)
)
. (4.20)

Recall that this is the case for any Y for which
⋂

k≥0 F
(1)
k holds. The result therefore follows from (4.16), (4.20) and a

union bound, when M is sufficiently large. Note that we may assume ε < 1/4, so the bound we obtain can be simplified
to, with a different ε,

P

(
¬
⋂
k≥0

(
F

(1)
k ∩ F

(2)
k

))≤ 3 exp
(−λeM(1−ε)((D−1)∧1)2−d/75

)
,

obtaining (4.9).
It remains only to discuss the necessary changes to the proof for SFPW,L and IGIRGW,L(λ). For SFPW,L, the only

difference is that the number nk,i of vertices in any given sub-box SBk,i is now deterministic, with eMCk
/2≤ nk,i ≤ eMCk

as long as M is sufficiently large. Thus there is no need for the event E1
k and (4.11) and (4.12), (4.13) hold without

conditioning.
For IGIRGW,L(λ), the derivation of (4.10) now follows from the version of Lemma 4.2 which applies to Poisson

variables rather than binomial variables [38, Remark 2.6] (the statement is otherwise identical). The number of vertices in
the sub-boxes SBk,i are also now independent of each other, so some of the conditioning becomes unnecessary. We also
use Assumption 3.3 in place of Assumptions 3.9 (with (4.4)) and 3.10; Assumption 3.3 is always equivalent or stronger,
so this does not cause issues. Finally, all our calculations up to and including the final bound in (4.14) remain valid when
λ �= 1. �

In the next lemma we specify the choice of parameters C,D > 1 and δ in the boxing scheme in (4.1), so that they
satisfy (4.7), and another set of inequalities that will ensure that a constructed greedy path has finite total cost. The
introduction of the extra parameter s will be relevant in the proof of Theorem 3.13.

Claim 4.4. Let τ ∈ (1,3), let μ,ν,β+ ≥ 0, and suppose (μ+ν)β+ < 3−τ . For all sufficiently small δ > 0, the following
interval is non-empty:

Iδ :=
(

1+ (μ+ ν)β+

τ − 1
· 1+ δ

(1− δ)2
,

2

τ − 1
· (1− δ)

1+ δ

)
. (4.21)
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We fix δ > 0 with Iδ �=∅, and choose parameters

C := 1+ δ, D ∈ Iδ. (4.22)

Then D,C > 1 and the following inequalities all hold for all s ∈ [0,1]:
1− δ

τ − 1
2−CsD > 0 (4.23)

(
μ+ νCs

) 1+ δ

τ − 1
− (D − 1)Cs(1− δ)2

β+
< 0. (4.24)

Before we come to the proof, observe that (4.23) for s = 1 is a strictly stronger condition than (4.7), since C > 1.
Hence the parameters from Claim 4.4 automatically satisfy the conditions of Lemma 4.3.

Proof. First we fix δ > 0 small, set C := 1+ δ, and show that the set of solutions for D > 1 that satisfy (4.23) and (4.24)
for all s ∈ [0,1] is precisely Iδ . Elementary calculation yields that when D > 1, (4.23) is satisfied if and only if

D ∈
(

1,
1− δ

τ − 1

2

Cs

)
. (4.25)

Moreover, (4.24) is satisfied if and only if

D > 1+ β+ (μ+ νCs)

Cs

1+ δ

(τ − 1)(1− δ)2
. (4.26)

The upper end of the interval on the rhs of (4.25) is minimised when s = 1, giving the upper end of Iδ , while the rhs of
(4.26) is maximised when s = 0, giving the lower end of Iδ . Thus for all s ∈ [0,1] and all D ∈ Iδ , (4.23) and (4.24) are
satisfied.

We have yet to show that Iδ is non-empty for sufficiently small δ > 0. For this, observe that the lower end of Iδ is
monotone decreasing as δ ↓ 0, while its upper end is monotone increasing, and

I0 = lim
δ↓0

Iδ =
(

1+ (μ+ ν)β+

τ − 1
,

2

τ − 1

)
,

which is non-empty by the assumptions that (μ+ ν)β+ < 3− τ and τ ∈ (1,3). Hence, for sufficiently small δ > 0, Iδ

will be non-empty. �

Before the proof of Theorem 3.6(ii), conditioned on the event
⋂

k≥0(F
(1)
k ∩ F

(2)
k ), we define a greedy path emanating

from some δ-good leader, and analyse its cost.

Definition 4.5 (Greedy path between δ-good leaders). Consider a boxing system centered around u ∈ Rd . Condition
on

⋂
k≥0(F

(1)
k ∩ F

(2)
k ), and let c0 be any δ-good leader in �0(u). We greedily extend this vertex into an infinite path

πgreedy = c0, c1, . . . as follows. Suppose we are given c0, . . . , ck for some k ≥ 0, and that ck is a δ-good leader. Since
F

(2)
k occurs, there is at least one δ-good leader in �k+1(u) adjacent to ck . We then choose ck+1 to be (one of) the δ-good

leaders that minimises L(ck,ck+1).

The next lemma analyses the cost of the greedy path.

Claim 4.6. Let C, D, δ, ε and M0 be as in Lemma 4.3, and let (ζ0, ζ1, . . . ) be any infinite sequence with positive entries.
Then for every M ≥M0, with the boxing system from (4.1), the cost of the greedy path starting in a leader c0 of �0 wrt
the penalty function f (wu,wv)=w

μ
u wν

v is

∣∣πgreedy
∣∣
f,L
≤

∞∑
k=0

(
eMCk 1+δ

τ−1
)μ(eMCk+1 1+δ

τ−1
)ν

F
(−1)
L

(
ζke−(1−ε)MCk+1(D−1)

)
(4.27)

with probability at least 1−∑
k≥0 e−ζk conditioned on Vλ, {Wv : v ∈ Vλ}, ⋂k≥0(F

(1)
k ∩F

(2)
k ), and the (unweighted) edge

set of the graph.
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Proof. Recall that the cost of an edge (u, v) is C(u,v) = f (Wu,Wv)L(u,v) =W
μ
u Wν

v L(u,v). To estimate the cost of the
greedy path, we recall the upper bound on the weights of the δ-good leaders ck in (4.3), and the lower bound on the number
Nk+1(ck) of δ-good leader-neighbors they have from F

(2)
k (see (4.8)). The total cost of πgreedy is therefore bounded above

by

∣∣πgreedy
∣∣
μ,L

≤
∞∑

k=0

(
eMCk 1+δ

τ−1
)μ(eMCk+1 1+δ

τ−1
)ν min{Lk,1,Lk,2, . . . ,Lk,dk

}, (4.28)

where dj = �exp((1− ε)MCj+1(D−1)) and (Lk,i)i≤dk
are the lengths of the first dk edges from ck to δ-good leaders in

�k+1(0) (ordered arbitrarily). These are i.i.d. copies of the random variable L. For any N ∈N and ζ > 0, for i.i.d. copies
L1, . . . ,LN of L, we have

P
(

min
j≤N

Lj > F
(−1)
L (ζ/N)

)
= (

1− FL

(
F

(−1)
L (ζ/N)

))N ≤ (1− ζ/N)N ≤ e−ζ (4.29)

since FL(F−1
L (x)) ≥ x by the right-continuity of the cdf. Hence taking ζ := ζk and N := dk , with probability at least

1− e−ζk ,

min{Lk,1,Lk,2, . . . ,Lk,dk
} ≤ F

(−1)
L (ζk/dk)≤ F

(−1)
L

(
ζke−(1−ε)MCk+1(D−1)

)
. (4.30)

A union bound implies that these events all happen with probability at least 1 −∑
k≥0 e−ζk , so (4.27) follows from

(4.28). �

Proof of Theorem 3.6(ii). We only prove the result for IGIRGW,L(λ), since the same proof works for SFPW,L (but can be
simplified using nearest–neighbor edges for the start of the path). Condition on the origin lying in the vertex set Vλ. Then
with Lemma 4.3 at hand, we construct a greedy path with finite total cost from the origin. First we find a boxing system
for which the event

⋂
k≥0(F

(1)
k ∩F

(2)
k ) of Lemma 4.3 occurs. Since τ ∈ (1,3) and 2μβ+ < 3−τ by hypothesis, Claim 4.4

(applied with ν = μ) implies we can choose δ > 0 such that Iδ is non-empty. Then taking C := 1+δ and D ∈ Iδ , equation
(4.7) is satisfied (by (4.23)), thus satisfying the conditions of Lemma 4.3. We then apply Lemma 4.3, choosing ε := δ in
the lemma, and let M0 be as in the lemma statement. We then define Mi =M0 + i for all i > 0, and construct infinitely
many boxing systems around 0 with parameters C, D and Mi . Note that taking M =Mi in (4.9), the rhs is summable;
thus by Lemma 4.3 and the Borel-Cantelli lemma, there exists i0 such that for all i ≥ i0,

⋂
k≥0(F

(1)
k ∩ F

(2)
k ) occurs.

From now on we only consider a boxing system with parameters C, D and M ≥Mi0 which is sufficiently large for

(4.32) below to hold. Note that the event
⋂

k≥0(F
(1)
k ∩ F

(2)
k ) depends only on Vλ, {Wv : v ∈ Vλ}, and on the set of edges

between δ-good leaders. Exposing these variables, and letting c0 be an arbitrary δ-good leader in �0(0) (which exists
since F

(1)
0 occurs), we see that with positive probability p, either c0 = 0 or there is an edge from 0 to c0. Suppose

there is an edge from 0 to c0; the c0 = 0 case is essentially identical. Conditioned on this event, we use the greedy path
πgreedy constructed in Definition 4.5 with initial vertex c0, and set π0 := (0,πgreedy). The bound in Claim 4.6 holds with
probability 1−∑

k≥0 e−ζk , and we choose ζk := log(1/p)+ k + 1 so that
∑

k e−ζk < p. Thus by a union bound, with
positive probability, (4.30) holds.

Hence, the cost of the constructed path, with positive probability, is at most

∣∣π0
∣∣
μ,L

≤ C(0,c0) +
∞∑

k=0

(
eMCk 1+δ

τ−1
)μ(

eMCk+1 1+δ
τ−1

)μ
F

(−1)
L

(
ζke−(1−δ)MCk+1(D−1)

)
. (4.31)

The first term on the rhs is an a.s. finite random variable. Hence, to show explosion it suffices to prove that the last
sum is finite for our choice of C, D, M and δ. For this we use the definition of β+ in (3.9), which implies that for all
sufficiently small x > 0, logFL(x)/ logx ≤ β+/(1− δ), or equivalently that FL(x)≥ xβ+/(1−δ). This in turn implies that
F

(−1)
L (y)≤ y(1−δ)/β+ holds for all sufficiently small y > 0. Hence when M is sufficiently large,

∞∑
k=0

eμMCk 1+δ
τ−1 (1+C)F

(−1)
L

(
ζke−(1−δ)MCk+1(D−1)

)
≤

∞∑
k=0

ζ
(1−δ)/β+
k exp

(
μMCk 1+ δ

τ − 1
(1+C)− (1− δ)2

β+
MCk+1(D − 1)

)
. (4.32)
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This sum is finite if and only if the exponent is negative, i.e., if and only if

μ(1+C)
1+ δ

τ − 1
− (D − 1)C(1− δ)2

β+
< 0. (4.33)

Since D ∈ Iδ , this is true by (4.24) of Claim 4.4 (taking ν = μ and s = 1). Thus by (4.31), |π0|μ,L is finite with positive
probability as required. �

Next we discuss how the above method can be modified to work with more general penalty functions, proving Theo-
rem 3.7(ii).

Proof of Theorem 3.7(ii). The proof of Theorem 3.7(ii) is very similar to that of Theorem 3.6(ii), so we only describe
where it should be modified. We may assume that f is of the form f =w

μ
1 wν

2 , since for any given path π , a polynomial
penalty function with non-negative coefficients yields finite cost if and only if each of its monomials yields finite cost.
Since τ ∈ (1,3) and (μ+ ν)β+ < 3− τ by hypothesis, Claim 4.4 implies we can choose δ > 0 such that Iδ is non-empty.
We then take C := 1+ δ and D ∈ Iδ , and choose M , apply Lemma 4.3, and construct π0 in exactly the same way as in
the proof of Theorem 3.6(ii).

The almost sure bound in (4.31) on the total cost of π0 now becomes

∣∣π0
∣∣
f,L
≤ C(0,c0) +

∞∑
k=0

(
eMCk 1+δ

τ−1
)μ(eMCk+1 1+δ

τ−1
)ν

F
(−1)
L

(
ζke−(1−δ)MCk+1(D−1)

)
. (4.34)

Bounding the F
(−1)
L term above as in (4.32), we see that π0 has finite cost if

∞∑
k=0

ζ
(1+δ)/β+
k exp

(
(μ+ νC)MCk 1+ δ

τ − 1
− (1− δ)2

β+
MCk+1(D − 1)

)
<∞, (4.35)

which is the case if the exponent is negative. Since D ∈ Iδ , this holds by (4.24) of Claim 4.4 (taking s = 1) as in the proof
of Theorem 3.6(ii). �

4.1. Extensions of the boxing system

In the proof of Theorems 3.6(ii) and 3.7(ii), it was enough to say that any vertex u is connected to a δ-good leader
vertex c with positive probability. To show the existence of a giant component in Theorem 3.11, we will need an upper
bound on the failure probability (when u has suitably high constant weight). To generalise the result to the finite model
in Theorem 3.13, we will also need an upper bound on the cost of the path from u to c. In this section, we present some
additional definitions and lemmas for this purpose; all proofs are deferred to Appendix B.2. The reader might wish to
skip this section for now and return to it when Theorems 3.11 and 3.13 are proved in Sections 7 and 8.

Fix some M > 0 as in Lemma 4.3 above, and let Vn,M := {i ∈ [n] |Wi ≥ eM} be the set of vertices in [n] with weight at
least eM . Consider a vertex u ∈ Vn,M , and start a boxing system centered at its position xu ∈Rd with parameters δ, ε, C,
D as in Lemma 4.3 (given in (4.22)). Recall that in BGIRG, we require all sub-boxes to fit into Xd(n). Recall from (4.5)
that k� = k�(n,M) is the largest k such that at least a 2−d fraction of Boxk�(u) fits into Xd(n), and recall the resulting
bounds on the number of sub-boxes bk from (4.6). Recall the definitions of δ-good leaders and sub-boxes from before
(4.3), and recall the definitions of F

(1)
k , F

(2)
k and pM from Lemma 4.3.

We call a path u,v1, . . . , vs box-increasing if there exists 0≤ k0 ≤ k�− s such that vi is the leader of a δ-good sub-box
in the (k0 + i)th annulus �k0+i ∩Xd(n), for all 1≤ i ≤ s. Define the event Su that u is successful by

Su :=
{
There is a box-increasing path from u to a δ-good leader in �k�(u)

}∩ F
(1)
k� (u). (4.36)

Lemma 4.7. Consider a boxing system with parameters δ, C = C(δ), D = D(δ) satisfying (4.22) (and hence (4.7))
centered around the location xu of a vertex u with given weight eM ≤ wu ≤ exp(MCk� 1−δ

τ−1 ), with k� as in (4.5). Let
η(δ) := ((D − 1) ∧ 1)(τ − 1). Then there exists M0(δ) > 0 such that if M ≥ M0(δ) and n is sufficiently large, the
following holds in BGIRGW,L(n):

P(¬Su |Wu =wu)≤ 5 exp
(−(c ∧ 1)2−d−7wη(δ)

u

)
. (4.37)
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The next lemma is a version of Lemma 4.7 that also bounds the cost of the path from u, which will be useful for the
proof of Theorem 3.13, at the cost of a significantly increased failure probability. Importantly, the path from u will only
use vertices with weight strictly larger than wu; later, this will allow us to safely condition on the path’s existence. For a
choice of δ, C, D as in (4.22), set

ξ(δ) := −(μ+ νC)
1+ δ

τ − 1
+ (1− δ)2

β+
C(D − 1) > 0,

ρ(δ) := −τ − 1

1− δ

(
μ+Cν

τ − 1
− (1− δ)2(D − 1)

β+

)
> 0.

(4.38)

The positivity of ξ(δ), ρ(δ) follows from (4.24), recalling that C = 1+ δ.

Lemma 4.8. Consider the penalty function f (w1,w2) := w
μ
1 wν

2 with (μ+ ν)β+ < 3− τ . There is a constant K <∞,
such that for a vertex u with given weight wu ∈ [K,n(1−δ)/(D(τ−1))) in BGIRGW,L(n), the following holds. Construct a
boxing system with parameter δ, C and D as in (4.21), and Mwu := τ−1

1−δ
logwu. Then, with failure probability at most

�(wu) := 4w
− τ−1

1−δ
β+
1+δ

ξ(δ)/2
u , (4.39)

there exists a box-increasing path πu from u to a δ-good leader vertex πu
end in �k�(Mwu ,n)(u) with total cost at most

∣∣πu
∣∣
f,L
≤w

−ρ(δ)/2
u + 2w

− τ−1
1−δ

ξ(δ)/2
u . (4.40)

Moreover, the only vertex in πu with weight at most wu is u itself. Finally, the other end vertex πu
end of πu has weight in

the interval

Wcend ∈
(
n(1−δ)/(DC(τ−1)), n(1+δ)/(D(τ−1))

]
. (4.41)

The last lemma connects two of these end-vertices with a low-cost path.

Lemma 4.9 (Cost between end-vertices of greedy paths). Consider the setting of Lemma 4.8, but for an arbitrary
polynomial weight function as in (3.10) such that deg(f ) < (3− τ)/β+. Then, there exist constants ζ = ζ(f,L) > 0 and
K =K(ζ) <∞ such that whp, all pairs of vertices u1, u2 with weights in the interval

Iend :=
[
n(1−δ)/(DC(τ−1)), n(1+δ)/(D(τ−1))

]
(4.42)

have cost-distance at most

df,L(u1, u2)≤K(ζ)n−ζ . (4.43)

5. Sideways explosion

In this short section we prove Theorems 3.6(i) and 3.7(i). We start with a lemma.

Lemma 5.1. Consider IGIRGW,L(λ) or SFPW,L satisfying Assumption 3.3 with some α ≤ 1. Let [c, d] be an interval
with P(W ∈ [c, d]) > 0. Then almost surely, every vertex has infinitely many neighbors with weight in [c, d].

Proof. We abbreviate l(w) := lc2,γ (w). By translation invariance of the models, it is enough to show that the statement
holds for the origin. Let w0 ∈ [1,∞); we condition on the vertex-weight of the origin being w0. Let us denote the number
of neighbors of 0 whose weights lie in the interval [c, d] by D0[c, d]. First consider IGIRGW,L(λ). Conditioned on
W0 =w0, D0[c, d] =∑

v1∈Vλ
1{0↔ v1 ∩Wv1 ∈ [c, d]} is a sum of independent indicator variables with expectation

E
[
D0[c, d] |W0 =w0

]= E

[ ∑
v1∈Vλ

E
[
hI(v1,w0,Wv1)1

{
Wv1 ∈ [c, d]

} | Vλ

]]
.
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Taking the conditional expectation with respect to Wv1 , using the lower bound on hI in Assumption 3.3, and denoting
Lebesgue-Stieltjes integration wrt the measure of FW by FW(dw1), we obtain

E
[
D0[c, d] |W0 =w0

]≥ c

∫
w1∈[c,d]

E

[ ∑
v1∈Vλ

(
l(w0)l(w1)∧

(
w0w1

‖v1‖d
)α)]

FW(dw1). (5.1)

Whenever ‖v1‖d ≥ w0w1/(l(w0)l(w1))
1/α := Kw0,w1 , the minimum is attained at the second term. Hence the inner

expectation, which we abbreviate to T (w0,w1), can be bounded below by

T (w0,w1)≥ E

[ ∑
v1∈Vλ:‖v1‖d≥Kw0,w1

(
w0w1

‖v1‖d
)α]

= λ(w0w1)
α

∫
x∈Rd :‖x‖d≥Kw0,w1

‖x‖−dα dνd, (5.2)

where dνd denotes integration wrt the Lebesgue measure on Rd . Changing variables yields

T (w0,w1)≥ λ(w0w1)
α

∫
rd≥Kw0,w1

rd−1r−dα dr =∞. (5.3)

Since α ≤ 1, the integrand in (5.1) is infinite, and since we assumed that P(W ∈ [c, d]) > 0, we obtain that
E[D0[c, d]|W0 = w0] = ∞. Conditioned on W0 = w0, D0[c, d] is a sum of independent indicators, so D0[c, d] itself
is also infinite a.s. by the second Borel-Cantelli lemma. For SFPW,L, the same argument applies, except that the integral
in (5.2) is replaced by a sum over all lattice points with ‖x‖d ≥Kw0,w1 . This also yields an infinite integrand in (5.1). �

We use Lemma 5.1 to prove the following stronger version of Theorem 3.6(i).

Theorem 5.2. Consider the models IGIRGW,L(λ) and SFPW,L with d ≥ 1, α ∈ (0,1], τ > 1, arbitrary vertex-weight
distribution W ≥ 1, and connection functions hI, hS satisfying Assumption 3.3. Consider an arbitrary penalty function
f (w1,w2), with the following property: there exist intervals [a, b], [c, d] with P(W ∈ [a, b])P(W ∈ [c, d]) > 0 and K <

∞ such that f (w1,w2) < K whenever w1 ∈ [a, b], w2 ∈ [c, d]. Then IGIRGW,L(λ) and SFPW,L are (f,L)-explosive for
arbitrary edge-weight distribution L. Moreover, with positive probability, each vertex has a.s. infinitely many neighbors
within bounded cost.

Proof. The result will follow from Lemma 5.1. Let us denote the set of neighbors of the origin with weight in [c, d] by
N [c, d], and note that there exists x <∞ such that P(L ≤ x) > 0. Let E1 be the event that the origin receives weight
in [a, b]; let E2 be the event that |N [c, d]| = ∞; and let E3 be the event that infinitely many edges between 0 and v

receive cost at most K . Then P(E1) > 0; Lemma 5.1 implies that P(E2 | E1) = 1; since the edge-weight variables Le

are mutually independent; the second Borel-Cantelli lemma implies that P(E3 | E1,E2)= 1; and E3’s occurrence implies
sideways explosion. Thus the result follows. �

We now use Theorem 5.2 to prove Theorem 3.7(i).

Proof of Theorem 3.7(i). The α ≤ 1 case is immediate from Theorem 5.2, so we may assume α > 1. As before, we
will prove the result for IGIRGW,L(λ), and the proof for SFPW,L will be analogous. We may bound the penalty function
f (w1,w2) above by aw

μ
1 wν

2 , where μ=max{μi | i ∈ I}, ν =max{νi | i ∈ I}, and a > 0 is a suitable constant.
Let Nt

1 := |{(0, u) ∈ Eλ : C(0,u) ≤ t}| be the number of neighbors of the origin such that the edges leading to these
neighbors have cost at most t . Let w0 > 0 be arbitrary; we will show that conditioned on the weight W0 of the origin
being equal to w0, Nt

1 =∞ almost surely, for all t > 0. Thus explosion does not simply occur with positive probability
— it almost surely occurs instantaneously. Observe that Nt

1 is again a sum of independent indicators: conditioned on
W0 =w0, we have

Nt
1 =

∑
v1∈Vλ

1
{
0↔ v1}1

{
f (w0,Wv1)L(0,v1) ≤ t

}≥ ∑
v1∈Vλ

1{0↔ v1}1
{
aw

μ
0 Wν

v1
L(0,v1) ≤ t

}
. (5.4)

We first investigate the case when ν > 0. Using the law of total probability on the value of Wv1 =:w1 as well as using the
lower bound on hI in Assumption 3.3 results in

E
[
Nt

1 |W0 =w0
]≥ ∫

w1

FL

(
ta−1w

−μ
0 w−ν

1

)
E

[ ∑
v1∈Vλ

c

(
l(w0)l(w1)∧ w0w1

‖v1‖d
)α]

FW(dw1). (5.5)
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Exactly as in (5.1)–(5.3) from the proof of Lemma 5.1, denoting the inner expectation by T (w0,w1), we have

T (w0,w1)≥ λ(w0w1)
α

∫
rd≥Kw0,w1

rd−1−dα dr,

where Kw0,w1 =w0w1/(l(w0)l(w1))
1/α . Unlike in (5.3), the rhs is integrable (since α > 1); for some constant c, we have

T (w0,w1)≥ λc(w0w1)
αK1−α

w0,w1
= λcw0w1

(
l(w0)l(w1)

)(α−1)/α
. (5.6)

By (3.8), for any ε > 0 there is a t0 = t0(ε) such that the bound FL(x)≥ xβ++ε holds in the interval [0, t0). Let us write
b+ε := β+ + ε. The argument of FL in (5.5) is at most t0 when w1 ≥ (t/(at0))

1/νw
−μ/ν

0 , yielding the lower bound

E
[
Nt

1 |W0 =w0
]≥ λc

∫
w1≥(t/(at0))

1/νw
−μ/ν
0 ∨1

tb
+
ε a−b+ε w

−μb+ε
0 w

−νb+ε
1 w0w1

(
l(w0)l(w1)

)(α−1)/α
FW (dw1)

= λc(t/a)b
+
ε w

1−μb+ε
0 l(w0)

α−1
α E

[
W

1−νb+ε
1 l(W1)

(α−1)/α1{W1≥(t/t0)
1/νw

−μ/ν
0 ∨1}

]
(5.7)

We claim that for ε > 0 small enough, the last expectation is infinite. Indeed, l(W1) is varies slowly at infinity, so when W1
is sufficiently large, l(W1)

(α−1)/α ≥W−ε
1 by Potter’s bound. Then applying Karamata’s theorem [7, Proposition 1.5.10]

for 1− FW(w)= lW (w)w1−τ , for some constant c and for any sufficiently large constant K , we obtain

E
[
W 1−νb+ε l(W1)

(α−1)/α1{W1 ≥K}]≥ E
[
W

1−νb+ε −ε

1 1{W1 ≥K}]
≥ c

∫ ∞

K

w−ε−νb+ε +(1−τ)lW (w)dw =∞

as long as ε is so small that −ε − ν(β+ + ε) + (1 − τ) > −1. Such an ε exists whenever β+ < (2 − τ)/ν, which
is satisfied by our assumption on {νi : i ∈ I}. To finish, given w0, the presence of edges going out of the origin are
conditionally independent, hence the second Borel-Cantelli lemma ensures that Nt

1 |W0 = w0 is a.s. infinite (regardless
of the value w0).

Next we consider the case when ν = 0. In this case we return to (5.4) and observe that the last indicator does not depend
on Wv1 . This implies that a factor FL(ta−1w

−μ
0 ) can be taken out of the integral on the rhs of (5.5), which, combined

with the lower bound on T (w0,w1) in (5.6), results in

E
[
Nt

1 |W0 =w0
]≥ FL

(
tw
−μ
0

)∫
w1

λcw0w1
(
l(w0)l(w1)

)(α−1)/α
FW (dw1).

= FL

(
tw
−μ
0

)
λcw0l(w0)

(α−1)/αE
[
W1l(W1)

(α−1)/α
]
. (5.8)

Since α > 1, the latter expectation is infinite whenever τ ∈ (1,2). �

6. Understanding explosion to show conservativeness

In this section we prove Theorem 3.6(iii). Somewhat counter-intuitively, to be able to show that a model is conservative,
we need to better understand the ways in which a model can explode. We start with two general lemmas about explosion.
Recall the definition of the explosion time from Definition 3.5, and that there are two non-exclusive ways for a vertex v to
have finite explosion time. In sideways explosion, we can reach infinitely many vertices via paths with bounded cost and
bounded length from v. It is not hard to see that this is equivalent to the presence of a (possibly trivial) finite-cost path
from v to some vertex w that has infinitely many neighbors via bounded-cost edges. Formally, we modify the notation
introduced in the previous section: Nt

1(v) := |{(v,u) ∈ Eλ : C(v,u) ≤ t}|. Then sideways explosion is the event that

there is t > 0 and a finite path from v to a vertex v′ such that Nt
1(v

′)=∞. (6.1)

We remark that sideways explosion does not just mean that there are infinitely many vertices which have both bounded
graph distance and bounded cost-distance from v. For such vertices, even if the graph distance from v is bounded, this
does not imply that the paths attaining the minimal cost-distances are also unbounded.
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The second possibility is lengthwise explosion, in which there is an infinite path of vertices π = (π0 = v,π1,π2, . . . )

with total cost |π |f,L <∞, i.e.

Ỹ I
f (v) := inf

π :π0=v,|π |=∞
{|π |f,L

}
<∞. (6.2)

We will use the next lemma to rule out sideways explosion in SFP and IGIRG in the situation of Theorem 3.6(iii), and
to find a specific path π attaining the explosion time Ỹ I

f (v)= Y I
f (v). The assumption τ ∈ (1,3) in the second statement

ensures that there is an infinite component C∞ (this can be seen by Lemma 4.3). We mention that the infinite component
is unique; for scale-free percolation, uniqueness of an infinite component in any d ≥ 1 follows from the main result in
[30], and for IGIRG (i.e., continuum percolation), it follows from [49], see also [25,26].

Lemma 6.1. Consider IGIRGW,L(λ) or SFPW,L with parameters d ≥ 1, τ > 1, α ∈ (1,∞]. Consider a penalty function
f , and edge-length distribution L≥ 0 such that for all t <∞, P(Nt

1(0) <∞)= 1 holds. Then sideways explosion almost
surely does not happen. Moreover, if τ ∈ (1,3), then for any vertex v in the infinite component, Ỹ I

f (v)= Y I
f (v) is realised

via (at least one) infinite path πopt(v).

We defer the proof to Appendix A, but we make some comments. The path πopt(v) may not be unique – this might
occur e.g. when L, W are not absolutely continuous distributions, or if Y I

f (v)=∞: then, any infinite path can be chosen
since they all have infinite cost. Second, the negation of the condition “∀t <∞, P(Nt

1(0) <∞) = 1” is that for some
t <∞ we have P(Nt

1(0)=∞) > 0, so sideways explosion happens with positive probability at the origin.
The next lemma shows that if lengthwise explosion may happen at all, then it may happen arbitrarily fast. A similar

result for age-dependent branching processes was proved by Grey [32]. However, that proof relies on an independent
subtree decomposition which is not applicable to spatial random graphs, so we need to use different methods.

Lemma 6.2. Consider IGIRGW,L(λ) or SFPW,L, with a penalty function f and edge-length distribution L≥ 0, such that
explosion occurs with positive probability, but that for all t <∞, P(Nt

1(0) <∞)= 1. Then for all constant t0 > 0, with
positive probability there is an infinite path from the origin with total cost at most t0.

Proof. We first prove the lemma for IGIRGW,L(λ), and then we discuss how to modify the proof for SFPW,L. For brevity
we write Y := Y I

f (0) for the (possibly infinite) explosion time of the origin. Let pY := P[Y <∞], and note that pY > 0
by hypothesis. We first show that with positive probability, there exists some vertex v(t0/2) in a suitably large Euclidean
ball with explosion time at most t0/2. We then show that conditioned on this event, again with positive probability, the
origin is joined to v(t0/2) with a path of cost at most t0/2; we thereby obtain a path to infinity of cost at most t0, as
required.

We first find the required ball. For all r, x > 0, let Ax
r be the event that there exists a vertex v = v(x) in the Euclidean

ball B2
r (0) from which there is an infinite path of cost at most x. Note that we may assume that v(x) is the only vertex

on this path that lies in B2
r (0), since a.s. there are only finitely many vertices in B2

r (0) and thus we may truncate the
beginning of the path if necessary. We will prove that:

For all x > 0, there exists r(x) <∞ such that P
[
Ax

r(x)

]≥ pY /2. (6.3)

To prove (6.3), we first define a random variable R(x) as follows. If Y =∞, then we define R(x) :=∞ also. Otherwise, by
Lemma 6.1, there a.s. exists at least one path from 0 with cost Y <∞. We wish to choose one such path in a well-defined
way, so we order them lexicographically according to the Euclidean norms of their vertices, and take πopt(0) to be the
first path in the order. (Note that a.s. every vertex in Vλ has a different norm, so the order is a.s. unique.) Let vi = vi(x) be
the (random) first vertex on πopt(0) such that the subpath (vi(x), vi+1, . . .) of πopt(0) has cost at most x. Then we define
R(x) := ‖vi(x)‖. For all x > 0, R(x) is a well-defined random variable, with P[R(x) <∞] = P[Y <∞] = pY > 0.
Hence there exists r(x) > 0 such that P[R(x)≤ r(x)] ≥ pY /2. Finally, on the event {R(x)≤ r(x)}, we set v(x) to be the
last vertex on (vi(x), vi+1, . . . ) that is still within B2

r(x)(0). Since the event {R(x) ≤ r(x)} contains the event Ax
r(x), this

proves (6.3).
Now fix t0 > 0, and for brevity write r0 := r(t0/2) and A := At0/2

r0 ; thus P(A) ≥ pY /2 by (6.3). Now, let B be the
event that the origin is connected to every vertex in B2(0, r0) via a path of cost at most t0/2. (Since the number of vertices
in B2(0, r0) follows a Poisson distribution with mean ν(B2(0, r0)), it is a.s. finite.) Observe that if A∩B occurs, then by
combining the low-cost path from the origin to v(t0/2) with πopt(t0/2), we obtain an infinite path from the origin with
total cost at most t0. Thus it suffices to prove that P(A∩B) > 0.



1994 J. Komjáthy, J. Lapinskas and J. Lengler

Let Fext be the set of all edges not internal to B2(0, r0), let Lext := {Le : e ∈ Fext}, and observe that the event A is
determined by the variables Vλ, (Wv)v∈Vλ

, Fext, and Lext. If α <∞, then the connection probability hI is nonzero for all
its arguments, and so almost surely,

q
(
Vλ, (Wv)v∈Vλ

,Fext,Lext
) := P

(
B | Vλ, (Wv)v∈Vλ

,Fext,Lext
)
> 0.

In particular, there is a measurable set S of values of Vλ, (Wv)v∈Vλ
, Fext, Lext that has positive probability and such that

S implies A and q > 0 on S. Hence, P[A∩B] ≥ ∫
S
q > 0, and we are done. However, if α =∞, then it is no longer true

that q > 0 almost surely. For example, if the vertices in B2(0, r0) have low weight, and there is a vertex w ∈ B2(0, r0)

which is far from any other vertices in Euclidean space, then it is a.s. isolated in B2(0, r0). To deal with this issue, we
pass to a thinned model to expose Vλ ∩B2(0, r0) in two rounds.

Let G ∼ IGIRGW,L(λ). We form Gthin from G by discarding vertices in Vλ ∩B2(0, r0) independently with probability
1/2, and let Vthin := V (Gthin) and Wthin := {Wv : v ∈ Vthin}. Thus Gthin is distributed as a thinned model of IGIRGW,L(λ)

in which the density of the Poisson point process is reduced to λ/2 within B2(0, r0). Let Athin be the analogue of A in
Gthin, and let Bthin be the event that in G, the origin is connected to every vertex in Vthin ∩ B2(0, r0) via a path of cost at
most t0/2. Observe that for all possible values of Vλ, (Wv)v∈Vλ

, Fext and Lext with |Vλ ∩B2(0, r0)|<∞, we have

P
(
Gthin = G | Vλ = V, (Wv)v∈Vλ

,Fext,Lext
)= 2−|V∩B2(0,r0)| > 0;

Thus,

P(Athin)≥ P(A and Gthin = G) > 0. (6.4)

Now define Fthin to be the set of all edges of Gthin not internal to B2(0, r0), and let Lthin := {Le : e ∈ Fthin}. Then
Athin is determined by Vthin, Wthin, Fthin and Lthin. Conditioned on arbitrary values of these variables, V (G) \ Vthin is
distributed as a Poisson point process on B2(0, r0) with intensity λ/2, and the edges between V (G) \ Vthin and Vthin and
their costs are distributed as usual in the IGIRGW,L(λ) model. Thus, almost surely these variables take values such that
P(Bthin | Vthin,Wthin,Fthin,Lthin) > 0. (For example, Bthin occurs whenever V (G) \Vthin contains a suitably dense net for
B2(0, r0) which connects the origin to all vertices in Vthin via suitably cheap edges.) Together with (6.4), this implies
P(Athin ∩Bthin) > 0, just as before in the case α <∞. Since Athin ∩Bthin implies Y ≤ t0, this concludes the proof for the
IGIRG model.

In the SFP model, the argument proceeds essentially as in the α <∞ case of the IGIRG proof. As before, there exists
r0 such that with positive probability, there is an infinite path from some vertex in B2(0, r0) to infinity with total cost at
most t0/2; call this event A. Let B be the event that every nearest-neighbor edge in B2(0, r0) has cost at most t0/2dr0.
Whenever B occurs, the origin is joined to every vertex in B2(0, r0) via a path of cost at most t0/2, so

P(Y ≤ t0)≥ P(A∩B).

As in the proof for IGIRG, A is determined by (Wv)v∈Zd , Fext and Lext. The values of these variables are almost surely
such that P(B | (Wv)v∈Zd ,Fext,Lext) > 0, even if α =∞, so P(A∩B) > 0 and the result follows. �

We move towards the proof of Theorem 3.6(iii). To show this theorem, we count certain paths that we define now.
Let us define a subgraph G(t0) of IGIRGW,L(λ) by keeping only the edges with cost at most t0. To structure the paths
emanating from the origin 0=: v0 within G0, we define the self-avoiding walk tree, T

≤t0
SAW of G(t0) as follows.

The root of T
≤t0
SAW is the trivial path π0 := (v0). The direct children of the root are paths of length 1 of the form

π1 = (v0, v1); where we set the cost of the edge between π0 and π1 to be C(v0,v1). Generally, vertices of T
≤t0
SAW are the

finite simple paths in G(t0) emanating from v0 = 0, where a path πk = (v0, . . . , vk) in the kth level of the tree is connected
to a path π ′k+1 = (v′0, . . . , v′k+1) in the k + 1th level if and only if vi = v′i for all i ≤ k, (that is, π ′k+1 is the continuation
of πk). The cost of the edge between πk and πk+1 is then set to C(vk,v

′
k+1)

. Observe that the cost-distance of any path πk

from π0 within T
≤t0
SAW equals, by construction, |πk|f,L, the cost of the path itself in G(t0) and in IGIRGW,L(λ). For k ≥ 1,

let N
t0
k (0) be the number of vertices in the k’th level of T

≤t0
SAW (i.e., the number of paths of length k emanating from 0).

The next lemma provides an exponentially decaying bound on the expected number of such paths.

Lemma 6.3. Consider IGIRGW,L(λ) under the conditions of Theorem 3.6(iii). Let β− be as in (3.9). Let ε > 0 be such
that E[W 2−2μ(β−−ε)]<∞. Let t0 be such that

for all x ∈ [0, t0], FL(x)≤ xβ−−ε. (6.5)
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Then, with bε := β− − ε, for some constant C2 <∞

E
[
N

t0
k (0) |W0 =w0

]≤w
1−μbε

0 (λC2)
kt

bεk
0 E

[
W 2−2μbε

]k−1
E
[
W 1−μbε

]
. (6.6)

The same remains true for SFPW,L if we omit the factor λk in (6.6).

Before the proof, we explain why there exist ε and t0 satisfying the lemma’s assumptions. By the definition of β−,
for all sufficiently small t < 1, the inequality logFL(t)/ log t ≥ β− − ε holds; equivalently, FL(t) ≤ tβ

−−ε , so (6.5) is
satisfied. Further, we argue now that E[W 2−2μbε ]<∞ for small enough ε > 0. By the power-law assumption on W , let us
write P(W ≥ x)= 
W (x)x1−τ for some slowly-varying function 
W . After integration by parts, by Karamata’s theorem
(see [7, Proposition 1.5.10]),

E
[
W 2−2μbε

]= ∫ ∞

1
w2−2μbεFW (dw)

=
[
−w2−2μbε


W (w)

wτ−1

]∞
1
+
∫ ∞

1
(2− 2μbε)w

1−2μbε
−
W (w)

wτ−1
dw <∞, (6.7)

whenever 2−2μbε−τ <−1, that is, μbε > (3−τ)/2 with bε = β−−ε. So the condition that E[W 2−2μ(β−−ε)]<∞ can
be fulfilled by the condition (3.9) of Theorem 3.6(iii), by choosing ε sufficiently small relative to μ, τ and β−. Further, the
finiteness of the moment E[W 1−μbε ] follows from this condition as well, since then 1−μbε−τ = 1

2 (2−2μbε−τ)− τ
2 <

− 1
2 − τ

2 <−1.

Proof of Lemma 6.3. We shall calculate n
t0
k (0,w0) := E[Nt0

k (0) | W0 = w0] for IGIRGW,L(λ). For this, let V(k)
λ :=

{(vi)1≤i≤k ∈ Vk
λ | vi �= vj for 1 ≤ i < j ≤ k} be the set of all k-tuples of distinct points of the Poisson point process Vλ.

Then we sum over all such k-tuples, and use the law of total probability to integrate over their possible weights as follows:

n
t0
k (0,w0)= E

[ ∑
(vi )i≤k∈V (k)

λ

∫
(wi)i≤k

1
{∀i ≤ k :Wvi

∈ [wi,wi + dwi], vi ↔ vi−1,C(vi−1,vi ) ∈ [0, t0]
}]

, (6.8)

where we consider dwi to be infinitesimal. Observe that the event in the indicator is

E1(v1, . . . , vk)∩ E2(v1, . . . , vk)∩ E3(v1, . . . , vk),

where, for any distinct fixed points v1, . . . , vk ∈Rd ,

E1(v1, . . . , vk) :=
{
Wvi

∈ [wi,wi + dwi] ∀i ∈ [k]
};

E2(v1, . . . , vk) :=
{
vi ↔ vi−1 ∀i ∈ [k]

};
E3(v1, . . . , vk) :=

{
C(vi−1,vi ) ∈ [0, t0] ∀i ∈ [k]

}
.

(6.9)

Then as dw1, . . . ,dwk → 0, using FW(dwi) to denote the Lebesgue-Stieltjes integral with respect to the cdf FW as before,

P
(
E1(v1, . . . , vk)

)→ k∏
i=1

FW(dwi),

P
(
E2(v1, . . . , vk) | E1(v1, . . . , vk)

)→ k∏
i=1

hI
(‖vi − vi−1‖,wi−1,wi

)
, (6.10)

P
(
E3(v1, . . . , vk) | E1(v1, . . . , vk)∩ E2(v1, . . . , vk)

)→ k∏
i=1

FL

(
t0w

−μ
i−1w

−μ
i

)
.

Now we use the upper bound on hI in Assumption 3.3. The upper bound for the case α =∞ is stronger (i.e., less) than the
upper bound for any α <∞. Therefore, we may assume that α <∞, and any upper bound that we obtain for n

t0
k (0,w0)
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in this way will also hold for α =∞. Hence, we pick α <∞ and bound

n
t0
k (0,w0)≤ E

[ ∑
(vi )i≤k∈V (k)

λ

∫
(wi)i≤k

k∏
i=1

(
c

(
1∧ wi−1wi

‖vi − vi−1‖d
)α

FL

(
t0w

−μ
i−1w

−μ
i

)
FW(dwi)

)]

=
∫

(wi)i≤k

k∏
i=1

FL

(
t0w

−μ
i−1w

−μ
i

)
E

[ ∑
(vi )i≤k∈V (k)

λ

k∏
i=1

c

(
1∧ wi−1wi

‖vi − vi−1‖d
)α

]
k∏

i=1

FW(dwi). (6.11)

Note that the sum within the expectation is over distinct points in Rd (that are part of the PPP Vλ): Using Campbell’s
formula (see e.g. [48]), this expectation can be written as

T1 := E

[ ∑
(vi )i≤k∈V (k)

λ

k∏
i=1

c

(
1∧ wi−1wi

‖vi − vi−1‖d
)α

]
=
∫

(vi )i≤k

k∏
i=1

c

(
1∧ wi−1wi

‖vi − vi−1‖d
)α

dMk, (6.12)

where Mk is the kth factorial moment measure of the point process. Writing ν for the standard measure of the point
process, i.e. Lebesgue measure on Rd , Mk is dominated from above10 by λkνk , and the term in the integral is non-
negative. Thus

T1 ≤
∫

(vi )i≤k

k∏
i=1

c

(
1∧ wi−1wi

‖vi − vi−1‖d
)α

λk dνk = λkck

k∏
i=1

(∫
vi∈Rd

(
1∧ wi−1wi

‖vi‖d
)α

dν

)
, (6.13)

where we used the translation invariance of the Lebesgue measure to obtain the last step. Observe that here wi−1 and
wi are constants, so the ith factor T1i on the rhs can be calculated by splitting the integral according to the value of the
minimum. With Vd denoting the volume of the Euclidean ball of radius 1 in Rd , for all i ∈ [k],

T1i ≤
∫
‖v‖d≤wi−1wi

1 dν +
∫
‖v‖d>wi−1wi

(wi−1wi)
α/‖v‖dα dν

≤ Vdwi−1wi + (wi−1wi)
α

∫
r>(wi−1wi)

1/d

r−dαrd−1 dr =
(

Vd + 1

d(α− 1)

)
wi−1wi, (6.14)

where we have used that α > 1 and hence the integral is finite. Using this value for the i’th term in (6.13), with C2 :=
c(Vd + 1/d(α− 1)), we obtain that T1 is at most

T1 ≤ λkCk
2

k∏
i=1

(wi−1wi)= (λC2)
kw0 ·

k−1∏
i=1

w2
i ·wk. (6.15)

We continue bounding (6.11). Observe that by (6.5), the first product in (6.11) is bounded by

k∏
i=1

FL

(
t0w

−μ
i−1w

−μ
i

)≤ k∏
i=1

(
t0w

−μ
i−1w

−μ
i

)bε = t
kbε

0 w
−μbε

0 ·
k−1∏
i=1

w
−2μbε

i ·w−μbε

k . (6.16)

Combining this with the bound on T1 from (6.15), we arrive at

n
t0
k (0,w0)≤ (λC2)

kt
kbε

0 w
1−μbε

0

∫
(wi)i≤k

w
1−μbε

k

k−1∏
i=1

w
2−2μbε

i ·
k∏

i=1

FW(dwi)

= (λC2)
kw

1−μbε

0 t
kbε

0 E
[
W 2−2μbε

]k−1
E
[
W 1−μbε

]
. (6.17)

This is precisely the required bound, finishing the proof of the lemma for IGIRGW,L(λ).
For SFPW,L, we need to replace the integral over k-tuples of distinct points of a Poisson point process by the integral

over k-tuples of distinct points over the Dirac measure of the grid. However, the calculations remain the same, except

10In other words, conditioning on points being present only decreases the local density.
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that the factor λk disappears. In particular, we upper-bound the integral over k-tuples of pairwise distinct points by the
integral over any k-tuples such that any two consecutive points are distinct. In this way, (6.13) becomes

T1 ≤ ck
k∏

i=1

(∫
vi �=0

(
1∧ wi−1wi

‖vi‖d
)α

dν′
)

, (6.18)

where ν′ denotes the Dirac measure of the grid. This gives the same bound as before, up to constant factors, and up to the
factor λk . �

The proof of Lemma 6.3 makes it possible to show that the condition P(Nt
1 <∞) = 1 in Lemmas 6.1 and 6.2 is

satisfied.

Claim 6.4 (Truncated cost-degree is finite a.s.). Consider IGIRGW,L(λ) or SFPW,L under the conditions of Theo-
rems 3.6(iii) and 3.7(iii). For the penalty function fμ = (w1w2)

μ, P(Nt
1(0) < ∞) = 1 for all t ≥ 0 whenever β− >

(3− τ)/2μ. For the general polynomial penalty function f of (3.10), P(Nt
1(0) <∞)= 1 holds for all t ≥ 0, when there

is an i ∈ I such that β− > (2− τ)/νi .

Proof. We show the statement by showing that E[Nt
1(0)] <∞. Observe that to show that Nt

1(0) is finite for a given
penalty function f , it is enough to show the same for a function g ≤ f . For fμ we use the lower bounding function
wν

2 with ν := μ, and we observe that β− > (3 − τ)/2μ > (2 − τ)/ν by (3.12). For a general polynomial function f ,
we set ν := νi , where i is the index satisfying β− > (2 − τ)/νi , and again we use the lower bounding function wν

2 ,
by observing that constant pre-factors do not change the qualitative behavior. We will modify the proof of Lemma 6.3.
The difference from the proof of Lemma 6.3 is that we cannot assume that t ≤ t0, where t0 is from (6.5). Nevertheless
most of the calculations carry through; only FL(tw

−μ
0 w

−μ
1 ) should be replaced by FL(tw−ν

1 ). Recall that nt
1(0,w0) =

E[Nt
1(0)|W0 =w0)]. Following the calculations from (6.8) to (6.11), we see that the calculation for k = 1 simplifies to

nt
1(0,w0)≤

∫
w1

FL

(
tw−ν

1

)
E

[ ∑
v1∈Vλ

c

(
1∧ w0w1

‖v1‖d
)α]

FW(dw1). (6.19)

The inner expectation, denoted by T1, is bounded from above in (6.12)–(6.14) by

E

[ ∑
v1∈Vλ

c

(
1∧ w0w1

‖v1‖d
)α]

≤ λc

(
Vd + 1

d(α − 1)

)
w0w1 =: λC2w0w1. (6.20)

Now we need to deviate somewhat from the calculation done for the arbitrary-k case, since we can only apply the bound
FL(x) ≤ xbε of (6.5) when x ≤ t0. So for w1 > (t/t0)

1/ν we can still apply the bound of (6.5), and when 1 ≤ w1 ≤
(t/t0)

1/ν we simply bound FL(tw−ν
1 )≤ 1. Thus from (6.19) and (6.20) we obtain

nt
1(0,w0)≤ λC2w0

∫
1≤w1≤(t/t0)

1/ν

w1FW(dw1)+ λC2w0

∫
w1≥(t/t0)

1/ν∨1
tbεw

−νbε

1 w1FW(dw1) (6.21)

The first term on the rhs is bounded from above by λC2w0(t/t0)
1/ν , while the integral in the second term is bounded from

above by the integral on the whole of [1,∞), yielding the bound λC2w0t
bεE[W 1−νbε

1 ]. Observe that this moment is finite
when 1− νbε < τ − 1, yielding the condition β− > (2− τ)/ν. Thus Nt

1(0) is a.s. finite conditioned on W0 =w0. Since
conditionally on W0 =w0, the presence of the edges are independent indicators, by the Borel-Cantelli lemma, this means
that Nt

1(0) |W0 =w0 is an a.s. finite variable for each w0. �

Proof of Theorem 3.6(iii). The same proof works for both IGIRGW,L(λ) and SFPW,L. By Claim 6.4 the condition
P(Nt

1(0) <∞)= 1 for all t ≥ 0 holds. This implies by Lemma 6.1 that the explosion time is realised via infinite paths,
i.e., sideways explosion is excluded. Further, by Lemma 6.2, when the model is (lengthwise) explosive, for all t0 > 0, with
strictly positive probability there is an infinite path with total cost at most t0. So, to show that a model is conservative, it
suffices to show that for a suitably-chosen t0 < 1, the probability of having an infinite path with total cost in the interval
[0, t0] is zero. For this latter statement, it is enough to show the stronger statement that a.s. there is no infinite path π

starting from 0 that uses only edges e with Ce ≤ t0. Hence, to show that the model is conservative, it is enough to show
that a.s. there is no infinite path in G(t0) (defined before Lemma 6.3).
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Recall that N
t0
k counts the number of k-edge paths in G(t0) emanating from 0= v0, and recall the bound (6.6). Choose

t0 := (2λC2E[W 2−2μbε ])−1/bε , so that (6.6) implies E[Nt0
k ] is exponentially decaying in k, and define the events Ek :=

{Nt0
k (0) ≥ 1}. For any w0 ≥ 1 we can apply Markov’s inequality to see that

∑
k≥1 P(Ek |W0 = w0) ≤ C

∑
k 2−k <∞,

where C > 0 denotes some constant. Then the Borel-Cantelli lemma tells us that a.s. there exists k0 such that for all
k ≥ k0, Ek does not occur. This means that N

t0
k (0)= 0 a.s. for all k ≥ k0, and hence there is a.s. no infinite path in G(t0).

Consequently, the model is a.s. conservative. �

6.1. Extension to other penalty functions: Conservative case

In this section we prove Theorem 3.7(iii). Recall that f (w1,w2) stands for a polynomial of two variables (see (3.10)),
with degree deg(f ) defined in (3.11).

Proof of Theorem 3.7(iii). We may assume that the index i = 1 is the one for which deg(f ) is achieved and such that
β−νi > 2− τ . Then there exists a constant a > 0 such that for all inputs w1, w2,

f (w1,w2)≥ aw
μ1
1 w

ν1
2 =: af2(w1,w2).

Hence it is enough to show conservativeness for the penalty function f2. We first describe how the proof of Lemma 6.3
needs to be changed. In the last line of (6.10), the two exponents μ should be replaced by μ1 and ν1, i.e., we obtain

P
(
E3(v1, . . . , vk) | E1(v1, . . . , vk)∩ E2(v1, . . . , vk)

)→ k∏
i=1

FL

(
t0w

−μ1
i−1 w

−ν1
i

)
. (6.22)

This carries through Equations (6.11) and (6.16), where the rhs of the latter becomes t
kbε

0 w
−μ1bε

0 ·∏k−1
i=1 w

−(μ1+ν1)bε

i ·
w
−ν1bε

k . Therefore, (6.17) becomes

n
t0
k (0,w0)≤ (λC2)

kw
1−μ1bε

0 t
kbε

0 E
[
W 2−(μ1+ν1)bε

]k−1
E
[
W 1−ν1bε

]
.

The condition deg(f )= μ1 + ν1 > (3− τ)/β− ensures that 2− (μ1 + ν1)bε < τ − 1, so as before E[W 2−(μ1+ν1)bε ]<
∞. Further, E[W 1−ν1bε ] <∞ holds when 1 − ν1bε < τ − 1, corresponding to the assumption that ν1β

− > 2 − τ for
τ < 2, and W 1−ν1bε ≤W has finite expectation whenever τ > 2. So both expectations are finite under the conditions of
Theorem 3.7(iii). Now the same argument as in the proof of Theorem 3.6(iii) shows that if t0 is sufficiently small then a.s.
N

t0
k (0)= 0 for all k ≥ k0. Hence, the model is a.s. conservative. �

7. Existence of the giant component

In this section we focus on the model GIRGW,L(n), and provide a proof that under Assumptions 3.9 and 3.10 it has a
unique linear-sized giant component Cmax (Theorem 3.11). We emphasise again that Assumption 3.9 is a weaker assump-
tion than what was assumed in the literature before [11,19,29,36], hence earlier techniques do not carry through. We will
use the scaled version BGIRGW,L(n) introduced in Definition 4.1.

The first step of the proof of Theorem 3.11 is to recall box-increasing paths from before Lemma 4.7. In particular,
recall that Vn,M := {i ∈ [n] | Wi ≥ eM}, we say that u ∈ Vn,M is successful when there is a box-increasing path from
u to a δ-good leader in �k�(u) and F

(1)
k� (u) also holds (see (4.36)), and we write Su for the event that u is successful.

Lemma 4.7 shows that for each u ∈ Vn,M , the probability that u is not successful is at most 5 exp(−(c ∧ 1)2−d−7eMη(δ))

for some η(δ) > 0. This probability is at most 1/2 if we choose M large enough. Thus, in expectation, linearly many
vertices in Vn,M will be successful, and hence reach a δ-good leader in �k�(n,M). By (4.5), and the definition of being
δ-good (see (4.3)), the weight of these leaders, for some s ∈ [0,1), falls in the interval(

nC−s 1
D

1−δ
τ−1 , nC−s 1

D
1+δ
τ−1

]⊆ (
n

1
CD

1−δ
τ−1 , n

1+δ
τ−1

]= Iend, (7.1)

see (4.42), and these are among the highest weight vertices in the whole box Xd(n). In the next step we study the graph
formed by the vertices of highest weight in a box. The next lemma asserts that the probability that these vertices form a
connected graph tends to one as the expected number of vertices in the box tends to infinity.

Let ERn,p denote an Erdős–Rényi random graph on n vertices with edge probability p. Recall l(w) =
exp(−c2(logw)γ ), where c2 > 0, γ ∈ (0,1) are taken from Assumption 3.3.
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Claim 7.1. Consider the model BGIRGW,L(n), satisfying Assumptions 3.9 and 3.10 and with 2 < τ < 3. Fix M > 0 and
define constants C, D, δ as in (4.22), with the additional condition δ < (3− τ)/(τ + 1). Let B⊆ Xd(n) be a box of side
length r . Let CoreB = (VCore(B),ECore(B)) be the graph spanned by vertices in B with weights in the interval

Ir :=
((

rd
)(1−δ)/(DC(τ−1))

,
(
rd
)(1+δ)/(τ−1)]

. (7.2)

Then, for all large enough r ,

CoreB
d≥ER|VCore(B)|,qr

, (7.3)

with qr := exp(−2c2(log rd)γ ( 1+δ
τ−1 )γ ). Moreover, CoreB is whp connected as n and r tend to infinity; this remains true

conditioned on |Vn ∩B|, as long as the conditioned value is within a constant factor of Vol(B).

We defer the proof to Appendix B, since its proof uses the same method as that of Lemma 4.3.

Claim 7.2. Consider the model BGIRGW,L(n), satisfying Assumptions 3.9 and 3.10 and with 2 < τ < 3. Fix a constant
M > 0 and define constants C, D, δ as in (4.22); if M is sufficiently large and δ is sufficiently small, the following holds.
Let Vn,M,S be the set of successful vertices u ∈ Vn,M , i.e.,

Vn,M,S :=
{
u ∈ Vn :Wu ≥ eM,1Su

= 1
}
.

Whp, the graph induced by Vn,M,S is connected. Moreover, E[|Vn,M,S |] ≥ cMn, for some constant cM > 0. Consequently,
with probability at least a positive constant, the component of BGIRGW,L(n) containing Vn,M,S has linear size.

Proof. We start by observing that whp the high-weight vertices in BGIRGW,L(n) span a connected subgraph. Indeed,
apply Claim 7.1 to the whole space, taking B= Xd(n) and r = n1/d , to see that the graph CoreXd (n) is whp connected.
Whp there are no vertices of weight larger than n(1+δ)/(τ−1) by Assumption 3.10, so CoreXd (n) contains precisely the
vertices with weight larger than n(1−δ)/(DC(τ−1)).

Now let u, v be two vertices with 1Su
= 1Sv

= 1. Then, by (7.1), all the δ-good leaders in �k�(u) and �k�(v) are
contained in CoreXd (n). Hence, all these leaders are in the same connected component. On the other hand, since the
events Su and Sv occur, there is a path from u to a δ-good leader in �k�(u), and from v to a δ-good leader in �k�(v), so
u and v are also in the same connected component. This shows connectedness of the graph induced by Vn,M,S .

We next show that E[|Vn,M,S |] is linear in n. By Lemma 4.7, each vertex with weight in [exp(M), exp(MCk� 1−δ
τ−1 )] is

successful with probability at least 1− 5 exp(−(c ∧ 1)2−d−7eMη(δ)) ≥ 1/2 if M is sufficiently large. So by linearity of
expectation,

E
[|Vn,M,S |

]≥ nP

(
W(n)

u ∈
[

exp(M), exp

(
MCk� 1− δ

τ − 1

)])/
2=: nq2.

This is linear in n, since

P

(
W(n)

u ∈
[

exp(M), exp

(
MCk� 1− δ

τ − 1

)])
= l

(
eM

)
e−M(τ−1) − l

(
eMCk� 1−δ

τ−1
)
e−MCk�

(1−δ)

≥ e−M(τ−1)−ε

for all ε > 0 and n sufficiently large by Assumption 3.10, Potter’s bound, and by the fact that the second term on the rhs
of the first line is negligible compared to the first one by (4.5).

For brevity, let us denote by C the connected component containing the first vertex of largest weight (under some
arbitrary ordering of Vn). By the previous argument, C contains all of Vn,M,S whp. Then the above argument shows that
E[|C|] ≥ nq2. This implies P(|C|> nq2/2)≥ q2/2, since otherwise

E
[|C|]≤ nP

(|C|> nq2/2
)+ (nq2/2) · P(|C| ≤ nq2/2

)
< nq2/2+ nq2/2= nq2

would lead to a contradiction. In other words, we have shown that with at least a constant probability, BGIRGW,L(n)

(and hence GIRGW,L(n)) contains at least one linear-sized component. �
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Fig. 4. Sketch proof that a giant component exists whp. Each medium-sized box is again a GIRG on fewer vertices. By Claim 7.1,
for each medium-sized box B , with at least constant probability B has a local giant component (of size linear in B’s volume) which
contains the highest-weight vertex within B , the leader (shown in red). Since the medium-sized boxes are disjoint, they are independent
conditioned on the number of vertices in each box, so whp a constant proportion of them have a local giant. Whp, all leaders of
medium-sized boxes are connected to the core of vertices with weight roughly n1/(τ−1) (shown as bold red vertices) via greedy paths,
and whp the core is connected since it dominates a dense Erdős–Rényi graph.

Claim 7.2 ensures that with strictly positive probability BGIRGW,L(n) contains a linear-sized component. The proof
of Theorem 3.11, which says that with high probability there is a unique giant component of linear size, runs along the
same lines but requires a bit more care and the use of Claim 7.2, see also Figure 4.

Proof of Theorem 3.11. We first show that a linear-sized component exists whp. Choose constants M,δ > 0; we will
require M to be sufficiently large and δ sufficiently small, but we will not specify their exact values. Define C, D as in
(4.22). We condition throughout on the event that every vertex has weight at most Mn; by Assumption 3.10, this event
occurs whp and implies that the weight of every vertex independently follows a distribution P(W ≥ x)= 
(n)(x)x−(τ−1),
where 
(x)≤ 
(n)(x)≤ 
(x) for some functions 
 and 
 which vary slowly at infinity. Recall the definition of successful
vertices from (4.36), define η(δ) as in Lemma 4.7, and let η̂ := η(δ)∧ 1. Let ŵ := (logn)2/η̃.

By Lemma 4.7, every vertex with weight at least ŵ is successful with probability at least 1 − 5 exp(−(c ∧
1)2−d−7ŵη) ≥ 1 − 1/n2 for n sufficiently large, since η(δ) · 2/η̂ ≥ 2. So by a union bound over all vertices in [n],
whp every vertex with weight at least ŵ is successful. By Claim 7.2, whp these vertices all lie in the same connected
component C; denote this event by E1.

We will now partition most of Xd(n) into “medium-sized boxes” (B̂i )i≤m̂n , whose sizes are chosen to ensure that
whp they each contain at least one vertex in C (as we prove below). Let m̂n := �n/(2(logn)3τ/η̂), and let (B̂i )i∈[m̂n] be a
collection of disjoint boxes in Xd(n), each with volume (logn)3τ/η̂. We call these medium-sized boxes. For all i ∈ [m̂n], let
Ẑi be the number of vertices in B̂i with weight at least ŵ. Then since each vertex falls into B̂i with probability Vol(B̂i )/n

and has i.i.d. weight from distribution W(n), by Assumption 3.10 and Potter’s bound, when n is sufficiently large we have

E[Ẑi] = nP
(
W(n) ≥ ŵ

)
Vol(B̂i )/n

≥ (logn)3τ/η̂ · 
(ŵ)ŵ−(τ−1)

≥ (logn)(τ+2)/η̂
(ŵ)≥ (logn)2/η̂. (7.4)
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Since Ẑi is binomial, it follows by Lemma 4.2 (Chernoff bound) and a union bound that

P(∃i ≤ m̂n : Ẑi = 0)≤ m̂n2 exp
(−E[Ẑi]/3

)≤ n exp
(−(logn)2/η̂/3

)→ 0 as n→∞. (7.5)

Thus whp, each box B̂i contains at least one vertex of weight at least ŵ; denote this event by E2.
We say that a medium-sized box B̂i contains a local giant if a constant proportion of its vertices lie in the same

component, and moreover this component contains a vertex of weight at least ŵ. We will show now that whp, a constant
proportion of boxes contain local giants. Since the whp event E1 ∩E2 then implies that all these components are identical,
it follows that whp there is a linear-sized component.

To ensure independence between medium-sized boxes, we first expose the number of vertices in each medium-sized
box. For all non-negative integers k1, . . . , km̂n with k1 + · · · + km̂n ≤ n, let F(k1, . . . , km̂n) be the event that B̂i contains
exactly ki vertices for all i ∈ [m̂n]. Let Pn be the set of all tuples (k1, . . . , km̂n) such that k1 + · · · + km̂n ≤ n and, for all
i ∈ [m̂n], ki ∈ [(logn)3τ/η̂/2,2(logn)3τ/η̂]. Let

F :=
⋃

(k1,...,km̂n )∈Pn

F(k1, . . . , km̂n)

be the event that for all i ∈ [m̂n], B̂i contains between (logn)3τ/η̂/2 and 2(logn)3τ/η̂ vertices. Since the number of vertices
within each box is binomial, Lemma 4.2 and a union bound implies that for sufficiently large n,

P(¬F)≤ 2m̂ne−(logn)3τ/η̂/12 ≤ 2ne−(logn)2 → 0 as n→∞. (7.6)

To obtain independence from the global weight vector, we will subsample the edges independently, so that the prob-
ability of having an edge between two vertices u and v is no longer given by g

u,v
n (xu, xv, (W

(n)
i )i≤n), but rather by the

lower bound on g
u,v
n given in (4.4) that does not depend on all the weights (W

(n)
i )i≤n, but only on W

(n)
u , W

(n)
v . For all

i ∈ [m̂n], let E3,i be the event that B̂i contains a local giant after subsampling; we will bound P(E3,i | F(k1, . . . , km̂n))

below for all (k1, . . . , km̂n) ∈ Pn. Conditioned on F(k1, . . . , km̂n), vertices in B̂i are distributed uniformly, their weights
are drawn independently from W(n), and two vertices u and v are joined with a probability which only depends on xu,
xv , Wu and Wv . Hence

Conditioned on F(k1, . . . , km̂n), the events E3,i are independent of each other. (7.7)

Conditioned on F(k1, . . . , km̂n), form B̂′i by translating B̂i so that its center is at the origin, and rescaling it to have

side length k
1/d
i ; then the corresponding graph after subsampling in B̂′i is a realisation of a BGIRGW,L(ki). Moreover,

its value of τ is unchanged and therefore still satisfies τ ∈ (2,3). Its connection probability functions g
u,v
n change by at

most a factor of 2 due to the rescaling (since (k1, . . . , km̂n) ∈Pn) and therefore still satisfy Assumption 3.9 with different
values of c and c. Finally, its weight distribution is W(n), which satisfies Assumption 3.10 as n→∞ and hence also as
ki →∞. Thus by Claim 7.2, there exists a constant p� > 0 such that

P
(
E3,i |F(k1, . . . , km̂n)

)≥ p� for all (k1, . . . , km̂n) ∈Pn.

Since the events E3,i are conditionally independent by (7.7), Lemma 4.2 implies that

P
(∣∣{i | E3,i occurs}∣∣≥ p�/2

)≥ 1− 2e−m̂np�/12 → 1 as n→∞.

Together with the fact that E1 and E2 also occur whp, this implies that whp a constant proportion of boxes B̂i contain local
giants which intersect a common component C containing all vertices of weight at least ŵ. In particular, this implies that
whp C is a linear-sized giant component.

It remains to prove that C is whp unique. To do so, we uncover the graph in two stages. In the first stage we uncover all
vertices of weight smaller than ŵ, and all edges between these vertices, yielding the vertex set V(1). Then, in the second
stage, we uncover the vertices of weight at least ŵ and all edges incident to them. Note that whp |V(1)| ≥ n/2. Since the
vertices of the second stage are whp in the same connected component C, we only need to show that they swallow up
every large component formed by V(1). So let η > 0 be a constant; we will show that if V(1) contains a component C′ with
|C′| ≥ ηn, then this component whp merges with C after the second stage.

Partition the space Xd(n) into small boxes of side length 
n1/d�/n1/d (and hence of volume between 1/2 and 1), and
denote these by (sBj )j∈[N ]. We say that a component C′ hits a small box sBj if there is a vertex v ∈ C′ with location
xv ∈ sBj . Then, by a standard argument on Poisson processes [47, Lemma 6.2], there exists σ = σ(η) > 0 such that whp
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every subset of ηn vertices in V(1) must hit at least σn small boxes. In particular, conditioned on this event, if we now
expose V(1) and suppose that it contains a component C′ with |C′| ≥ ηn, then C′ must hit at least σn boxes.

Since vertices have i.i.d. locations, every vertex û of the second stage (that is, with weight ≥ ŵ) has, independently,
a probability at least σ to lie in a box with a vertex v ∈ C′. If this occurs, since W(n) ≥ 1 and each box has volume at
most 1, the minimum in (4.4) is taken at the first term. Thus there is an edge between û and v with probability at least
c · l(Wû)l(Wv). By Assumption 3.10 and a union bound, whp every vertex in G has weight at most n2/(τ−1). Thus the
total probability that û sends an edge to C′ is at least σc · l(Wû)l(Wv)≥ σc exp(−2c2(2/(τ − 1))γ · (logn)γ ), which is at
least n−1/3 for sufficiently large n (since γ < 1).

Since ŵ = (logn)2/η̂, again by Assumption 3.10, the number of vertices |V2| in the second stage is binomial with
expectation nP(W(n) ≥ ŵ)≥ n1/2 when n is sufficiently large. We have already shown that whp these vertices all belong
to C. Since each of these vertices independently has probability at least n−1/3 of connecting to a vertex in C′, whp at least
one of them does connect to a vertex from C′ by Lemma 4.2. Therefore, whp there is at most (and hence exactly) one
component of size at least ηn. �

8. Extension to finite-sized models

We devote this section to the proof of Theorems 3.12 and 3.13. The proof for the special case of μ= 0 (f ≡ 1) was carried
out in detail in [45], and the method for the conservative case and the lower bound for the explosive case carries over for
general f . We therefore only provide a sketch of these parts of the proof. The proof of the upper bound uses the same
‘scheme’ as [45]: from each of the two uniformly chosen vertices, we find a path to a vertex with large enough weight,
with cost that approximates the explosion time. Then we connect the two high-weight vertices with a low-cost path. The
estimate of the cost of the connecting path requires more care than that in [45]. Hence, we spell out the differences but
use some lemmas from [45] for the upper bound. We start with Theorem 3.13, which is the more precise result. We will
then derive Theorem 3.12 as a corollary.

Proof of Theorem 3.13. Recall from Definition 3.8 that GIRGW,L(n) has vertex-space [−1/2,1/2]d . To relate
GIRGW,L(n) on n vertices to the infinite models, we map the vertex locations to Xd(n) = [−n1/d/2, n1/d/2]d us-
ing the transformation in Definition 4.1, obtaining the equivalent blown-up model BGIRGW,L(n) = (VB(n),EB(n)).
In BGIRGW,L(n) the vertex-density stays constant as n increases, and the number of vertices in sets of smaller volume
converges to a Poisson distribution with intensity 1. Under the extra assumption that the connection probabilities g

u,v
n

in (4.4) converge to some limiting function h (more precisely, [45, Assumption 2.4, 2.5]), we can thus relate this model
to an IGIRGW,L(1) graph restricted to Xd(n), as follows. We find a sequence kn →∞ such that for a fixed vertex v,
whp the kn-neighborhood (including vertex- and edge-weights) is identical in BGIRGW,L(n) and in IGIRGW,L(1) under
a suitable coupling. Hence, for two uniformly random vertices v1

n, v2
n, whp the costs of leaving the kn-neighborhoods

of v1
n and v2

n converge in distribution to the explosion time of those vertices in IGIRGW,L(1). Since v1
n, v2

n are typically
far away in Euclidean space (‖v1

n − v2
n‖ =�(n1/d)), the kn-neighborhoods are contained in disjoint geometric parts of

Xd(n), and the two costs become asymptotically independent.
Unfortunately, the details are quite tedious, since the aforementioned perfect coupling of graphs only works locally.

Globally, the total number of vertices in BGIRGW,L(n) is exactly n, while it is Poisson in the IGIRGW,L(1) model. So
instead, we squeeze the vertex sets of BGIRGW,L(n) and of IGIRGW,L(1) between two models IGIRGW,L(1− ξn) and
IGIRGW,L(1+ ξn), for a parameter ξn ↓ 0. More precisely, by [45, Claim 3.3 and 3.4] we can choose ξn such that under
a suitable coupling, almost surely for almost all n,(

V1−ξn ∩Xd(n)
)⊆ {xv}v∈[n] ⊆

(
V1+ξn ∩Xd(n)

)
, (8.1)

and Vλ1 ⊆ Vλ2 and Eλ1 ⊆ Eλ2 whenever λ1 ≤ λ2. Note that the latter condition implies that IGIRGW,L(1) is also sand-
wiched between the models IGIRGW,L(1− ξn) and IGIRGW,L(1+ ξn). Moreover, [45, Eqs. (5.11), (5.21), (5.22)] show
that there is a choice of kn, Mn both tending to infinity (sufficiently slowly) such that for two uniformly random vertices
v1
n, v2

n, whp the following event Akn,Mn occurs:

Akn,Mn is the event that the two boxes (wrt Euclidean distance) of radius Mn around v1
n and v2

n are disjoint
and contained in Xd(n), and the kn-neighborhoods with respect to graph distance of v1

n, v2
n are contained in

these boxes, and these kn-neighborhoods coincide in all four models as vertex- and edge-weighted graphs.
(8.2)

Lower bound on df,L(v1
n, v

2
n). Recall from Definition 3.4 that we add subscript λ and n to the metric balls and their

boundaries when the underlying model is IGIRGW,L(λ) and BGIRGW,L(n), respectively. Observe that when the event
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Akn,Mn holds, any path connecting v1
n, v2

n must intersect the boundary of the graph distance balls. Hence,

dBGIRG
f,L

(
v1
n, v

2
n

)≥ 1Akn,Mn
· (d1

f,L

(
v1
n, ∂BG

1

(
v1
n, kn

))+ d1
f,L

(
v2
n, ∂BG

1

(
v2
n, kn

)))
, (8.3)

where dBGIRG
f,L and d1

f,L are cost distances in BGIRGW,L(n) and IGIRGW,L(1), respectively.
From here the proof of the conservative case follows: in IGIRGW,L(1), the cost to reach the boundary of these graph

distance balls tends to infinity and the result follows. The lower bound of the explosive case is finished by showing that
the variables on the rhs of (8.3) tend, in distribution, to two i.i.d. copies of the explosion time Y I

f (0) of the origin in
IGIRGW,L(1). Intuitively, the asymptotic independence follows since conditioned on the events Akn,Mn (which occur
whp), the two variables are determined by the subgraphs induced by two boxes of Xd(n), and these have the same
distribution as the neighborhood of the origin by the translation invariance of the model IGIRGW,L(1). For a more
detailed proof of asymptotic independence, see the arguments between [45, Equations (3.14)–(3.19)] that show that this
implies that for all x, and for all ε > 0, it holds that

P
(
dBGIRG
f,L

(
v1
n, v

2
n

)≤ x
)≤ P

(
Y

I(1)
f (0)+ Y

I(2)
f (0)≤ x

)+ ε, (8.4)

where Y
I(1)
f (0), Y

I(2)
f (0) are two i.i.d. copies of Y I

f (0). For the corresponding lower bound, we need an upper bound on

dBGIRG
f,L (v1

n, v
2
n).

Upper bound on df,L(v1
n, v

2
n). For the upper bound, one can use the same coupling event Akn,Mn of the kn-

neighborhoods in BGIRGW,L(n) and in IGIRGW,L(1), but now one needs to construct a path connecting v1
n and v2

n

in BGIRGW,L(n), such that its cost is a good approximation of the sum of explosion times of v1
n and v2

n in IGIRGW,L(1).
The first step is to show that when v1

n and v2
n are in the giant component C∞ of BGIRGW,L(n), then the event

E∞(v1
n, v

2
n) that they are in the infinite component of IGIRGW,L(1), occurs whp. This was shown in [45, Lemma 3.7].

Formally:

lim
n→∞P

(
E∞

(
v1
n, v

2
n

) | v1
n, v

2
n ∈ C∞

)= 1. (8.5)

Our goal is to show that for all x ≥ 0 and all ε, ε′ > 0, there exists n0 ∈N such that for all n≥ n0,

P
(
df,L

(
v1
n, v

2
n

)≤ x
)≥ P

(
Y

I(1)
f (0)+ Y

I(2)
f (0)+ ε′ ≤ x

)− ε, (8.6)

where Y
I(1)
f (0), Y

I(2)
f (0) are two i.i.d. copies of the explosion time of the origin in IGIRGW,L(1). We will do this by first

showing that

P
(
df,L

(
v1
n, v

2
n

)≤ x
)≥ P

(
Y I

f

(
v1
n

)+ Y I
f

(
v2
n

)+ ε′ ≤ x
)− ε. (8.7)

This is then sufficient to show the counterpart of (8.4) by an argument given between [45, Equations (3.22)–(3.24)],
combined with the statement that jointly,

(
Y I

f

(
v1
n

)
, Y I

f

(
v2
n

)) d−→ (
Y

I(1)
f (0), Y

I(2)
f (0)

)
, (8.8)

two i.i.d. copies of the explosion time. Rigorously, (8.8) is [45, Equation (3.21)], and its proof can be found in [45,
Equations (3.25)–(3.29)]. Heuristically, (8.8) is natural. Even though the explosion time of v1

n and v2
n are dependent for

fixed n, their values are to a large extent determined by disjoint boxes around these vertices, in particular, the approxima-
tions d1

f,L(v1
n, ∂BG

1 (v1
n, kn)), d1

f,L(v2
n, ∂BG

1 (v2
n, kn)) are independent, hence the asymptotic independence follows. Thus

it remains to show (8.7).
From here we continue by a different argument than the one in [45], since now we need to take the weight penalty

function f into account. However, the idea remains the same: for each q ∈ {1,2}, we will find a high-weight vertex u
q
n

whose cost-distance to v
q
n is less than the explosion time of v

q
n . We will then apply Lemma 4.8 to establish a low-cost

connecting path between u1
n and u2

n.
We decompose the proof into several steps, see also Figure 5.
Step 1. Cheap path via vertices of high enough weight. Fix x, ε, ε′ > 0 as in (8.7). We may assume ε < 1. We again

work with the event Akn,Mn from (8.2). For q ∈ {1,2}, in the first phase we will try to find a vertex u
q
n in the kn-

neighborhood of v
q
n , that has weight ≥ K1 and cost-distance at most tq from v

q
n . (Here K1 is a suitably large constant
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Fig. 5. Sketch proof of the upper bound (simplified, some details omitted). We first uncover all vertices of weight ≤K1 in a Euclidean
box around v1

n. Whp, this contains Bf,L(v1
n,T ,K1). Then we uncover the vertices one by one in increasing order of weight, until we

find the first (i.e. lowest-weight) exterior vertex u1
n in the same box, which is reachable from v via a path of cost at most T contained

in Bf,L(v1
n,T ,K1). This is the first phase, and conditioned on Y I

f
(v1

n) ≤ T in the coupled IGIRG, it succeeds whp. We have only

uncovered vertices of weight at most u1
n so far. Conditioned on the existence of u1

n, with probability at least 1− ε there is a cheap
box-increasing path from u1

n to the core. This is the second phase. Since the path is box-increasing, it only uses the subgraph spanned
by vertices of weight larger than u1

n. Except for the number of these vertices (which is concentrated), this subgraph is independent of
what we have uncovered in the first phase, and in particular it is independent of our choice of u1

n; this is key to the argument. While the
subgraph need not be independent of our choice of u2

n or its connection to the core, this is only a technical problem and we can deal
with it using carefully-chosen union bounds. Thus we can connect v1

n to the core within cost T + ε′ with probability ≈ P(Y I
f
(v1

n)≤ T ).
.

which we will define later.) We will denote the event that we succeed in finding u
q
n by Aq(tq). This first phase will not

always succeed, but we will show that

P
(
A1(t1)∩A2(t2) | Y I

f

(
v1
n

)≤ t1 and Y I
f

(
v2
n

)≤ t2
)≥ 1− ε

4
. (8.9)

Moreover, we will show that if the first phase does succeed, then

P
[
df,L

(
u1

n,u
2
n

)≤ ε′ |A1(t1)∩A2(t2)
]≥ 1− ε2

32xP(A1(t1)∩A2(t2))
. (8.10)

We first show how (8.7) follows from (8.9) and (8.10). We fix x > 0 and define

Igood :=
{
t ∈ [0, x − ε′

] : P(Y I
f

(
v1
n

)≤ t and Y I
f

(
v2
n

)≤ x − ε′ − t
)
> ε/4x

}
. (8.11)
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Then

P
(
Y I

f

(
v1
n

)+ Y I
f

(
v2
n

)≤ x − ε′
)= P

(∃t ∈ [0, x − ε′
] : Y I

f

(
v1
n

)≤ t and Y I
f

(
v2
n

)≤ x − ε′ − t
)

≤ P
(∃t ∈ Igood : Y I

f

(
v1
n

)≤ t and Y I
f

(
v2
n

)≤ x − ε′ − t
)

+
∫

t∈[0,x−ε′]\Igood

ε

4x
dt

≤ P
(∃t ∈ Igood : Y I

f

(
v1
n

)≤ t and Y I
f

(
v2
n

)≤ x − ε′ − t
)+ ε/4. (8.12)

For t ∈ Igood we obtain by (8.9),

P
(
A1(t)∩A2

(
x − ε′ − t

))≥ 3

4
P
(
Y I

f

(
v1
n

)≤ t and Y I
f

(
v2
n

)≤ x − ε′ − t
)≥ ε/8x. (8.13)

Plugging this into the denominator on the rhs of (8.10), we obtain for all t ∈ Igood,

P
[
df,L

(
u1

n,u
2
n

)≤ ε′ |A1(t)∩A2
(
x − ε′ − t

)]≥ 1− ε/4. (8.14)

Combining this with (8.9) and the fact that Aq(tq) implies df,L(u
q
n, v

q
n)≤ tq by construction, we get

P
(
df,L

(
v1
n, v

2
n

)≤ x
)≥ P

(∃t ∈ Igood : A1(t)∩A2
(
x − ε′ − t

))− ε/4

≥ P
(∃t ∈ Igood : Y I

f

(
v1
n

)≤ t and Y I
f

(
v2
n

)≤ x − ε′ − t
)− ε/2

≥ P
(
Y I

f

(
v1
n

)+ Y I
f

(
v2
n

)≤ x − ε′
)− ε, (8.15)

establishing (8.7) and proving the result.
So it remains to show (8.9) and (8.10). We start with the latter. We will carefully define u

q
n so that we can find it

without revealing any information about vertices of larger weight. This allows us to apply Lemma 4.8 to u
q
n , since this

lemma only uses information about the number and locations of vertices with weight strictly larger than the weight of u
q
n .

Conditioned on the existence of u
q
n , Lemma 4.8 connects it via a box-increasing greedy path πgreedy(u

q
n) to the core of

highest-weight vertices. This path will have cost at most

K
−ρ(δ)/2
1 + 2K

− τ−1
1−δ

ξ(δ)/2
1 , (8.16)

and the construction will fail with probability at most �(K1) in (4.39). Both the cost of the path and the failure probability
tend to 0 as K1 →∞. We choose K1 so large that the cost of the two paths (one each from u1

n and u2
n) are each at most

ε′/3 with probability at least 1− ε2/96. The end vertices c
q

end of these paths have weights as in (4.41), and by Lemma 4.9,
whp all pairs of vertices with such weights can be connected by paths of cost K(ζ)n−ζ = o(1) (see (4.43)). We will
choose n large enough that K(ζ)n−ζ ≤ ε′/3 and the failure probability of Lemma 4.9 is at most ε2/(96x).

To avoid dependencies between the constructions for u1
n and u2

n, let F1 be the event that A1(t1) occurs, but there is no
box-increasing path from u1

n to the high-weight core of cost at most ε′/3. Likewise, let F2 be the event that A2(t2) occurs,
but there is no box-increasing path from u2

n to the high-weight core of cost at most ε′/3. Finally, let F3 be the event that
there exists a pair of vertices in the core not joined by a path of cost ≤ ε′/3. Then as argued before, the probabilities of
F1, F2 and F3 are at most ε2/(96x) each by Lemmas 4.8 and 4.9. On the other hand, deterministically, if A1(t1)∩A2(t2)

occurs and F1, F2 and F3 do not occur, then we have df,L(u1
n,u

2
n)≤ ε′. Thus by a union bound,

P
(
df,L

(
u1

n,u
2
n

)≤ ε′ |A1(t1)∩A2(t2)
)≥ 1− P(F1)+ P(F2)+ P(F3)

P(A1(t1)∩A2(t2))
≥ 1− ε2

32xP(A1(t1)∧A2(t2))
.

This proves (8.10), and it remains only to show (8.9).
We stress again that in finding u

q
n , we must avoid exposing any information about the locations of, or edges incident

to, vertices with weight greater than u
q
n . The remaining steps are devoted to finding the vertex u

q
n . In the following, we fix

q ∈ {1,2}, and we condition on the whp event E∞(v1
n, v

2
n)∩Akn,Mn . Recall that when the event Akn,Mn occurs, the graphs

of BGIRGW,L(n) and IGIRGW,L(1) coincide around v1
n and v2

n up to graph distance kn, which allows us to work with
IGIRGW,L(1) instead of BGIRGW,L(n).

As useful notation, for any real number w ≥ 1, let us write V≤w
1 , V>w

1 for the set of vertices with weight ≤w and > w

in IGIRGW,L(1), respectively, and VB(n)≤w , VB(n)>w for the same in BGIRGW,L(n).



2006 J. Komjáthy, J. Lapinskas and J. Lengler

Step 2. Defining truncated balls. We study the truncated balls around a vertex v in IGIRGW,L(1). We define d
≤w
f,L as

the cost-distance in the sub-graph induced by the set of vertices of weight at most w. Then we define a truncated ball,
where we impose cost-truncation T and weight-truncation w, as:

Bf,L(v,T ,w) := {
u ∈ V≤w

1 : d≤w
f,L(v,u)≤ T

}
. (8.17)

For any given T and w, we now show quickly that∣∣Bf,L(v,T ,w)
∣∣<∞. (8.18)

This is a consequence of the fact that explosion is only possible via unbounded weights, which is proved in [45, Corol-
lary 4.2]: For any w > 0, explosion is impossible in the subgraph of IGIRGW,L(1) restricted to vertices with weight ≤w,
thus any infinite path realising a finite total cost must leave the set V≤w

1 . Note that this carries over from the case μ= 0
considered in [45] (i.e., f ≡ 1) to arbitrary polynomial penalty functions f , since any such f takes bounded values for
input weights in [1,w], and thus the costs change at most by a constant factor when we replace f ≡ 1 by a different f .
This establishes (8.18).

Observe that if Y I
f (v)≤ T , then deterministically we have |Bf,L(v, T ,∞)| =∞, i.e. the ball contains infinitely many

vertices when we drop the weight-restriction. Thus:

If Y I
f (v)≤ T , then Bf,L(v, T ,∞) contains vertices of arbitrarily high weight, (8.19)

since otherwise (8.18) would be violated for some w. Finally, for all w ≥Wv
q
n
, we observe that Bf,L(v

q
n, Tq,w) is entirely

determined by the subgraph spanned by vertices of weight ≤w.
Step 3. The exterior of truncated cost balls. Next we study the edges emanating from the truncated cost ball

Bf,L(v,T ,K1) in IGIRGW,L(1). For a vertex v and T > 0, consider an edge (u1, u2) where u1 ∈ Bf,L(v,T ,K1), u2 ∈ V1,

Wu2 > K1, and d
≤K1
f,L (v,u1)+ C(u1,u2) ≤ T . We call such vertices u2 exterior to Bf,L(v,T ,K1). Note that, conditioned

on the event that Y I
f (v)≤ T , there is at least one vertex u2 with this property by (8.19).

Motivated by this observation, we define the exterior of the truncated cost-ball by

wmin :=min
{
w : ∃u2 exterior to B(v,T ,K1) with weight w

}
Ex(v,T ,K1) :=

{
u2 : u2 is exterior to B(v,T ,K1) and Wu2 =wmin

}
.

(8.20)

Thus Ex(v,T ,K1) is a set of vertices u2 with the smallest weight-value wmin > K1 that are reachable from v via a
path of cost at most T through B(v,T ,K1). By (8.18), the minimum is almost surely taken over a finite set, and by the
observation above, this set is almost surely non-empty conditioned on the event that Y(v)≤ T . To make an almost surely
unique choice of a vertex from this set, we define U(v,T ,K1) as the vertex in Ex(v,T ,K1) with smallest Euclidean
distance to v, if it exists.

We have just shown that conditioned on Y(v)≤ T , the vertex U(v,T ,K1) almost surely exists.
Step 4. Weight bounds on v

q
n and u

q
n . We require K1 to be large enough that

P(Wv
q
n

> K1)≤ ε/(256x). (8.21)

for each q ∈ {1,2}. Moreover, we choose K2, K3 and K4 so large that for each q ∈ {1,2},

P
(
WU(v

q
n ,tq ,K1)

> K2 |U
(
v

q
n, tq ,K1

)
exists

)≤ ε/(256x),

P
((
Bf,L

(
v

q
n, tq ,K1

)∪ Ex
(
v

q
n, tq ,K1

))
� BG

(
v

q
n,K3

) |U(
v

q
n, tq,K1

)
exists

)≤ ε/(256x),

P
((
Bf,L

(
v

q
n, tq ,K1

)∪ Ex
(
v

q
n, tq ,K1

))
� B2(vq

n,K4
) |U(

v
q
n, tq ,K1

)
exists

)≤ ε/(256x).

(8.22)

Note that K2, K3 and K4 must exist, since |Ex(v
q
n, tq,K1)|<∞ almost surely for each q ∈ {1,2} and its distribution does

not depend on n. Observe that conditioned on the complement of the events in (8.21) and (8.22), Wv
q
n
≤K1 < Wu

q
n
≤K2.

Moreover, if n is large enough then kn > K3 and Mn > K4, so conditioned on Akn,Mn , the sets Bf,L(v
q
n, tq,K1) and

Ex(v
q
n, tq ,K1) are contained in the kn-neighborhood of v

q
n and in the Euclidean ball B2(v

q
n,Mn).
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Then, taking a union bound over the events of (8.21) and (8.22) and the event that Akn,Mn fails, and over q ∈ {1,2}, we
obtain

P
(
Akn,Mn and ∀q ∈ {1,2} :U(

v
q
n, tq,K1

)
exists,Wv

q
n
≤K1 < WU(v

q
n ,tq ,K1)

≤K2,

dG
(
U
(
v

q
n, tq ,K1

)
, v

q
n

)≤K3 and d2(U(
v

q
n, tq ,K1

)
, v

q
n

)≤K4 | Y I
f

(
v1
n

)≤ t1 and Y I
f

(
v2
n

)≤ t2
)

≥ 1− ε/(16x)

P(Y I
f (v1

n)≤ t1 and Y I
f (v2

n)≤ t2)
≥ 1− ε/4. (8.23)

The final inequality follows since we have t2 = x − ε′ − t1 for some t1 ∈ Igood. We are now finally able to describe the
procedure for finding u1

n and u2
n.

Step 5. Defining u1
n, u2

n. To determine u1
n, u2

n, we first uncover the vertices in

B
(
v

q
n, tq ,K1

)∩B2(vq
n,K4

)
for q ∈ {1,2}. By doing so, we only use information about vertices with weight ≤K1 within the Euclidean ball of radius
Mn around v1

n and v2
n. By gradually increasing w, we then reveal the exterior Ex(v

q
n, tq,K1) within the ball B2(v

q
n,K4). If

these sets are non-empty, then we define u
q
n := U(v

q
n, tq,K1). Conditioned on the event Akn,Mn , the kn-neighborhood of

v
q
n is contained in the ball B2(v

q
n,K4), so our conditional lower bound (8.9) on the probability of successfully finding u1

n

and u2
n then follows immediately from (8.23). Moreover, we find each vertex u

q
n (if successful) by revealing only vertices

with weight ≤Wu
q
n
. This establishes (8.9) and concludes the proof. �

Proof of Theorem 3.12. The proof will follow from Theorem 3.13 via the following coupling arguments. For the tight-
ness of dμ,L(v1

n, v
2
n) we will find an upper bound on the cost-distance between v1

n, v2
n, via coupling BGIRGW,L(n) to

a model BGIRGW,L(n) (on the same set of vertices) that contains less edges with higher costs, and that satisfies the
assumptions of Theorem 3.13.

First we define the vertex-weights (Wi)i∈[n] in BGIRGW,L(n). W(n), satisfying only Assumption 3.10, might not

converge in distribution, while [45, Assumption 2.4] requires this. Hence, let us denote by W , W two random variables
with respective cdfs FW(x) := 1− 
(x)x−(τ−1), FW(x) := 1− 
(x)x−(τ−1). We assign to each vertex i ∈ [n] three vertex
weights in a coupled manner: For a collection of i.i.d. uniform [0,1] variables (Un,i)i≤n, we set

W
(n)
i := (1− FW(n))

(−1)(Un,i), Wi := (1− FW)(−1)(Un,i); Wi := (1− FW)(−1))(Un,i),

where (1− FX)(−1)(y) := inf{t ∈R : 1− FX(t)≤ y} exists and is unique for every y ∈ [0,1] due to the monotonicity of
the cdfs. Observe that Assumption 3.10 ensures stochastic domination, and this coupling precisely achieves that

P
(
Wi ≤W

(n)
i ≤W |W(n) ≤Mn

)= 1. (8.24)

Now we argue that the assigned three weights are ‘not far’ from each other. One can verify that Wi = 
�(1/Un,i)U
−1/(τ−1)
n,i ,

Wi = 

�
(1/Un,i)U

−1/(τ−1)
n,i for some slowly varying functions 
�(·), 


�
(·), by writing (1 − FW)(x) = 
(x)/x−(τ−1),

switching to z := 1/x and applying [7, Theorem 1.5.12]. From this and (8.24) it follows that for some slowly varying
function 
̃;

Wi ≤W
(n)
i ≤ 
̃(W i)Wi. (8.25)

Now we describe the edge connection probabilities in BGIRGW,L(n). Recall the lower bound for g
u,v
n in Assump-

tion 3.9, and that lc2,γ (w) = exp(−c2(logw)γ ) in (3.4). While the term wuwv/‖xu − xv‖ is monotone increasing, the
term lc2,γ (wu)lc2,γ (wv) is monotone decreasing in wu, wv , so we cannot simply use the weights Wu, Wv for a lower
bound on g

u,v
n . We solve this problem as follows: Given a specific value of c2 that holds in the lower bound for g

u,v
n in

Assumption 3.9, choose now c′2 so large that the following inequality holds for all w ≥ 1:

lc′2,γ (w) := exp
(−c′2(logw)γ

)≤ exp
(−c2

(
log

(
w
̃(w)

))γ )
,

and then, by (8.25), for all i ∈ [n],

lc′2,γ (Wi)≤ lc2,γ

(
W

(n)
i

)
. (8.26)
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With Wi := (Wi,W
(n)
i ,W i), for each possible pair of vertices u,v ∈ [n], we set

P
(
u↔ v in BGIRGW,L(n) |Wu,Wv

) := c ·
(

lc′2,γ (Wu)lc′2,γ (Wv)∧
(

WuWv

n‖xi − xj‖d
)α)

.

The rhs is less then g
u,v
n (xu, xv, (W

(n)
i )i∈[n]) due to (8.25) and (8.26), and satisfies [45, Assumption 2.5]. Using coupled

variables to realise edges, the edge set E(n) of BGIRGW,L(n) is contained in E(n) of GIRGW,L(n). We then use the
same variables Le on edges that are present in the two models. Finally, to upper bound the cost of edges in GIRGW,L(n)

by that in BGIRGW,L(n), we use a slightly increased penalty function f . We write f (w1,w2) =∑
i∈I aiw

μi

1 w
νi

2 as in

(3.10). Given β+ < (3− τ)/deg(f ) from (3.8), we set f (w1,w2) := c4
∑

i∈I aiw
μi+ε
1 w

νi+ε
2 , where ε > 0 is such that

β+ < (3− τ)/deg(f ) still holds, and c4 > 0 is such that f (Wu,Wv) ≥ f (W
(n)
u ,W

(n)
v ) holds for all u,v ∈ [n]. This is

possible due to (8.25) and Potter’s bound.
Then every path in BGIRGW,L(n) has higher cost wrt penalty function f and weights W than the same path in

GIRGW,L(n), wrt penalty function f and weights W(n). Hence, under this coupling,

df,L

(
v1
n, v

2
n

)≤ df ,L

(
v1
n, v

2
n

)
,

where d means distance in BGIRGW,L(n). The proof is finished by applying Theorem 3.13 on the rhs to see that it
converges in distribution. Hence, the lhs is tight.

The proof of (3.18) is along analogous lines, one now needs a model BGIRGW,L(n) with edge set E(n), where vertices

have weight Wi , and connection probability that is the upper bound in Assumption 3.9. Then, E(n)⊂ E(n). Finally, given
β− in (3.9), one uses the penalty function f (w1,w2) := c5

∑
i∈I aiw

min(μi−ε,0)
1 w

min(νi−ε,0)
2 for a small ε and c5 > 0

such that β− > (3− τ)/deg(f ) still holds and that f (Wu,Wv) ≤ f (W
(n)
u ,W

(n)
v ) for all u,v ∈ [n]. Then every path in

BGIRGW,L(n) has lower cost wrt penalty function f and weights W than the same path in GIRGW,L(n), wrt penalty

function f and weights W(n), and there may be more paths in the earlier model, hence now df,L(v1
n, v

2
n)≥ df ,L(v1

n, v
2
n)

holds, where d means distance in BGIRGW,L(n). Theorem 3.13 applies to the rhs of this inequality and it tends to infinity
with n, finishing the proof. �

Appendix A: Explosion time is realised via a path

Proof of Lemma 6.1. We first rule out sideways explosion. Observe that by the symmetry of the model, (that is, the
translation invariance of the Poisson point process and of the connection probabilities hq), P(Nt

1(0) <∞)= 1 implies the
same condition P(Nt

1(v) <∞)= 1 for every vertex v. For T ∈ [0,∞) and j ∈N, we denote by �T
j (v) the set of vertices

that can be reached from v via a path of length at most j and cost at most T . Then, inductively assume that |�T
j (v)|<∞

a.s. for some j ≥ 1. Observe that any vertex in �T
j+1(v) must have an edge of cost at most T from some vertex in �T

j (v),
so ∣∣�T

j+1(v)
∣∣≤ ∑

w∈�T
j (v)

NT
1 (w).

The rhs is almost surely a finite sum over finite summands, so almost surely it is finite. Thus by induction, a.s. |�T
j+1(v)|<

∞ for all j , and constrasting this with (6.1), we see that sideways explosion a.s. does not happen.
Next we show that the explosion time Y I

f (v) is realised via an infinite path πopt. Recall σ I
f (v, k) := inf{t :

|Bf,L(v, t)|> k in IGIRGW,L(λ)} from Definition 3.5. In what follows we consider the sequence (σ I
f (v, k))k≥1 as given,

and show that there exists a sequence v�
0, v

�
1, . . . of distinct vertices with df,L(v, v�

k)= σ I
f (v, k) for all k ≥ 1 such that the

induced subgraph on v�
0, v

�
1, . . . , v

�
k is always connected. This statement may seem obvious when the degrees are finite

and L > 0 almost surely. But, it is non-trivial when L= 0 happens with positive probability, and one may discover many,
even infinitely many, vertices at the same time t , possibly forming large zero-cost clusters, and the choice of v�

k is far
from unique.

We proceed by induction, taking v�
0 = v; suppose we have found v�

0, . . . , v
�
k−1 for some k ≥ 1 forming a connected

graph. Since v ∈ C∞ and Y I
f (v) <∞, we have σ I

f (v, k) <∞. By the definition of σ I
f (v, k) as the infimum of t where
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there are at least k+ 1 vertices in the ball Bf,L(v, t), for every fixed ε > 0, the set

U(ε) := Bf,L
(
v,σ I

f (v, k)+ ε
) \ {v�

0, . . . , v
�
k−1

}
(A.1)

is non-empty. For every vertex w(ε) in U(ε), by the definition of cost-distance, there must exist a path π(ε) from v to
w(ε) with cost at most σ I

f (v, k)+ ε. Let v�
k(ε,w(ε)) be the first vertex on π(ε), counting from v, which does not lie in

{v�
0, . . . , v

�
k−1}; such a vertex must exist since w(ε) /∈ {v�

0, . . . , v
�
k−1}. Let us write N (u) for the neighbors of vertex u.

Then v�
k(ε,w(ε)) lies in the set

Nk(ε) :=
( ⋃

i≤k−1

N
(
v�
i

))∩Bf,L
(
v,σ I

f (v, k)+ ε
)
,

so in particular this set is non-empty for all ε > 0. It is a closed set by the definition of the cost-distance ball Bf,L(v, r)

in Section 2. Further, since Bf,L(v, r ′)⊆ Bf,L(v, r) for all r ′ < r , the sequence of sets indexed by ε > 0 form a nested
sequence as ε ↓ 0. Defining now

Nk(0) :=
⋂
ε>0

Nk(ε),

Nk(0) is non-empty since it is the intersection of a closed nested sequence of sets. Intuitively, Nk(0) are the neighbors
of {v�

0, . . . , v
�
k−1} that are at cost-distance σ I

f (v, k) from v. To finish the argument, take any vertex in Nk(0) as v�
k and

continue with the induction.
We now use v�

0, v
�
1, . . . to show that the explosion time Y I

f (v)= limk→∞ σ I
f (v, k) <∞ is attained as a cost of some

infinite path πopt from v. For all k, we have df,L(v, v�
k) = σ I

f (v, k), and by definition, σ I
f (v, k)→ Y I

f (v) as k →∞.
Moreover, by construction, there is at least one least-cost path from v to v�

k whose internal vertices lie in {v�
0, . . . , v

�
k−1}.

Let Gleast be a breadth-first search tree from v on (v�
k)k≥0, so that for all k there is a unique path πk from v to v�

k in Gleast
with cost-length σ I

f (v, k). By definition, Gleast is a connected infinite graph. Moreover, the degree of each vertex v�
k in

Gleast is a.s. finite, since sideways explosion does not occur. Thus Gleast must contain an infinite path πopt := v�
k1

v�
k2

. . .

from v. Any reordering of a convergent subsequence converges to the same limit as the original sequence, so the cost of
πopt is limj→∞ σ I

f (v, kj )= limk→∞ σ I
f (v, k)= Y I

f (v), as required. �

Appendix B: Proof of Auxiliary lemmas for finite-size models

B.1. Presence of cores

Proof of Claim 7.1. Recall Wn := (xv,W
(n)
v )v∈VB(n). We will first find qr > 0 such that any two vertices in the graph

CoreB are connected by an edge with probability at least qr , independently of other vertices. Thus, CoreB is dominated
from below by an Erdős–Rényi random graph on VCore(B) vertices and connection probability qr , establishing (7.3).
Then, we will bound the number of vertices |VCore(B)| above whp by some nr . We finish the argument by showing that
an Erdős–Rényi random graph with parameters nr , qr is connected whp.

We start by estimating the connection probability between vertices in VCore(B) conditioned on VB(n). Any v1, v2 ∈
VCore(B) are distance at most

√
dr apart and have weights at least the lower end of Ir in (7.2), so

Wv1Wv2/‖xv1 − xv2‖d ≥ d−d/2(rd
) 2(1−δ)

DC(τ−1)
−1

. (B.1)

Observe that since D ∈ Iδ by hypothesis, the exponent is positive by (4.23) of Claim 4.4. Since Assumption 3.9 holds,
so does (4.4); we have shown that the minimum in the lower bound of (4.4) is taken at the first term. Thus when r is
sufficiently large, for all v1, v2 ∈ VCore(B),

P(v1 ↔ v2 |Wn)≥ c exp

(
−2c2

(
log

(
rd
))γ( 1+ δ

τ − 1

)γ)
=: qr . (B.2)

This bound holds uniformly for each vertex-pair v1, v2 ∈ VCore(B). Since connections are present conditionally indepen-
dently given the vertex positions and weights, the domination from below by the Erdős–Rényi graph follows.
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To establish connectedness, we continue by bounding |VCore(B)| from above. By Definitions 3.8 and 4.1, each vertex
in [n] has an i.i.d. uniform location in Xd(n). The probability that a random vertex falls into B is rd/n. Since vertex-
weights are i.i.d. W(n), |VCore(B)| is a binomial variable with parameter n and acceptance probability P(W(n) ∈ Ir)r

d/n.
By Assumption 3.10, when r is sufficiently large, for all ε > 0, its mean is

P
(
W(n) ∈ Ir

)
rd = (

P
(
W(n) ≥ (

rd
)(1−δ)/(DC(τ−1)))− P

(
W(n) ≥ (

rd
)(1+δ)/(τ−1)))

rd

≥ (


(
rd(1−δ)/(DC(τ−1))

)
r−d(1−δ)/(DC)rd

− 

(
rd(1+δ)/(τ−1)

)
r−d(1+δ) − o(1/n)

)
rd

≥ rd(1−ε−(1−δ)/(DC)) − rd(−δ+ε) + o
(
rd/n

)≥ rd(1−ε−(1−δ)/(DC))/2. (B.3)

where the second inequality follows by Potter’s bound, and the third inequality requires ε to be suitably small. By con-
centration of binomial variables (Lemma 4.2),

P
(∣∣VCore(B)

∣∣≥ rd(1−ε−(1−δ)/(DC))/4
)≥ 1− 2 exp

(−rd(1−ε−(1−δ)/(DC))/24
)
, (B.4)

so this event occurs whp. Thus we can set nr := rd(1−ε−(1−δ)/(DC))/4. Observe that if r is sufficiently large, then qr ≥
n
−1/2
r ≥ |VCore(B)|−1/2.

To finish, we note that the connectivity threshold for Erdős–Rényi graphs is lognr/nr " n
−1/2
r , so CoreB is indeed

connected whp as n, r →∞.
Observe that the above proof carries through when we first condition on {Vn ∩ B = nB}. Indeed, the only change is

that |VCore(B)| becomes binomial with parameters nB and P(W(n) ∈ Ir ), hence the bound on the mean in (B.3) stays
valid up to a constant factor as long as nB/E[|VCore(B)|] ∈ [c1, c2] for some constants c1, c2. The rest of the proof is then
unchanged. �

B.2. Costs of paths

Proof of Lemma 4.7. Recall Lemma 4.3, which we will apply with ε := δ. Given a weight wu > 1, define

ru :=
⌈(

log logwu − log

(
M

1− δ

τ − 1

))/
logC

⌉
=
(

log logwu − log

(
M

1− δ

τ − 1

))/
logC + au, (B.5)

where au ∈ [0,1) is the upper fractional part. In words, ru is the smallest index k such that exp(MCk 1−δ
τ−1 ) ≥ wu. Note

that 1≤ ru ≤ k� by the assumed bounds on wu. Elementary calculation yields that with this notation, and au ∈ [0,1) from
(B.5),

exp

(
MCru

1− δ

τ − 1

)
= exp

(
(logwu)C

au
)=wCau

u ∈ [wu,w
C
u

)
. (B.6)

The idea behind the proof is that if u has an edge to some δ-good leader in the annulus �ru , then u is successful (with
k0 = ru − 1) whenever

⋂
ru≤k≤k� F

(2)
k occurs, where F

(2)
k = F

(2)
k (δ) in (4.8). By the law of total probability,

P(¬Su)≤ P

(
¬
( ⋂

ru≤k≤k�

F
(1)
k ∩ F

(2)
k

))
+ P

(
¬Su

∣∣∣ ⋂
ru≤k≤k�

F
(1)
k ∩ F

(2)
k

)
. (B.7)

For the first term, let us write F
(1)
k (δ,M) and F

(2)
k (δ,M) to emphasise how F

(1)
k and F

(2)
k depend on M in (4.8). Observe

that the boxes with parameter M and index ru + k for some k ≥ 0 can be considered as boxes with parameter MCru

(instead of M) and index k ≥ 0. Then, by the definition of F
(1)
k and F

(2)
k , we have F

(1)
k (δ,M) = F

(1)
k−ru

(δ,MCru) and

F
(2)
k (δ,M)= F

(2)
k−ru

(δ,MCru) for all k ≥ ru. Hence, taking M suitably large relative to δ and applying Lemma 4.3 with
δ := ε and λ := 1, the first term in (B.7) is bounded by

P

(
¬
( ⋂

ru≤k≤k�

F
(1)
k ∩ F

(2)
k

))
≤ pMCru = 3 exp

(−eMCru ((D−1)∧1)(1−δ)2−d/75
)
. (B.8)
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Applying (B.6), it follows that

P

(
¬
( ⋂

ru≤k≤k�

F
(1)
k ∩ F

(2)
k

))
≤ 3 exp

(−w
τ−1
1−δ

((D−1)∧1)(1−δ)

u 2−d/75
)

≤ 3 exp
(−wη(δ)

u 2−d/75
)
.

(B.9)

It remains to bound the second term in (B.7). Conditioned on
⋂

ru≤k≤k� F
(1)
k ∩F

(2)
k , let us expose Wn = (xv,W

(n)
v )v∈VB(n)

(which exposes the set of δ-good leader vertices), together with all edges between δ-good leader vertices in annuli �k

with k ≥ ru. Note that this is sufficient to determine the event
⋂

ru≤k≤k� F
(1)
k ∩ F

(2)
k , so the remaining edges are present

independently. Since
⋂

ru≤k≤k∗(F
(1)
k ∩ F

(2)
k ) occurs, there is a box-increasing path from every δ-good leader in �ru to a

leader in �k� . Consequently, Su occurs if there is an edge between u and some δ-good leader in �ru .
Since F

(1)
ru occurs, there are at least bk/2 many δ-good leaders in �ru (see (4.3) and (4.8)), that is, leaders with weights

in the interval(
wCau

u ,w
Cau (1+δ)/(1−δ)
u

]⊆ (
wu,w

C(1+δ)/(1−δ)
u

]
. (B.10)

Moreover, the Euclidean distance of the leaders in �ru from u is at most d times the outer radius of �ru , which is

d exp(MCruD/d)≤ dw
C(τ−1)D/((1−δ)d)
u . Since Assumption 3.9 holds, we may use the lower bound (4.4) on connection

probabilities in BGIRGW,L(n) to lower-bound the connection probability between u and a δ-good leader v in �ru . To
estimate the resulting expression, we first estimate a term appearing in (4.4) by

wuWv‖xu − xv‖−d ≥ d−dw
2−DC τ−1

1−δ
u .

We argue that the exponent of wu is strictly positive whenever D ∈ Iδ in Claim (4.4). Indeed, multiplying the exponent
by (1− δ)/(τ − 1), the exponent becomes the lhs of (4.23) with s = 1, which is positive by Claim (4.4). Since wu ≥ eM ,
it follows that wuWv||xu − xv||−d ≥ 1 when M is sufficiently large relative to δ and d . As a result, the minimum in the
lower bound on g

u,v
n in (4.4) is taken at cl(wu)l(wv), which, by (B.10), is at least

qu := c exp
(− c2(logwu)

γ

(
1+Cγ

(
1+ δ

1− δ

)γ)
.

Recall that, since F
(1)
ru occurs, the number of δ-good leaders in the annulus �ru is at least bru/2≥ 2−d−2 exp((logwu)(D−

1) τ−1
1−δ

), by (4.6) and (B.6). Let Nru(u) denote the number of δ-good leaders in annulus �ru that u is adjacent to. Then,
Nru(u) is dominated below by a binomial random variable Z with mean at least

2−d−2w
(D−1) τ−1

1−δ
u qu ≥

(
c/2d+2) exp((logwu)

τ − 1

1− δ
(D − 1)− c2(logwu)

γ

(
1+Cγ

(
1+ δ

1− δ

)γ)
≥ (

c/2d+2)w(τ−1)(D−1)
u =: μ, (B.11)

where the last inequality holds whenever M is sufficiently large relative to δ, since wu ≥ eM and γ < 1. In particular, by
the Chernoff bound of Lemma 4.2 with ε = 1,

P

(
¬Su

∣∣∣ ⋂
ru≤k≤k�

F
(1)
k ∩ F

(2)
k

)
≤ 2 exp(−μ/3)

≤ 2 exp
(−(c/(3 · 2d+2))w(τ−1)(D−1)

u

)
≤ 2 exp

(−(c · 2−d/12
)
wη(δ)

u

)
(B.12)

This shows (4.37), by combining this with (B.7) and (B.9) and combining constant prefactors. �

Proof of Lemma 4.8. We start by constructing a boxing system around u ∈ BGIRGW,L(n) with parameter Mwu =
τ−1
1−δ

logwu. The bound wu < n(1−δ)/(D(τ−1)) ensures that the boxing system is non-trivial. We will choose the value of
K along the proof. By the weight bound on δ-good leaders given in (4.3), the lowest weight of any δ-good leader in the
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whole boxing system is strictly larger than exp(Mwu
1−δ
τ−1 )= wu. The only vertices in the path we construct other than u

will be δ-good leaders, so this part of the result will follow immediately.
We apply (4.8) and (4.9) from Lemma 4.3 to bound the number of δ-good leaders. With probability at most

�1(wu) := pMwu
= 3 exp

(−w
τ−1
1−δ

((D−1)∧1)(1−δ)

u 2−d/75
)
, (B.13)

the event
⋂

k≤k�(F
(1)
k ∩ F

(2)
k ) does not hold. We then construct the greedy path and use Lemma 4.6, with

ζk := exp

(
MwuC

kβ+ξ(δ)

2(1+ δ)

)
Similarly to (4.32) and (4.35), with additional error probability

∑∞
k=0 exp(−ζk), the greedy path emanating from a δ-good

leader in annulus 0 in this boxing system has cost at most

∣∣πgreedy
∣∣
f,L
≤

k�(Mwu ,n)∑
k=0

ζ
(1+δ)/β+
k exp

(
MwuC

k ·
(

(μ+ νC)
1+ δ

τ − 1
− (1− δ)2

β+
C(D − 1)

))
. (B.14)

As shown after (4.35), the coefficient of MwuC
k is strictly negative whenever D ∈ Iδ , and we denoted this coefficient by

−ξ(δ) in (4.38). Then the ζk factor in (B.14) can be merged with the exponential factor, yielding

∣∣πgreedy
∣∣
f,L
≤

∞∑
k=0

e−MwuCkξ(δ)/2 ≤ 2e−Mwuξ(δ)/2 = 2w
− τ−1

1−δ
ξ(δ)/2

u , (B.15)

with failure probability at most

�2(wu) :=
∞∑

k=0

e−ζk ≤ 2e−ζ0 = 2w
− τ−1

1−δ
β+
1+δ

ξ(δ)
2

u , (B.16)

since the ζk sequence is thinner than a geometric series.
If u is itself a δ-good leader in �0, then we are done. Suppose not; then we will connect u to a δ-good leader c�

0 in �0,

and then concatenate that edge with the greedy path emanating from c�
0. The event F

(1)
0 implies also that the number of

δ-good leaders in �0 is at least b0/2≥ exp(Mwu(D − 1))/2d+2 =w
τ−1
1−δ

(D−1)

u /2d+2 by (4.6), and the diameter of �0 is at
most deMwuD/d . For the connection probability between u and any of these δ-good leader vertices, we observe that these

leaders have weight in the interval (wu,w
1+δ
1−δ
u ] by (4.3), hence we can bound a term in the minimum of the connection

probability (4.4) below by

wuWc∗0 /
∥∥u− c∗0

∥∥d ≥w2
u/
(
ddeMwuD

)=w
2− τ−1

1−δ
D

u /dd .

Since D ∈ Iδ , the exponent is positive by (4.23) of Claim 4.4 applied with s = 0. Hence, choosing K sufficiently large,
and wu ≥K ensures that wuWc∗0 /‖u− c∗0‖d ≥ 1 and so the minimum in (4.4) evaluates to l(wu)l(Wc∗0 ). Let N0(u) denote
the number of δ-good leaders adjacent to u in �0. It follows from the above discussion that under our conditioning,

N0(u)
d≥ Bin

(
w

τ−1
1−δ

(D−1)

u /2d+2, cl(wu)l
(
w

1+δ
1−δ
u

))
.

Since l(·) varies slowly at infinity, the mean is at least d0 := w
(τ−1)(D−1)
u if wu is sufficiently large, which is ensured

by increasing K when necessary. Observe that the lower bound wu ≥ K ensures this. Applying the Chernoff bound of
Lemma 4.2 to the variable on the rhs, we arrive at

�3(wu) := P
(
N0(u) < d0/2

)≤ exp
(−w(τ−1)(D−1)

u /12
)
. (B.17)

Conditioned on the event {N0(u)≥ d0/2}, we now take c�
0 to be a vertex with minimal L(u,c0) among the δ-good leader

neighbors of u in �0, of which there are N0(u). The cost of this edge is then

C(u,c�
0)

d≤wμ
u w

ν 1+δ
1−δ

u min
i≤cw

(D−1)(τ−1)
u

Li, (B.18)
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where the Li ’s are i.i.d. copies of L. As in (4.29), for all N,ζ > 0, we have

P
(

min
j≤N

Lj > F
(−1)
L (ζ/N)

)
= (

1− FL

(
F

(−1)
L (ζ/N)

))N ≤ (1− ζ/N)N ≤ e−ζ ;

it follows from (B.18) that for all ζ > 0,

P
(
C(u,c∗0) > wμ

u w
ν 1+δ

1−δ
u F

(−1)
L

(
(ζ/c) ·w−(D−1)(τ−1)

u

))≤ e−ζ .

Using the fact that F
(−1)
L (y) ≤ y(1−δ)/β+ holds for all sufficiently small y > 0, it follows that when wu is sufficiently

large, (which is ensured by increasing K when necessary),

P
(
C(u,c∗0) > (ζ/c)(1−δ)/β+w

μ+ν 1+δ
1−δ

u w
−(D−1)(τ−1)(1−δ)/β+
u

)≤ e−ζ . (B.19)

We will set the value of ζ > 0 shortly. The exponent of wu in (B.19) is (by (4.38)),

−ρ(δ)= μ+ ν
1+ δ

1− δ
− (D − 1)(τ − 1)(1− δ)

β+

= τ − 1

1− δ

(
μ+Cν

τ − 1
− (1− δ)2(D − 1)

β+

)
; (B.20)

since D ∈ Iδ , this is strictly negative by (4.24) of Claim (4.4) (taking s = 1). We now set ζ so that (ζ/c)(1−δ)/β+ :=
w

ρ(δ)/2
u , and then (B.19) implies

C(u,c0� ) ≤w
ρ(δ)/2
u ·w−ρ(δ)

u ≤w
−ρ(δ)/2
u , (B.21)

with failure probability at most

�4(w0) := e−ζ = exp
(−cw

ρ(δ)β+/(2(1−δ))
u

)
. (B.22)

Collecting the error terms �i(wu) for i ≤ 4 from (B.13), (B.16), (B.17), (B.22), we observe that (B.16) dominates for all
sufficiently large wu, (which is ensured by increasing K when necessary), since the other terms are exponentially small in
wu. Hence, the cheap path can be constructed with failure probability �(wu), as specified in (4.39). Adding up the costs
C(u,c�

0)
+ |πgreedy|f,L yields (4.40), by (B.21) and (B.15). We have already observed that all vertices on πgreedy except u

have weights greater than wu.
We finish by calculating the weight of the end-vertex of πgreedy. We look at the definition of k�(n,Mwu) from (4.5),

yielding that

k�(n,Mwu)=
1

logC
log

(
logn

MwuD

)
− s

for some fractional part s ∈ [0,1). Hence by the definition of δ-good leaders in (4.3), the weight of the last leader vertex
is in the interval(

eMwu
1−δ
τ−1 Ck�

, eMwu
1+δ
τ−1 Ck� ]= (

n
(1−δ)C−s

D(τ−1) , n
(1+δ)C−s

D(τ−1)
]⊆ (

n
(1−δ)

DC(τ−1) , n
(1−δ)

D(τ−1)
]
.

This finishes the proof. �

Proof of Lemma 4.9. Let ε > 0 be a small constant, whose value will be determined later. Let mon(f ) be the number
of monomials in f . Let t0(ε) be such that FL(t)≥ tβ

+(1+ε) on [0, t0]; such a constant must exist by the definition of β+
in (3.8). Let Vend be the set of all vertices with weights in Iend, and let Gend be the subgraph of BGIRGW,L(n) on this
vertices set whose edges e have cost

Le ≤ n−(1+ε)(degf )(1+δ)/(D(τ−1))/mon(f ). (B.23)

We will first dominate Gend below by an Erdős–Rényi random graph, using an argument similar to the proof of
Claim 7.1. Note that the lower bound of Iend is equal to the lower bound of Ir in that claim with rd = n, so many of
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the calculations carry over. As in that proof, conditioned on the positions and weights of the vertices, edges are present
independently. To bound the probability with which each any two vertices are adjacent, we note that (B.1) goes through
unchanged, so the minimum in (4.4) is still taken at the left term; again as in that proof, it follows that when r is suffi-
ciently large, the probability of any two vertices in Vend being adjacent in BGIRGW,L(n) (conditioned on all other vertex
positions and weights) is at least

qCore := exp

(
−2c2(logn)γ

(
1+ δ

D(τ − 1)

)γ)
. (B.24)

By (B.23) and the existence of t0(ε), when n is sufficiently large, the probability of such an edge remaining in Gend under
the same conditioning is

pf := FL

(
n−(1+ε)(degf )(1+δ)/(D(τ−1))/mon(f )

)≥ n−β+(1+ε)2(degf )(1+δ)/(D(τ−1))/mon(f )β
+
.

Thus Gend is dominated below by an Erdős–Rényi graph with edge probability qCorepf .
As in (B.3) and (B.4) in the proof of Claim 7.1, for any constant ε > 0, by the standard Chernoff bound (Lemma 4.2)

we have

|Vend| ≥ 1

4
n1−ε−(1−δ)/(DC) (B.25)

with probability at least 1 − 2 exp(−n(1−ε−(1−δ)/(DC))/24); thus this occurs whp. Let N := 1
2n1−(1+ε)(1−δ)/(DC) from

(B.25). We show that, for some η > 0, pf · qCore > Nη−1. Hence, by the result of Bollobás [15], whp, Gend is connected
and its diameter is at most a constant K(η). Then (B.23) implies that the cost-distance between any two vertices with
weight in Iend in (4.42) is at most

df,L(u1, u2)≤K(η)L(u1,u2) ·mon(f ) · (n(1+δ)/(D(τ−1))
)deg(f ) ≤K(η) · n−ε(degf )(1+δ)/(D(τ−1)), (B.26)

as required in (4.43) (taking ζ = ε(degf )(1+ δ)/(D(τ − 1))).
It remains to prove that pf · qCore > Nη−1 for an appropriate choice of η > 0. Since qCore varies slowly, when n is

sufficiently large, we have

pf · qCore ·N ≥ n−β+(1+ε)3(degf )(1+δ)/(D(τ−1)) · n1−(1+ε)(1−δ)/(DC) =: nχ ,

where we increased the exponent of 1+ ε from two to three in order to remove lower-order terms. We argue that χ , the
exponent of n, is positive. Indeed, this holds when

− χD

β+(1+ ε)3
= (degf )

1+ δ

τ − 1
− 1

β+(1+ ε)3

DC − (1+ ε)(1− δ)

C
< 0.

When we taking ε sufficiently small, we have (1+ ε)(1− δ)≤ (1+ δ)= C (by (4.22)) and hence χ > 0 when

(degf )
1+ δ

τ − 1
− 1

β+(1+ ε)3
(D − 1) < 0.

Choosing ε small enough that 1/(1 + ε)3 ≥ (1 − δ)2, we obtain (4.24) with s = 0. Since by hypothesis we chose C,
D and δ as in Claim 4.4, it follows that χ > 0. We can therefore set η = χ to obtain pf qCore > Nη−1 and finish the
proof. �
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