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Abstract. Much effort has been spent in recent years on restoring uniqueness of McKean–Vlasov SDEs with non-smooth coefficients.
As a typical instance, the velocity field b is assumed to be bounded and measurable in its space variable and Lipschitz-continuous with
respect to the distance in total variation in its measure variable, as shown e.g. in the works of Jourdain and Mishura-Veretennikov. In
contrast with those works, we consider in this paper a Fokker–Planck equation driven by an infinite-dimensional noise, inspired by
the diffusion models on the Wasserstein space studied by Konarovskyi and von Renesse. We prove via Girsanov’s Theorem that there
exists a unique weak solution to that equation for a drift function that might be only bounded and measurable in its measure argument,
provided that a trade-off is respected between the regularity in the finite-dimensional component and the regularity in the measure
argument. In this regard, we show that the higher the regularity of b with respect to its space variable is, the lower regularity we have
to assume on b with respect to its measure variable in order to restore uniqueness in a weak sense.

Résumé. Le problème de la restauration de l’unicité des EDS de McKean–Vlasov avec coefficients non réguliers a fait l’objet de
beaucoup de contributions ces dernières années. Le champ de vitesse b y est typiquement supposé borné et mesurable en la variable
d’espace et lipschitzien par rapport à la distance en variation totale en la variable de mesure, comme par exemple dans les travaux
de Jourdain et de Mishura-Veretennikov. Contrairement à ces travaux, nous considérons dans cet article une équation de Fokker–
Planck dirigée par un bruit infini-dimensionnel, inspiré par les modèles de processus de diffusion sur l’espace de Wasserstein étudiés
par Konarovskyi and von Renesse. Nous prouvons à l’aide du théorème de Girsanov que cette équation admet une unique solution
faible lorsque le coefficient de dérive b est uniquement borné et mesurable en la variable de mesure, à condition qu’en contrepartie
sa régularité en la variable finie-dimensionelle soit plus élevée. En ce sens, nous montrons ensuite qu’afin d’obtenir la restauration
de l’unicité au sens faible, la régularité que nous avons à imposer à b en la variable de mesure est d’autant plus faible que b est plus
régulière en espace.
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0. Introduction

Let us denote by P2(R) the L2-Wasserstein space, consisting in all probability measures μ on R such that
∫
R

x2μ(dx) is
finite, and by W2 the usual Wasserstein distance on P2(R).

In this paper, we are interested in regularization by noise results for equations in infinite dimension perturbed by
infinite-dimensional noises. More precisely, we will consider the following equation:{

dyt (u) = b(yt (u),μt )dt, u ∈ [0,1], t ∈ [0, T ],
μt = Leb[0,1] ◦y−1

t ,
(1)

where the unknown (yt )t∈[0,T ] is a time-continuous process such that for each t ∈ [0, T ], yt takes values in the space
L

↑
2 [0,1] of non-decreasing square-integrable functions f : [0,1] → R. Then the measure-valued process (μt )t∈[0,T ] sat-

*Université Côte d’Azur, CNRS, Laboratoire J.A. Dieudonné UMR 7351, France.

https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/
https://doi.org/10.1214/20-AIHP1136
mailto:marx@math.uni-leipzig.de
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2316 V. Marx

isfies the following non-linear Fokker–Planck equation on the Wasserstein space P2(R):

∂tμt + div
(
b(·,μt )μt

) = 0. (2)

Remark that (1) and (2) are deterministic equations. If the velocity field b : R × P2(R) → R is a Lipschitz-continuous
function, then equation (1) is well-posed: the proof is based on a fixed-point method and is similar to the proof of [37,
Thm 1.1]. Although existence might hold true in cases where b is less regular, uniqueness often fails to be true when b

is not Lipschitz-continuous, as the classical Peano counter-example shows for instance. Indeed, define b(x,μ) = b(μ) =
2 sign(m)

√|m|, where m := ∫
R

xμ(dx) and sign(x) := 1{x �=0} x
|x| ; then (u, t) �→ 0 and (u, t) �→ t2 both satisfy the Cauchy

problem associated to (1) with y0 ≡ 0. Our interest is to restore uniqueness of equation (1) for a certain class of velocity
fields b by adding an infinite-dimensional diffusion.

In the first part of this paper, we prove a result of restoration of uniqueness for equation (1) for a perturbative diffusion
constructed on P2(R). That diffusion, which is an infinite-dimensional analogue of a Brownian motion, is constructed
as a regularized variant of the Modified Massive Arratia flow introduced by Konarovskyi and von Renesse (see [20,21,
28]). Interestingly enough, diffusions on the Wasserstein space allow to observe averaging effects in infinite dimension:
to make it clear, we will assume in this first part that the velocity field b : R × P2(R) → R is C2-differentiable in the
space variable (i.e. the first variable) but only measurable and bounded in the measure variable (i.e. the second variable).
This comes in contrast with regularization results in the case where the noise is of the same dimension as the ambiant
space, obtained among others by Jourdain [16], Mishura–Veretennikov [30], Lacker [27], Chaudru de Raynal–Frikha [2]
and Röckner–Zhang [34]. In those papers, the typical assumptions on the drift function is that b should be bounded
and measurable in the space variable and Lipschitz-continuous in total variation distance in the measure variable; in
other words, finite-dimensional noises can only average the non-smoothness of a finite-dimensional argument of the drift
function.

In the second part of this paper, a connection is made between the result of the first part and the above-mentioned
literature. With the aim to interpolate both aforementioned classes of assumptions on b, we observe a restoration of
uniqueness phenomenon for a continuum of admissible drift functions b, as long as a regularity condition is satisfied:
roughly speaking, the assumption is η + 3

2δ > 3
2 , where η is the Sobolev-regularity of b in the space variable and δ is the

Hölder-regularity of b in the measure variable. It should be already noticed at this stage that the results of this second part
are obtained at the price of relaxing the related notion of weak solution and of modifying the structure of the noise, by
adding an idiosyncratic Brownian motion, as we will explain hereafter.

Before stating the theorems proved in this paper, let us briefly recall important results on restoration of uniqueness for
McKean–Valsov equations on the one hand and on construction of diffusions on the Wasserstein space on the other hand.

0.1. Restoration of uniqueness results for McKean–Vlasov equations

As a matter of fact, restoration of uniqueness is now a well-understood phenomenon for classical Itô’s SDEs in finite
dimension; let us distinguish weak well-posedness results obtained in the aftermath of pioneer work by Stroock and
Varadhan (see [35,36]) and strong well-posedness results, meaning that the solution is adapted to the filtration generated
by the noise and that two solutions are almost surely indistinguishable (see Zvonkin [42], Veretennikov [39], Krylov-
Röckner [22]). More recently, restoration of uniqueness of PDEs has become an active topic of research. In [11], Flandoli,
Gubinelli and Priola have shown that the following transport equation with multiplicative noise

dt u(t, x) = (
b(t, x) · Du(t, x)

)
dt +

d∑
i=1

ei · Du(t, x) ◦ dWi
t ; u(0, x) = u0(x),

is well-posed for Hölder-continuous drift functions b, whereas the transport equation without noise is not necessarily
well-posed, see e.g. the counter-example (given in [11]) b(t, x) = 1

1−γ
([x| ∧ R)γ for fixed R > 0 and γ ∈ (0,1). Many

further investigations have been made for SDEs on Hilbert spaces. In a series of papers [4–6], Da Prato, Flandoli, Priola
and Röckner proved that pathwise uniqueness holds for an SDE on a Hilbert space H of the form

dXt = (
AXt + B(Xt)

)
dt + dWt, (3)

for a certain class of self-adjoint, negative definite operators A : D(A) ⊂ H → H , for W a cylindrical Wiener process
on H and for B : H → H only measurable and locally bounded. For an interesting introduction and a survey of results
on regularization by noise phenomena, see also Flandoli’s seminal lecture notes [10]. Various other equations in infinite-
dimension have also been studied, like e.g. kinetic equations [9]. Interestingly enough, we quote in this context the recent
result of Delarue [8] in which some of the above results are used to restore uniqueness to a mean-field game by means
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of an infinite dimensional common noise of Ornstein–Uhlenbeck type. Although this work shares some motivation with
ours, it must be stressed that the dynamics of the particle therein obey an operator A similar to the one that appears in (3).
Equivalently, this says that uniqueness is restored but at the price of an extra layer of interactions which is, in contrast to
the mean-field one, purely local, arising from the Ornstein–Uhlenbeck noise. The models that we address in the rest of
the paper do not have the latter feature.

Obviously, an extensive description of restoration of uniqueness results is out of reach of this Introduction, but let
us focus in a more detailed fashion on a certain class of equations, namely McKean–Vlasov equations. Let b : Rd ×
P2(R

d) →Rd be a drift function, σ :Rd ×P2(R
d) → Rd×m be a diffusion matrix and (Bt )t∈[0,T ] be a Brownian motion

in Rm. McKean–Vlasov equation reads as follows{
dXt = b(Xt ,μt )dt + σ(Xt ,μt )dBt ,

μt = L(Xt ),
(4)

where L(Xt ) denotes the law of Xt . The coefficients in the stochastic differential equation (4) depend on the distribution
of the solution Xt . That dependence is called mean-field interaction, due to the link with a particle system. Indeed,
equation (4) should be regarded as the limit when N → +∞ of a system of particles of the following form:

dXi
t = b

(
Xi

t ,μ
N
t

)
dt + σ

(
Xi

t ,μ
N
t

)
dBi

t , i = 1, . . . ,N, (5)

where μN
t = 1

N

∑N
j=1 δ

X
j
t

and (Bi
t )t∈[0,T ],1≤i≤N are independent Brownian motions, the latter being usually referred to

as idiosyncratic noises in order to stress the fact that there are somehow proper to a given particle. The trajectory of each
particle (Xi

t )t∈[0,T ] depends on both the current position of the particle and the positions of the other particles, but only
via the empirical distribution μN

t ; that is why this system is called mean-field.
Well-posedness of McKean–Vlasov SDEs has been widely studied. We here provide a tiny example of all the existing

references in the field. Generally speaking, existence and uniqueness may be proved by a Picard fixed point argument
on the process (μt )t∈[0,T ] provided that the coefficients are sufficiently regular, say for instance that they are Lipschitz-
continuous in both variables, Lipschitz-continuity with respect to the measure argument being understood with respect to
the L2-Wasserstein distance. This strategy is made clear in the seminal lecture notes of Sznitman [37]. Variants may be
found, see for example (to quote earlier ones) the works of Funaki [12], Gärtner [13] or Oelschläger [31]. Interestingly
enough, the proof of existence and uniqueness extends to models with a common noise of the form

dXt = b(Xt ,μt )dt + σ(Xt ,μt )dBt + σ0(t,Xt ,μt )dWt, (6)

with the constraint that μt now matches the conditional law of Xt given the realization of W , where (Wt )t∈[0,T ] is a new
Brownian motion, independent of (Bt )t∈[0,T ] and of dimension m0, and σ0 stands for a new volatility coefficient defined
in the same manner as σ . Importantly, μt becomes random under the presence of W . The terminology common noise is
better understood when we write down the analogue of (5), which reads:

dXi
t = b

(
Xi

t ,μ
N
t

)
dt + σ

(
Xi

t ,μ
N
t

)
dBi

t + σ0
(
Xi

t ,μ
N
t

)
dWt, i = 1, . . . ,N. (7)

The key fact here is that all the particles are driven by the same noise (Wt )t∈[0,T ], which is of course assumed to be
independent of the collection (Bi

t )t∈[0,T ],1≤i≤N . The reader may have a look at the works of Vaillancourt [38], Dawson
and Vaillancourt [7], Kurtz and Xiong [25,26] or Coghi and Flandoli [3] for more details on (6) and (7).

Let us describe restoration of uniqueness phenomena for McKean–Vlasov equations. Well-posedness may fail to be
true for the “deterministic” equation (i.e. σ ≡ 0 in (4) in which case the randomness only comes from the initial condition)
when the drift term b = b(x,μ) is not regular enough. Existing results in the field show that it is possible to require b

to be merely measurable and bounded in the space variable x and Lipschitz-continuous in the measure variable μ, with
respect to the topology generated by the total variation distance dTV, defined by

dTV(μ, ν) := 2 sup

{∣∣∣∣∫
Rd

f dμ −
∫
Rd

f dν

∣∣∣∣;f :Rd →R measurable,‖f ‖L∞ ≤ 1

}
,

which is finer than the topology generated by the Wasserstein distance W2. In particular, Jourdain [16] has proved that
restoration of uniqueness holds in a weak sense for McKean–Vlasov equation (4) in a case where σ ≡ 1 and b is bounded,
measurable and Lipschitz-continuous in its measure variable with respect to dTV. Recently, several papers have improved
the results, proving well-posedness for more general coefficients σ in cases where σ does not depend on μ [2,27,30,34].
In [30], Mishura and Veretennikov have in particular shown pathwise uniqueness under Lipschitz-continuity assumptions
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on b with respect to the measure variable and on σ with respect to the space variable. In [27], Lacker gives a short proof
of well-posedness relying on a fixed-point argument. Röckner and Zhang [34] have extended the results to the case of
unbounded coefficients with suitable integrability properties, in the sense of Krylov-Röckner [22]. Let us emphasize once
more that b is assumed to be at least Lipschitz-continuous with respect to the measure-variable in total variation distance.
This assumption might presumably be explained by the fact that the finite dimensional noise B cannot have a regularizing
effect on the infinitely many directions of the measure argument of b; that is one of the reasons that drives us to study
more precisely the effect of a noise defined on the Wasserstein space P2(R).

0.2. Diffusions on the Wasserstein space

Before defining the diffusion model that we use in this text, let us briefly introduce the pre-existing models that have
inspired our construction. In [40], von Renesse and Sturm constructed a so-called Wasserstein diffusion on the space of
probability measures on [0,1], that is a Markovian stochastic process (μt )t∈[0,T ] with a reversibility property with respect
to an entropic measure on P2([0,1]). Interestingly, the dynamics of (μt )t∈[0,T ] are similar to the dynamics of a standard
Brownian motion, in the sense that the large deviations in small time are given by the Wasserstein distance W2 and the
martingale term that arises when expanding any smooth function ϕ of the measure argument along the process has exactly
the square norm of the Wasserstein gradient of ϕ as local quadratic variation. Stochastic processes owning those diffusive
features are various and several were studied in recent years. We decide in this paper to construct a diffusion inspired
by the nice model of coalescing particles called Modified Massive Arratia flow: in [18,20], Konarovskyi introduces a
diffusion model on P2(R) consisting in a modification of Arratia’s system of coalescing particles on the real line. To
wit, in Konarovskyi’s model, each particle carries a mass determining its quadratic variation and moves independently of
the other particles as long as it does not collide with another. To make it clear, at each collision between two particles,
both particles stick together and form a unique new particle with a mass equal to the sum of the masses of both incident
particles. At each time, the quadratic variation increment of a particle is given by the inverse of its mass. That model
satisfies interesting properties, studied by Konarovskyi and von Renesse in [19–21], including an Itô-like formula and
a Varadhan-like formula, with the Wasserstein distance W2 playing the analogous role of the Euclidean metric for the
standard Brownian motion. Moreover, those dynamics have a canonical representation as a process of quantile functions
(or increasing rearrangement functions) (yt )t∈[0,T ]: ∀u ∈ [0,1], yt (u) := sup{x ∈ R : μt((−∞, x]) ≤ u}.

Despite a simple construction and the diffusive properties described above, the question of the uniqueness of
Konarovskyi’s model (not only pathwise uniqueness but also uniqueness in law) remains – as far as the author knows –
open. In particular, it has a singularity at time t = 0+: if μ0 has a density with respect to the Lebesgue measure, then
almost surely for every t > 0, the probability measure μt is a finite weighted sum of Dirac masses or, in other words,
the quantile function yt is a step function. In [28], the author overcomes lack of uniqueness by modifying Konarovskyi’s
model, replacing the coalescing procedure by a system of particles interacting at short range; among others, whenever
the initial condition has a regular density, the solution itself remains an absolutely continuous measure. The author has
proved in [28] the convergence of that mollified model to the Modified Massive Arratia flow. The diffusion used in this
work to prove well-posedness of McKean–Vlasov equation is directly inspired from the works [20,28].

0.3. Main results of this work

This paper is divided into two parts and gives two complementary results of well-posedness, in a weak sense, of McKean–
Vlasov equations. First, we will address the case of a drift function b with low regularity in its measure variable but
C2-regularity in space. Second, we will treat a continuum of admissible velocity fields b that somehow interpolates the
assumptions of the first part and those of [2,16,27,30,34]. The structure of the equations are almost similar in both parts,
up to the addition of an idiosyncratic noise in the second part, which comes up with a slightly more general notion of
weak solution.

0.3.1. Restoration of uniqueness for a velocity field merely measurable in its measure argument
Let T ∈ (0,+∞) be a fixed time.

We perturb the deterministic McKean–Vlasov equation (1) by a diffusive noise: for each t ∈ [0, T ] and each u ∈ [0,1],{
dyt (u) = b(yt (u),μt )dt + 1

(
∫ 1

0 ϕ(yt (u)−yt (v))dv)1/2

∫
R

f (k)�(e−ikyt (u) dw(k, t));
μt = Leb[0,1] ◦y−1

t ,
(8)

with initial condition y0 = g. That equation describes a system of particles in interaction; for every u ∈ [0,1],
(yt (u))t∈[0,T ] denotes the trajectory of the particle indexed by u and for every t ∈ [0, T ], μt is the distribution of the
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cloud of particles. There is a mean-field interaction in SDE (8), both through a drift term b which takes as an argu-
ment the probability measure μt , and through the diffusion term, since the denominator (

∫ 1
0 ϕ(yt (u) − yt (v))dv)1/2 also

depends on the distribution on the real line of the cloud of particles.
Let us briefly describe the different terms appearing in equation (8).

- as in [20,28], the unknown (yt )t∈[0,T ] is a time-continuous stochastic process such that for each t ∈ [0, T ], yt is a
random variable with values in the space L

↑
2 [0,1]. Recall that for each t ∈ [0, T ], u ∈ [0,1] �→ yt (u) can be seen as

the quantile function associated to the measure μt = Leb[0,1] ◦y−1
t belonging to P2(R). Importantly, it means that we

are studying stochastic processes (μt )t∈[0,T ] in P2(R) that admit a canonical representation in the form of a tractable
process of quantile functions.

- the function b : R× L2[0,1] → R will be called the drift function or velocity field.
- the second term appearing in (8) is the diffusion term. This term looks like the process introduced by the author in [28].

We refer to Remark 1 below to explain the reasons why we slightly modify the shape of the diffusion here. It consists
of several parts:
� the complex-valued Brownian sheet w is defined by w := w� + iw�, where w� and w� are two independent real

Brownian sheets on R × [0, T ] and i = √−1. To make it clear, �(e−ikyt (u) dw(k, t)) = cos(kyt (u))dw�(k, t) +
sin(kyt (u))dw�(k, t). The definition of Brownian sheets will be recalled at the beginning of Part 1 of this paper.

� the function f will typically be of the form fα(k) = 1
(1+k2)α/2 . The higher α is, the smoother the diffusion term is

with respect to the space variable u.
� we denote by mt(u) := ∫ 1

0 ϕ(yt (u) − yt (v))dv the mass function. In order to avoid problems of cancellation of the
mass, we will only consider in this text functions ϕ which are positive everywhere on R. A typical example will be
the Gaussian density. Our results will also include the case where the mass is constant, i.e. when ϕ ≡ 1.

In words, the role of ϕ is to tune the local variance of the particle. This is similar to the models presented by
Konarovskyi [20] and by the author [28], where the quadratic variation of (yt (u))t∈[0,T ] is proportional to

∫ t

0
ds

ms(u)
.

In order to make the comparison more precise, we may compute the local covariation field of the martingale component
in (8), namely, for any two u,u′ ∈ [0,1],

d
〈
y·(u), y·

(
u′)〉

t
= 1

mt(u)1/2mt(u′)1/2

∫
R

f 2(k) cos
(
k
(
yt (u) − yt

(
u′)))dk dt

= �(F(f 2))(yt (u) − yt (u
′))

mt (u)1/2mt(u′)1/2
dt, (9)

where F(f 2) stands for the Fourier transform of f 2. Interestingly enough, formula (9) may be compared with the covari-
ation of the Modified Massive Arratia flow (see [20]):

〈
y·(u), y·

(
u′)〉

t
=

∫ t∧τu,u′

τu,u′

1

ms(u)
ds,

where τu,u′ := inf{t ≥ 0 : yt (u) = yt (u
′)}∧T stands for the collision stopping time and ms(u) := ∫ 1

0 1{τu,v≤s} dv stands for
the Lebesgue measure of the particles which have already coalesced with particle u at time s. For instance, whenever (say
to make it simple) f (k) = f1(k) = 1

(1+k2)1/2 , F(f 2)(x) behaves like exp(−|x|), which shows that the range of interaction
in (8) is infinite but decays exponentially fast. By computing the Fourier transform with a residue formula, the latter may
be shown to remain true whenever f (k) = fn(k) for any integer n ≥ 1, which proves that this new model shares some of
the features of the approximation introduced in [28] but has a longer interaction range.

The first main result of this paper is the following theorem, stating well-posedness of equation (8). The assumptions
on the velocity field b are simplified here, we refer to Definition 12 and to Theorem 22 for more details. We denote by
∂

(j)

1 b, j = 1,2, the first two derivatives of x �→ b(x,μ) at fixed μ.

Theorem 1. Let g be a strictly increasing C1-function. Let f : R → R be defined by f (k) = fα(k) := 1
(1+k2)α/2 , with

α > 3
2 . Let b : R × P2(R) → R be a bounded measurable function such that for each μ ∈ P2(R), x �→ b(x,μ) is twice

continuously differentiable and ∂1b and ∂
(2)
1 b are uniformly bounded on R×P2(R). Then there is a unique weak solution

to equation (8).

The proof of Theorem 1 relies on Girsanov’s Theorem. The main issue is to write the drift term b as a perturbation of
the noise. To achieve this goal, we have to invert the diffusion coefficient; more precisely, we will resolve the following
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equation: find a complex-valued process (ht )t∈[0,T ] satisfying for every x ∈ R and t ∈ [0, T ]

b(x,μt ) = 1

(
∫ 1

0 ϕ(x − yt (v))dv)1/2

∫
R

fα(k)�(
e−ikxht (k)

)
dk. (10)

Thanks to the fact (and this is our rationale for it) that we chose an interaction kernel in the diffusion term of (8) in a
Fourier-like shape, h can be defined as an inverse Fourier transform:

ht (k) = 1

fα(k)
F−1(b(·,μt ) · (ϕ ∗ pt)

−1/2)(k),

where pt denotes the density of the measure μt . To apply Girsanov’s Theorem, h should belong to L2(R;C); that is
why we assume in Theorem 1 some regularity of b with respect to the variable x. Remark that the higher α is, the more
difficult it is to invert the kernel. It highlights a balance between the regularity of the process y and the integrability of the
Fourier inverse of h.

Remark 1. Let us explain what happens when we perturb McKean–Vlasov equation (1) with the diffusion of [28]:

dyt (u) = b
(
yt (u),μt

)
dt + 1∫ 1

0 ϕ2(yt (u) − yt (v))dv

∫ 1

0
ϕ
(
yt (u) − yt

(
u′))dw

(
u′, t

)
.

Then, the inversion problem consists in finding an L2[0,1]-process (ht )t∈[0,T ] satisfying for every x ∈ R and t ∈ [0, T ]

b(x,μt ) = 1∫ 1
0 ϕ2(x − yt (v))dv

∫ 1

0
ϕ
(
x − yt

(
u′))ht

(
u′)du′,

and equivalently in solving for every x ∈R and t ∈ [0, T ]

(ht ◦ Ft)(x) = 1

pt(x)
F−1

(F(b(·,μt ) · (ϕ2 ∗ pt ))

F(ϕ)

)
(x), (11)

where Ft (resp. pt ) stands for the c.d.f. (resp. the density) associated to μt . There are two major hindrances with equa-

tion (11). The first one is the division by the density pt : pt is equal to zero outside the support of μt and F(b(·,μt )·((ϕ2)∗pt ))
F(ϕ)

has no chance to be smooth enough so that its inverse Fourier transform has compact support. It led us to change the model
so that the integral in the right-hand side of (10) is written as a Fourier transform. The second problem with (11) is the
division by F(ϕ). In the case where ϕ is a Gaussian density, 1

F(ϕ)(k)
behaves like ek2/2. Even if b is C∞ with respect to

its first variable, this would not be sufficient to obtain L2-integrability of h. Let us try to reduce the regularity of ϕ: if
ϕ(x) = e−|x|, then 1

F(ϕ)(k)
= 1 + k2. Nevertheless, the density pt cannot be of class C1 with this choice of function ϕ (we

refer to Remark 11). Thus even with smooth functions b, the regularity of ϕ2 ∗ pt is not sufficient to compensate for the
term 1

F(ϕ)
and to insure that ht belongs to L2. In order to solve this problem, we chose to consider two different functions

fα and ϕ respectively at numerator and denominator of the diffusive part of (8); this trick allows us to choose different
regularities on fα and on ϕ.

0.3.2. Restoration of uniqueness under a regularity assumption in both arguments of the velocity field
The second main result of this text is a well-posedness result for a continuum of admissible drift functions b that in-
terpolates the assumptions of Theorem 1 and the assumptions usually made for McKean–Vlasov equations with finite-
dimensional noise, namely b Lipschitz-continuous with respect to dTV in its measure variable and b bounded and mea-
surable in its space argument (see [2,16,27,30,34]). Importantly, we succeed to do so at the price of relaxing in a dramatic
manner the structure of the noise in hand and of the related notion of solution, adding in particular a new idiosyncratic
noise denoted by β . In particular, as we explain below, the diffusion used to obtain the latter interpolation result does not
fit the main features of the models in [20,28] and in the first part. Among others, we lose here the underlying property of
monotonicity, meaning that the solution can no longer be seen as the quantile function of the associated measure-valued
process. Nevertheless, we feel that this interpolation argument is important to make the connection between the regularity
assumptions of Theorem 1 and those used in the pre-existing literature.

Here is our new model. Let μ0 ∈P2(R) be an initial condition and ξ be a random variable with law μ0. Let w := w� +
iw� be a complex-valued Brownian sheet defined as in equation (8). Let (βt )t∈[0,T ] be a Brownian motion independent
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of (w, ξ). Let us consider the following McKean–Vlasov SDE with constant mass:⎧⎪⎨⎪⎩
dzt = b(zt ,μt )dt + ∫

R
f (k)�(e−ikzt dw(k, t)) + dβt ,

μt = LP(zt |Gμ,W
t ), (μ,w) ⊥⊥ (β, ξ)

z0 = ξ, LP(ξ) = μ0,

(12)

where (Gμ,W
t )t∈[0,T ] is the filtration generated by the Brownian sheet w and by the measure-valued process (μt )t∈[0,T ]

itself. Whereas w is seen as a common noise, the Brownian motion β is seen here as an idiosyncratic source of randomness
and μt can be seen as the law of zt with respect to the randomness carrying both the initial condition and the idiosyncratic
noise. The addition of the new source of randomness β is easily understood: similar to the Brownian motion in standard
SDEs, it allows to mollify the drift in the space variable x. As for the conditioning in the identity μt = LP(zt |Gμ,W

t ), it
must be compared with our presentation of McKean–Vlasov equations with a common noise, see (6). The main difference
between both is that the conditioning now involves μ itself: this comes from the fact we will allow for weak solutions,
namely for solutions for which μ may not be adapted with respect to the common noise w. In fact, the latter causes some
technical difficulties in the proofs. In particular, it requires to work with solutions that satisfy an additional assumption: the
observation of z cannot bias the future realizations of μ,w and β . That new requirement is known as the compatibility
condition and has been often used in the study of weak solutions to stochastic equations (see [23,24]). We refer to
Section 2.2 for a complete definition of the notion of weak compatible solution.

Here is our result. Let η > 0 and δ ∈ [0,1]. Let us consider the drift function b :R×P2(R) → R in the class (Hη,Cδ).
The definition of that class of admissible drift functions is given in Section 2.1, but roughly speaking, it contains functions
b such that for every fixed μ, x �→ b(x,μ) belongs to the Sobolev space Hη(R) with a Sobolev norm uniform in μ, and
for every fixed x, μ �→ b(x,μ) is δ-Hölder continuous in dTV. the Hölder norm being uniform in x. Then, we have the
following statement:

Theorem 2. Let η > 0 and δ ∈ [0,1] be such that η > 3
2 (1 − δ) and let b be of class (Hη,Cδ). Let f : R → R be

defined by f (k) = fα(k) := 1
(1+k2)α/2 , with 3

2 < α ≤ η
1−δ

. Then existence and uniqueness of a weak compatible solution
to equation (12) hold.

The condition η > 3
2 (1 − δ) quantifies the minimal regularity that is needed, with our approach, to restore uniqueness.

If b is Lipschitz-continuous in total variation distance with respect to μ (δ = 1), then almost no regularity of b in x

is needed (η > 0): it is close to the assumptions of [2,16,27,30,34]. If b is only uniformly bounded in μ (δ = 0), then
x �→ b(x,μ) should belong to Hη(R) for some η > 3

2 , which is slightly stronger than the assumption made in Theorem 1.
In particular, it holds if η = δ = 2

3 , in a case where b is not Lipschitz-continuous in any variable.

Organisation of the paper. The part 1 of this work will be devoted to the construction of the above-mentioned variant of
a diffusive model on the Wasserstein space and to the proof of the regularization result stated in Theorem 1. In the part 2,
we describe the trade-off between regularity in the space and in the measure variable and we prove Theorem 2.

Notations. Throughout this paper, we will always denote by CM the constants depending on M , even if they change
from one line to the next. We will also denote by 〈k〉 := (1 + k2)1/2.

1. Well-posedness of McKean–Vlasov equation

Let (,G, (Gt )t∈[0,T ],P) be a filtered probability space. Assume that G0 contains all the P-null sets.
Let us recall the definition, given by Walsh [41, p.269], of a real-valued Brownian sheet on R× [0, T ]. We call white

noise on R × [0, T ] any random set function W defined on the set of Borel subsets of R × [0, T ] with finite Lebesgue
measure such that

- for any A ∈ B(R × [0, T ]) with finite Lebesgue measure, W(A) is a normally distributed random variable with zero
mean and with variance equal to Leb(A);

- for any disjoint subsets A and B ∈ B(R × [0, T ]) with finite Lebesgue measures, W(A) and W(B) are independent
and W(A ∪ B) = W(A) + W(B).

The random function w : R × [0, T ] → R, defined for every t ∈ [0, T ] by w(k, t) = W([0, k] × [0, t]) if k ≥ 0 and
w(k, t) = W([k,0] × [0, t]) if k < 0, is called Brownian sheet on R × [0, T ]. Let us fix two independent (Gt )t∈[0,T ]-
adapted Brownian sheets w� and w� on R × [0, T ]. The process w = w� + iw� is called complex-valued Brownian
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sheet on R× [0, T ]. We refer to [28, Theorem 1.1] for an explanation as to how Brownian sheets are naturally related to
Konarovskyi’s model.

Let us rewrite hereafter equation (8): we are looking for a solution (yt )t∈[0,T ] with values in L
↑
2 [0,1] such that for any

u ∈ [0,1] and any t ∈ [0, T ],⎧⎪⎨⎪⎩
dyt (u) = b(yt (u),μt )dt + 1

mt (u)1/2

∫
R

f (k)(cos(kyt (u))dw�(k, t) + sin(kyt (u))dw�(k, t)),

μt = Leb[0,1] ◦y−1
t ,

y0 = g,

(13)

with mt(u) = ∫ 1
0 ϕ(yt (u) − yt (v))dv. Let us define and comment the different terms appearing in that equation. First,

the space L
↑
2 [0,1] is the set of square-integrable non-decreasing functions from [0,1] to R. To wit, we are looking for

solutions to (13) such that for each time t ∈ [0, T ], the map u �→ yt (u) is non-decreasing; therefore, it is the quantile
function associated to the measure μt . In other words, equation (13) is describing the random dynamics of the process
(μt )t∈[0,T ] via its canonical representation in terms of a quantile function process (yt )t∈[0,T ]. We will assume that the
initial condition belongs to L

↑
2+[0,1], the set of non-decreasing functions g : [0,1] →R such that there is p > 2 satisfying∫ 1

0 |g(u)|p du < +∞. The map ϕ : R → R is an even function of class C∞, decreasing on [0,+∞) and such that for
every x ∈ [0,+∞), ϕ(x) > 0. Typical examples of functions ϕ are the constant function ϕ ≡ 1 and the Gaussian density
ϕ(x) = 1√

2π
e−x2/2. The map f : R → R is an even and square integrable function. The precise assumptions on the drift

function b :R×P2(R) → R will be given later.
It should be once more emphasized that, due to the presence of the noise w, the process (μt )t∈[0,T ] is random. More

precisely, by a straightforward computation of Itô’s formula, it can be shown that the process (μt )t∈[0,T ] satisfies the
following SPDE:

dμt + ∂x

(
b(·,μt )μt

)
dt = 1

2
‖f ‖2

L2(R)∂
2
xx

(
μt

ϕ ∗ μt

)
dt − ∂x

(
μt

(ϕ ∗ μt)1/2

∫
R

f (k)�(
e−ik· dw(k, t)

))
. (14)

We recognize on the left-hand side of equation (14) a Fokker–Planck equation, with a diffusive perturbation appearing
on the right-hand side due to the addition of a noise. Here, ϕ ∗ μt := ∫

R
ϕ(· − x)dμt(x) represents the mass function.

If ϕ is close to the indicator function 10 and b ≡ 0, then equation (14) becomes very similar to the SPDE obtained by
Konarovskyi and von Renesse for their model [21]:

dμt = �(μt )dt + div(
√

μt dWt),

where � is defined as 〈f,�(ν)〉 := 1
2

∑
x∈Supp(ν) f

′′(x).
Let us first, in Section 1.1, construct the diffusion, i.e. solve equation (13) when b ≡ 0. Then, in Section 1.2, we will

prove well-posedness of equation (13) under the assumptions given in Theorem 1.

1.1. Construction of the diffusion without drift term

The aim of this section is to study the solvability of the equation without drift, i.e. equation (13) when b ≡ 0:

yt (u) = g(u) +
∫ t

0

1

ms(u)1/2

∫
R

cos
(
kys(u)

)
f (k)dw�(k, s) +

∫ t

0

1

ms(u)1/2

∫
R

sin
(
kys(u)

)
f (k)dw�(k, s), (15)

with ms(u) = ∫ 1
0 ϕ(ys(u) − ys(v))dv.

In Paragraph 1.1.1, we will introduce an auxiliary equation where the function ϕ is replaced by a truncated function
ϕM so that the diffusion coefficient is bounded. We will prove strong well-posedness of that equation, continuity and
monotonicity with respect to the space variable u of the solution. In Paragraph 1.1.2, we will deduce existence and
uniqueness of a strong solution to equation (15).

1.1.1. Existence, uniqueness and continuity of the diffusion
Let M ∈ N\{0}. Recall that ϕ is even and decreasing on [0,+∞). Let us define ϕM(x) := ϕ(|x| ∧ M). The interest in
replacing ϕ by ϕM is that ϕM is now bounded below by a positive constant: for each x ∈ R, ϕM(x) ≥ ϕ(M) > 0. Let us
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consider the following equation

yM
t (u) = g(u) +

∫ t

0

1

mM
s (u)1/2

∫
R

cos
(
kyM

s (u)
)
f (k)dw�(k, s)

+
∫ t

0

1

mM
s (u)1/2

∫
R

sin
(
kyM

s (u)
)
f (k)dw�(k, s), (16)

where mM
s (u) = ∫ 1

0 ϕM(yM
s (u) − yM

s (v))dv. Since the mass function mM
s is uniformly bounded below by ϕ(M), this

equation is easier to resolve and we expect that the solution also satisfies equation (15) up to a certain stopping time.
Following [14], we give the following definition:

Definition 2. A (Gt )t∈[0,T ]-adapted process (Mt)t∈[0,T ] is said to be an L2-valued (Gt )t∈[0,T ]-martingale if for each
time t ∈ [0, T ], Mt belongs to L2([0,1],R) and E[‖Mt‖L2] < +∞ and if for each h ∈ L2([0,1],R), the scalar product
(Mt ,h)L2 is a real-valued (Gt )t∈[0,T ]-martingale.

Recall that 〈k〉 := (1 + k2)1/2. The next proposition states well-posedness for equation (16):

Proposition 3. Let g ∈ L
↑
2+[0,1]. Assume that k �→ 〈k〉f (k) is square integrable. There exists a unique solution yM

in C([0, T ],L2[0,1]) to equation (16). Furthermore, the process (yM
t )t∈[0,T ] is an L2-valued continuous (Gt )t∈[0,T ]-

martingale.

Remark 4. In this proposition and in every following result, we assume, at least, that k �→ 〈k〉f (k) is square integrable
on R. In the particular case of fα(k) = 1

〈k〉α = 1
(1+k2)α/2 , this assumption is equivalent to the condition α > 3

2 .

Proof. The proof is based on a fixed-point argument, very similar to Proposition 3.5 in [28]. Define (M,‖·‖M) the space
of all z ∈ L2(,C([0, T ],L2[0,1])) such that (z(ω)t )t∈[0,T ] is a (Gt )t∈[0,T ]-adapted process with values in L2[0,1]. The
definition of ‖ · ‖M is given by ‖z‖M := E[supt≤T

∫ 1
0 |zt (u)|2 du]1/2. Define

ψ(z)t (u) := g(u) +
∫ t

0

1

mz
s(u)1/2

∫
R

cos
(
kzs(u)

)
f (k)dw�(k, s)

+
∫ t

0

1

mz
s(u)1/2

∫
R

sin
(
kzs(u)

)
f (k)dw�(k, s),

where mz
s(u) = ∫ 1

0 ϕM(zs(u) − zs(v))dv. For each z ∈ M, ψ(z) belongs to M, since by Burkholder–Davis–Gundy
inequality, there is C > 0 such that

E

[
sup
t≤T

∫ 1

0

∣∣ψ(z)t (u)
∣∣2 du

]
≤ 3‖g‖2

L2
+ CE

[∫ 1

0

∫ T

0

∫
R

cos2(kzs(u))f 2(k)

mz
s(u)

dk ds du

]

+ CE

[∫ 1

0

∫ T

0

∫
R

sin2(kzs(u))f 2(k)

mz
s(u)

dk ds du

]
≤ 3‖g‖2

L2
+ C‖f ‖2

L2
E

[∫ 1

0

∫ T

0

1

mz
s(u)

ds du

]
≤ 3‖g‖2

L2
+ CM‖f ‖2

L2
,

because mz
s ≥ ϕ(M) > 0. Moreover, (ψ(z)t )t∈[0,T ] is an L2-valued martingale and for each t ∈ [0, T ]

E

[
sup
s≤t

∫ 1

0

∣∣ψ(
z1)

s
− ψ

(
z2)

s

∣∣2(u)du

]

≤ CE

[∫ 1

0

∫ t

0

∫
R

∣∣∣∣cos(kz1
s (u))f (k)

mz1
s (u)1/2

− cos(kz2
s (u))f (k)

mz2
s (u)1/2

∣∣∣∣2 dk ds du

]

+ CE

[∫ 1

0

∫ t

0

∫
R

∣∣∣∣ sin(kz1
s (u))f (k)

mz1
s (u)1/2

− sin(kz2
s (u))f (k)

mz2
s (u)1/2

∣∣∣∣2 dk ds du

]
.
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For every u ∈ [0,1] and every s ∈ [0, T ], | cos(kz2
s (u))− cos(kz1

s (u))| ≤ k|z2
s (u)− z1

s (u)| and the same Lipschitz estimate
holds for the sine function. Furthermore, ϕM is bounded below and Lipschitz-continuous, since ϕM is C∞ on (−M,M),
continuous on R and constant on [M,+∞). Thus we have:∣∣∣∣ 1√

mz1
s (u)

− 1√
mz2

s (u)

∣∣∣∣ = 1√
mz1

s (u)

√
mz2

s (u)

1√
mz1

s (u) +
√

mz2
s (u)

∣∣mz1

s (u) − mz2

s (u)
∣∣

≤ 1

2ϕ(M)3/2

∫ 1

0

∣∣ϕM

(
z1
s (u) − z1

s (v)
) − ϕM

(
z2
s (u) − z2

s (v)
)∣∣dv

≤ CM

(∣∣z1
s (u) − z2

s (u)
∣∣ +

∫ 1

0

∣∣z1
s (v) − z2

s (v)
∣∣dv

)
. (17)

It follows that:

E

[
sup
s≤t

∫ 1

0

∣∣ψ(
z1)

s
− ψ

(
z2)

s

∣∣2(u)du

]
≤ CME

[∫ 1

0

∫ t

0

∫
R

∣∣z1
s (u) − z2

s (u)
∣∣2(1 + |k|2)∣∣f (k)

∣∣2 dk ds du

]

≤ CM

∫
R

〈k〉2
∣∣f (k)

∣∣2 dk

∫ t

0
E

[
sup
r≤s

∫ 1

0

∣∣z1
r (u) − z2

r (u)
∣∣2 du

]
ds.

Define hn(t) := E[sups≤t

∫ 1
0 |ψ◦n(z1)s − ψ◦n(z2)s |2(u)du]. There is a constant CM,f depending on M and on∫

R
〈k〉2|f (k)|2 dk such that for all n ∈ N and for all t ∈ [0, T ], we have hn+1(t) ≤ CM,f

∫ t

0 hn(s)ds. Therefore,

hn(t) ≤ Cn
M,f tn

n! h0(t) and we deduce that ‖ψ◦n(z1) − ψ◦n(z2)‖2
M ≤ CM,f T n

n! ‖z1 − z2‖2
M. Let n be large enough so that

Cn
M,f T n

n! < 1, i.e. so that ψ◦n is a contraction. Then ψ admits a unique fixed point, which we denote by yM . Since
yM = ψ(yM), it is an L2-valued continuous (Gt )t∈[0,T ]-martingale. �

In the following two propositions, we prove that the process (yM
t )t∈[0,T ] preserves continuity and monotonicity of the

initial condition, under the same integrability assumption on f than in Proposition 3.

Proposition 5. Let g ∈ L
↑
2+[0,1] such that g is δ-Hölder for some δ > 0. Assume that k �→ 〈k〉f (k) is square integrable.

There exists a version of yM in C([0,1] × [0, T ]).

Proof. Let u1, u2 ∈ [0,1]. Let p ≥ 2 such that p > 1
δ
. For every t ∈ [0, T ], by Burkholder–Davis–Gundy inequality,

E

[
sup
s≤t

∣∣yM
s (u1) − yM

s (u2)
∣∣p]

≤ Cp

∣∣g(u1) − g(u2)
∣∣p + Cp,ME

[(∫ t

0

∫
R

〈k〉2f (k)2 dk
∣∣yM

s (u1) − yM
s (u2)

∣∣2 ds

) p
2
]
.

It follows that

E

[
sup
s≤t

∣∣yM
s (u1) − yM

s (u2)
∣∣p] ≤ Cp

∣∣g(u1) − g(u2)
∣∣p + Cp,M,f tp/2−1E

[∫ t

0

∣∣yM
s (u1) − yM

s (u2)
∣∣p ds

]
≤ Cp

∣∣g(u1) − g(u2)
∣∣p + Cp,M,f tp/2−1

∫ t

0
E

[
sup
r≤s

∣∣yM
r (u1) − yM

r (u2)
∣∣p]ds.

By Gronwall’s Lemma, and using the δ-Hölder regularity of g, we have:

E

[
sup
t≤T

∣∣yM
t (u1) − yM

t (u2)
∣∣p] ≤ CM,p,f |u1 − u2|pδ.

Remark that pδ − 1 > 0. Let us apply Kolmogorov’s Lemma (e.g in [33, Theorem I.2.1, p.26] with d = 1, γ = p and
ε = pδ − 1). Thus there exists a version ỹM of yM in C([0,1] × [0, T ]). �
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Proposition 6. Let g ∈ L
↑
2+[0,1]. Let u1 < u2 ∈ [0,1] be such that g(u1) < g(u2). Assume that k �→ 〈k〉f (k) is square

integrable. Let yM be the solution to equation (16). Then almost surely and for every t ∈ [0, T ], yM
t (u1) < yM

t (u2).

Proof. Let u1 < u2 ∈ [0,1] be such that g(u1) < g(u2). Thus the process Yt = yM
t (u2) − yM

t (u1) satisfies

Yt = g(u2) − g(u1) +
∫ t

0
Ys dNM

s , (18)

where we denote

NM
t =

∫ t

0

∫
R

1{yM
s (u1)�=yM

s (u2)}
θ�
M(yM

s (u2), k, s) − θ�
M(yM

s (u1), k, s)

yM
s (u2) − yM

s (u1)
f (k)dw�(k, s)

+
∫ t

0

∫
R

1{yM
s (u1)�=yM

s (u2)}
θ�
M(yM

s (u2), k, s) − θ�
M(yM

s (u1), k, s)

yM
s (u2) − yM

s (u1)
f (k)dw�(k, s)

and θ�
M(x, k, s) = cos(kx)

(
∫ 1

0 ϕM(x−yM
s (v))dv)1/2

and θ�
M(x, k, s) = sin(kx)

(
∫ 1

0 ϕM(x−yM
s (v))dv)1/2

. Thus we have

〈
NM,NM

〉
t
=

∫ t

0

∫
R

1{yM
s (u1)�=yM

s (u2)}
∣∣∣∣θ�

M(yM
s (u2), k, s) − θ�

M(yM
s (u1), k, s)

yM
s (u2) − yM

s (u1)

∣∣∣∣2f (k)2 dk ds

+
∫ t

0

∫
R

1{yM
s (u1)�=yM

s (u2)}
∣∣∣∣θ�

M(yM
s (u2), k, s) − θ�

M(yM
s (u1), k, s)

yM
s (u2) − yM

s (u1)

∣∣∣∣2f (k)2 dk ds.

For every x1, x2 ∈R, for every k ∈ R and for every s ∈ [0, T ], we have the following two estimates:∣∣cos(kx2) − cos(kx1)
∣∣ ≤ k|x2 − x1|,∣∣∣∣∫ 1

0
ϕM

(
x2 − yM

s (v)
)

dv −
∫ 1

0
ϕM

(
x1 − yM

s (v)
)

dv

∣∣∣∣ ≤ Lip(ϕM)|x2 − x1|.

It follows, by the same computation as (17), that∣∣∣∣ 1

(
∫ 1

0 ϕM(x2 − yM
s (v))dv)1/2

− 1

(
∫ 1

0 ϕM(x1 − yM
s (v))dv)1/2

∣∣∣∣ ≤ CM |x2 − x1|.

Thus for every x1, x2 ∈R,

∣∣θ�
M(x2, k, s) − θ�

M(x1, k, s)
∣∣ ≤

∣∣∣∣ cos(kx2) − cos(kx1)

(
∫ 1

0 ϕM(x2 − yM
s (v))dv)1/2

∣∣∣∣
+ ∣∣cos(kx1)

∣∣∣∣∣∣ 1

(
∫ 1

0 ϕM(x2 − yM
s (v))dv)

1
2

− 1

(
∫ 1

0 ϕM(x1 − yM
s (v))dv)

1
2

∣∣∣∣
≤ CM 〈k〉|x2 − x1|.

Therefore, for every s ∈ [0, T ],

1{yM
s (u1)�=yM

s (u2)}
∣∣∣∣θ�

M(yM
s (u2), k, s) − θ�

M(yM
s (u1), k, s)

yM
s (u2) − yM

s (u1)

∣∣∣∣2 ≤ CM〈k〉2.

We have a similar bound on θ�. We deduce that d〈NM,NM 〉s
ds

≤ CM

∫
R
〈k〉2f (k)2 dk for each s ∈ [0, T ]. Hence the SDE (18)

has a unique solution and it is Yt = (g(u2) − g(u1)) exp(NM
t − 1

2 〈NM,NM 〉t ). In particular

yM
t (u2) − yM

t (u1) = (
g(u2) − g(u1)

)
exp

(
NM

t − 1

2

〈
NM,NM

〉
t

)
.

Since g(u1) < g(u2), we deduce that for every t ∈ [0, T ], Yt > 0. Thus for every t ∈ [0, T ], yM
t (u1) < yM

t (u2). �
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Corollary 7. Let g ∈ L
↑
2+[0,1] such that g is δ-Hölder for some δ > 1

2 . Assume that k �→ 〈k〉f (k) is square integrable.
Then there is a version yM of the solution to equation (16) in C([0,1]×[0, T ]) such that almost surely, for each t ∈ [0, T ],
u ∈ [0,1] �→ yM

t (u) is strictly increasing.

Proof. By Proposition 5, we know that there is a version yM of the solution to (16) jointly continuous in time and space.
Furthermore, by Proposition 6, there exists an almost sure event ̃ under which yM belongs to C([0,1] × [0, T ]) and

for every t ∈ [0, T ] and for every u1, u2 ∈ Q∩ [0,1] such that u1 < u2, we have yM
t (u1) < yM

t (u2). Since u �→ yM
t (u) is

continuous under the event ̃, we deduce that yM
t (u1) < yM

t (u2) holds with every u1 < u2 ∈ [0,1]. �

1.1.2. Construction of a solution without blow-up
In this paragraph, we build a solution to equation (15), provided that the initial condition g is smooth enough.

Definition 8. Let G1 denote the set of C1-functions g : [0,1] → R such that for all u < v, g(u) < g(v).

Remark that every g in G1 is the quantile function of a measure μ0, which is absolutely continuous with respect to the
Lebesgue measure on R. Indeed, let F0 be the inverse map of g, i.e. the unique map F0 : [g(0), g(1)] → [0,1] such that
F0 ◦ g = id[0,1], and let p0 the first derivative of F0. Then F0 and g are respectively the cumulative distribution function
(c.d.f) and the quantile function of the measure μ0 with density p0. Furthermore, p0 is continuous and has a compact
support equal to [g(0), g(1)].

Let g ∈ G1. Let us fix M0 an integer such that M0 > g(1) − g(0). We want to construct a solution to equation (15)
starting at g, well-defined and continuous on the whole interval [0, T ]. We will construct it on the basis of the family
(yM)M≥M0 of solutions to equation (16) for each M ≥ M0. Since g belongs to G1, the assumptions made in Propositions 3
and 5 and Corollary 7 can be applied. Thus for every u,v ∈ [0,1] and for every t ∈ [0, T ], |yM

t (u) − yM
t (v)| ≤ yM

t (1) −
yM
t (0). For every M,M ′ ≥ M0, define

τM

(
yM ′) := inf

{
t ≥ 0 : yM ′

t (1) − yM ′
t (0) ≥ M

} ∧ T .

Since M > g(1) − g(0) and since the process yM ′
· (1) − yM ′

· (0) is continuous, τM(yM ′
) > 0 almost surely for every

M,M ′ ≥ M0. Assume that M ≤ M ′. Then for every s ≤ τM(yM ′
), for every u,v ∈ [0,1], |yM ′

s (u) − yM ′
s (v)| ≤ M ≤ M ′

and thus

ϕM ′
(
yM ′
s (u) − yM ′

s (v)
) = ϕ

(
yM ′
s (u) − yM ′

s (v)
) = ϕM

(
yM ′
s (u) − yM ′

s (v)
)
.

Let σ = τM(yM) ∧ τM(yM ′
). We deduce from the latter equality that the processes (yM

t∧σ )t∈[0,T ] and (yM ′
t∧σ )t∈[0,T ] are

both solutions to the same stochastic differential equation:

zt (u) = g(u) +
∫ t∧σ

0

1

mz
s(u)1/2

(∫
R

cos
(
kzs(u)

)
f (k)dw�(k, s) +

∫
R

sin
(
kzs(u)

)
f (k)dw�(k, s)

)
, (19)

where mz
s(u) = ∫ 1

0 ϕM(zs(u) − zs(v))dv.
Assume that k �→ 〈k〉f (k) is square integrable. Therefore, by pathwise uniqueness of the solution to equation (19),

which follows from the same argument as in Proposition 3, we have for all u ∈ [0,1], for all t ∈ [0, T ], yM
t∧σ (u) = yM ′

t∧σ (u),
whence τM(yM) = τM(yM ′

). From now on, we will denote that stopping time by τM . The sequence of stopping times
(τM)M≥1 is non-decreasing.

Setting τM0−1 = 0, we define yt (u) := 1{t=0}g(u) + ∑+∞
M=M0

1{t∈(τM−1,τM ]}yM
t (u) for every t ∈ [0, T ] and u ∈ [0,1].

Let τ∞ := supM≥M0
τM . Clearly, τ∞ > 0 almost surely. Since τM ≤ T for every M ≥ M0, we have τ∞ ≤ T . Furthermore,

for each M ≥ M0, y = yM on [0, τM ] and on the interval [0, τ∞), (yt )t∈[0,T ] solves equation (15).
Let us remark that P-almost surely, u �→ yt (u) is strictly increasing for every t ∈ [0, T ]. Moreover, the following

proposition states that it is the unique solution in C([0,1] × [0, T ]) to equation (15).

Proposition 9. Let g ∈ G1. Assume that k �→ 〈k〉f (k) is square integrable. There exists a unique solution y in C([0,1] ×
[0, T ]) to equation (15) and this solution is defined on [0, T ]. Furthermore, the process (yt )t∈[0,T ] is (Gt )t∈[0,T ]-adapted.

Proof. First, we prove that τ∞ defined above is almost surely equal to T . Let M ≥ M0. Let us estimate P[τM < T ].
Define zM

t := yM
t (1)− yM

t (0). Then (zM
t )t∈[0,T ] is a continuous and square integrable local martingale on [0, T ] and thus

there is a standard P-Brownian motion β such that zM
t = g(1) − g(0) + β〈zM,zM 〉t . Moreover, τM = inf{t : zM

t ≥ M} ∧ T .
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Under the event {τM < T }, there is a random time t0 ∈ [0, T ) such that zM
t0

≥ M whereas for all t ∈ [0, T ], zM
t > 0 by

Proposition 6. Let us define the process (γt )t≥0 by γt := g(1) − g(0) + βt . Under the measure P, it is a Brownian motion
starting at g(1) − g(0) ∈ (0,M). Moreover, under the event {τM < T }, (γt )t≥0 reaches the level M before it reaches the
level 0. Therefore, P[τM < T ] ≤ P[(γt )t≥0 reaches M before 0] = g(1)−g(0)

M
. Since {τM < T }M≥M0 is a non-increasing

sequence of events, we deduce that P[⋂{M≥M0}{τM < T }] = 0. Thus P-almost surely, there exists M ≥ M0 such that

τM = T , whence y = yM . It follows that τ∞ = T almost surely. Thus y is a continuous solution to equation (15) defined
on [0, T ].

Let us now prove pathwise uniqueness. Let x1 and x2 be two solutions on (,G,P) to equation (15) in C([0,1] ×
[0, T ]). Let ε > 0. For every M ≥ M0, let us define the following event: Ai

M := {ω ∈  : supu∈[0,1],t∈[0,T ] |xi
t (u)|(ω) ≤

M
2 }, i = 1,2. Let AM := A1

M ∩ A2
M . The sequence of events (AM)M≥M0 is non-decreasing and it follows from the fact

that x1 and x2 are continuous that P[⋃M≥M0
AM ] = 1. Thus there is M such that P[AM ] > 1 − ε.

Let M be such that P[AM ] > 1 − ε. Let τ i
M := inf{t ≥ 0 : xi

t (1) − xi
t (0) ≥ M} ∧ T and τM = τ 1

M ∧ τ 2
M . For i = 1,2,

the same argument as the one given in Corollary 7 implies that almost surely for each t ∈ [0, T ], u �→ xi
t∧τM

(u) is
strictly increasing. Therefore, under the event AM , the equality τM = T holds. Moreover, the processes (x1

t∧τM
)t∈[0,T ]

and (x2
t∧τM

)t∈[0,T ] satisfy equation (16) up to the same stopping time τM . By Proposition 3, pathwise uniqueness holds
for equation (16), so P[x1·∧τM

�= x2·∧τM
] = 0. In particular, 0 = P[{x1·∧τM

�= x2·∧τM
} ∩ AM ] = P[{x1 �= x2} ∩ AM ]. It follows

that P[x1 �= x2] < ε for every ε > 0. Since ε > 0 is arbitrary, we conclude that P[x1 �= x2] = 0 and pathwise uniqueness
holds for (15). �

1.1.3. Higher regularity of the solution map
Let us remark that there is a strong relation between the regularity, for each fixed t , of the map u �→ yt (u) and the rate
of decay at infinity of f . We have already seen in Proposition 9 that the afore-mentioned map is continuous for every
t ∈ [0, T ] if k �→ 〈k〉f (k) belongs to L2(R). By differentiating formally y with respect to u, we expect that the derivative
of y is a solution to the following linear stochastic differential equation for every u ∈ [0,1]:

zt (u) = g′(u) +
∫ t

0
zs(u)

∫
R

φ�(u, k, s)f (k)dw�(k, s) +
∫ t

0
zs(u)

∫
R

φ�(u, k, s)f (k)dw�(k, s), (20)

where

φ�(u, k, s) := −k sin(kys(u))

(
∫ 1

0 ϕ(ys(u) − ys(v))dv)1/2
− cos(kys(u))

∫ 1
0 ϕ′(ys(u) − ys(v))dv

2(
∫ 1

0 ϕ(ys(u) − ys(v))dv)3/2
;

φ�(u, k, s) := k cos(kys(u))

(
∫ 1

0 ϕ(ys(u) − ys(v))dv)1/2
− sin(kys(u))

∫ 1
0 ϕ′(ys(u) − ys(v))dv

2(
∫ 1

0 ϕ(ys(u) − ys(v))dv)3/2
.

For every j ∈ N and every θ ∈ [0,1), let Gj+θ denote the set of functions g ∈ G1 which are j -times differentiable and
such that g(j) is θ -Hölder continuous.

Proposition 10. Let θ ∈ (0,1). Let g ∈ G1+θ . Assume that k �→ 〈k〉1+θf (k) is square integrable. Almost surely, for every
t ∈ [0, T ], the map u �→ yt (u) belongs to G1+θ ′

for every 0 ≤ θ ′ < θ and (∂uyt )t∈[0,T ] satisfies equation (20). Moreover,
the derivative has the following explicit form:

∂uyt (u) = g′(u) exp

(∫ t

0

∫
R

φ�(u, k, s)f (k)dw�(k, s) +
∫ t

0

∫
R

φ�(u, k, s)f (k)dw�(k, s)

− 1

2

∫ t

0

∫
R

(
φ�(u, k, s)2 + φ�(u, k, s)2)f (k)2 dk ds

)
.

More generally, if for an integer j ≥ 1, g belongs to Gj+θ and k �→ 〈k〉j+θf (k) is square integrable, then almost surely,
for every t ∈ [0, T ], the map u �→ yt (u) belongs to Gj+θ ′

for every 0 ≤ θ ′ < θ .

Remark 11. Let us consider the case of fα(k) = 1
〈k〉α . The assumption 〈k〉j+θfα(k) ∈ L2(R) is equivalent to the condition

α > j + θ + 1
2 . If f is the Cauchy density f (k) = 1

1+k2 , then the process u �→ yt (u) is differentiable and its derivative is

θ ′-Hölder continuous for every θ ′ < 1
2 .
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By the property of monotonicity of yt , we deduce that almost surely, for every t ∈ [0, T ], u �→ ∂uyt (u) > 0. Recall that
the c.d.f. Ft associated to yt is equal to Ft = (yt )

−1 and that the density of pt is the first derivative of Ft . Therefore, for
every u ∈ [0,1], Ft(yt (u)) = u and pt(yt (u))∂uyt (u) = 1. Thus for every x ∈ [yt (0), yt (1)],

pt (x) = 1

∂uyt (Ft (x))
.

It follows that pt has the same regularity than ∂uyt . If f (k) = 1
1+k2 , then pt is θ ′-Hölder continuous for every θ ′ < 1

2 .

In order to prove Proposition 10, we first replace ϕ by a function ϕM bounded below as previously and prove the
result for the corresponding equation: since every coefficient is now Lipschitz-continuous, the computations are classical.
Finally, we recover the result of Proposition 10 for a non-truncated function ϕ by using the fact that almost surely for
each time t , the solution y is equal to y·∧τM

for M large enough. The interest reader may find a comprehensive proof of
Proposition 10 in [29, Prop. II.9].

1.2. Well-posedness of McKean–Vlasov equation with Wasserstein diffusion

We denote by Fφ the Fourier transform of a function φ; if φ belongs to L1(R), Fφ(x) = 1√
2π

∫
R

e−ixyφ(y)dy. Recall

that Plancherel’s formula states that: ‖φ‖L2 = ‖Fφ‖L2 . We denote by F−1 the inverse Fourier transform.
Let us recall equation (13):⎧⎪⎨⎪⎩

dyt (u) = b(yt (u),μt )dt + 1
mt (u)1/2

∫
R

f (k)�(e−ikyt (u) dw(k, t)),

μt = Leb[0,1] ◦y−1
t ,

y0 = g,

with mt(u) = ∫ 1
0 ϕ(yt (u) − yt (v))dv.

In the previous section, we studied equation (13) in the case where the drift b is zero. As explained in the Introduction,
the well-posedness of equation (13) will be deduced from the well-posedness of the diffusion without drift by a Girsanov
transformation. Therefore, we will have to construct an L2-valued process (ht )t∈[0,T ] satisfying equation (10).

Importantly, we will assume the following assumption on b :R×P2(R) → R.

Definition 12. A measurable function b :R×P2(R) → R is said to satisfy the b-hypotheses of order j ∈N\{0} if:

(B1) for every μ ∈P2(R), x �→ b(x,μ) is continuous and j -times differentiable on R;
(B2) for every i ∈ {0,1, . . . , j}, there is a sequence (Ci(M))M≥M0 such that the inequality |∂(i)

1 b(x,μ)| ≤ Ci(M) holds
for every x ∈ R and for every μ ∈P2(R) with compact support satisfying |Suppμ| ≤ M .

(B3) the sequence (C0(M))M≥M0 satisfies C0(M)
M

−→
M→+∞ 0.

We say that B : (x, z) ∈ R × L2[0,1] �→ b(x,Leb[0,1] ◦z−1) satisfies the B-hypotheses of order j if the associated b

satisfies the b-hypotheses of order j .

Of course, every bounded function b such that (B1) holds true satisfies the b-hypotheses of order j . Moreover, Defi-
nition 12 also allows us also to consider unbounded functions b, for which x �→ b(x,μ) is uniformly bounded when the
support of μ is controlled, in the sense of assumption (B2). Assumption (B3) is here to ensure that the solution to the
drifted equation almost surely does not blow up before final time T , as we will explain hereafter.

Remark 13. Let us give a few examples of admissible drift functions:

- Let b1(x,μ) := Eμ[a(x,Y )] = ∫
R

a(x, y)dμ(y) or equivalently B1(x, z) := ∫ 1
0 a(x, z(u))du. If a : R2 → R is

bounded and x �→ a(x, y) is j -times differentiable with bounded derivatives, then b1 satisfies the b-hypotheses of
order j .

- Let b2(x,μ) := a(Eμ[Y ]) = a(
∫
R

y dμ(y)). If a is bounded, then b2 satisfies the b-hypotheses of every order.
- Let b3(x,μ) := a(x,Eμ[ψ(Y )]) = a(x,

∫
R

ψ(y)dμ(y)). If a is bounded and j -times partially differentiable in its first
argument with bounded derivatives and if ψ is measurable, then b3 satisfies the b-hypotheses of order j .

- Let b4(x,μ) = a(x)Varμ[Y ]η , where η < 1
2 . If a is bounded with j bounded derivatives, then b4 satisfies the b-

hypotheses of order j . Indeed, if μ has a compact support with |Suppμ| ≤ M , then Var[Y ]η ≤ M2η; thus C0(M)
M

≤
‖a‖L∞

M2η

M
→ 0.
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Let us emphasize the fact that, in the first example above, μ �→ b1(x,μ) is Lipschitz-continuous in total variation distance,
with a Lipschitz constant uniform in x given by the L∞-norm of a. This means that restoration of uniqueness for the
McKean–Vlasov equation associated with b1 can also be obtained with finite-dimensional noise, since b1 satisfies the
assumptions of [16]. Actually, Jourdain proved those results even in cases where a is only bounded. Therefore, in the
case of the first example above, our assumptions are more restrictive than previous existing litterature. The main interest
of the study conducted here is that our result applies for examples b2, b3 and b4, which do not satisfy the assumptions
of [16,30].

The regularity assumptions on the x-dependence of the drift function b depend on the decay rate of f at infinity. Recall
that the faster f decays at infinity, the higher regularity we can expect on the solution process; nevertheless, the drawback
is that we have to assume higher regularity on the drift function b to be able to invert it. Therefore, the choice of the decay
rate α of f is crucial to obtain well-posedness for classes of drift functions of low regularity.

Definition 14. We say that f : R→R is of order α > 0 if there exist two constants C and c > 0 such that c
〈k〉α ≤ f (k) ≤

C
〈k〉α for every k ∈ R. Recall that 〈k〉 := (1 + k2)1/2.

In order to make clear this relation between regularity of b and decay rate of f , we will prove in Paragraph 1.2.1
well-posedness for equation (13) in a simplified case: we will assume that the mass is constant, namely that ϕ ≡ 1, and
that for each μ ∈ P2(R), b(·,μ) belongs to a Sobolev space with a Sobolev norm uniform in μ. In Paragraph 1.2.2, we
will then give a general statement for more general functions ϕ and b, but the idea of proof is the same up to technicalities.

1.2.1. Simple case with constant mass and bounded drift function
Let us assume in this paragraph that ϕ is the constant function equal to one. In other words, we are studying the following
equation:⎧⎪⎨⎪⎩

dyt (u) = b(yt (u),μt )dt + ∫
R

f (k)�(e−ikyt (u) dw(k, t)),

μt = Leb[0,1] ◦y−1
t ,

y0 = g.

(21)

Let us fix α,η > 0 and let us assume that f : R→R is of order α, according to Definition 14. Let b :R×P2(R) →R

be a measurable function such that for each μ ∈ P2(R), the map x �→ b(x,μ) belongs to the Sobolev space Hη(R)

uniformly in μ, that is there is a constant C such that for every μ ∈ P2(R), ‖b(·,μ)‖Hη ≤ C, where

‖φ‖Hη := ‖k �→ 〈k〉ηFφ(k)‖L2 =
(∫

R

(
1 + k2)η∣∣Fφ(k)

∣∣2 dk

)1/2

.

We also denote by B : R × L2[0,1] → R the function B(x, z) := b(x,Leb[0,1] ◦z−1). Of course, for every z ∈ L2[0,1],
inequality ‖B(·, z)‖Hη ≤ C also holds with the same constant C as above.

The following lemma is the key step in order to apply a Girsanov transformation in equation (21). Let us fix f , B

and a (Gt )t∈[0,T ]-adapted process (xt )t∈[0,T ] with values in C([0,1],R). Then we are looking for an L2(R,C)-valued
(Gt )t∈[0,T ]-adapted process (ht )t∈[0,T ] = (h�

t + ih�
t )t∈[0,T ] such that for every t ∈ [0, T ] and for every u ∈ [0,1]

B
(
xt (u), xt

) =
∫
R

e−ikxt (u)f (k)ht (k)dk, (22)

or equivalently, taking the real part of (22) (and using that B and f are real-valued), to find two L2(R,R)-valued
(Gt )t∈[0,T ]-adapted processes (h�

t )t∈[0,T ] and (h�
t )t∈[0,T ] such that

B
(
xt (u), xt

) =
∫
R

cos
(
kxt (u)

)
f (k)h�

t (k)dk +
∫
R

sin
(
kxt (u)

)
f (k)h�

t (k)dk.

Lemma 15. Let α,η > 0. Let f be of order α and b : R × P2(R) → R be a measurable function such that for each
μ ∈ P2(R), b(·,μ) belongs to Hη(R) with a uniform Hη-norm. Let (xt )t∈[0,T ] be a (Gt )t∈[0,T ]-adapted process taking
values in C([0,1],R).

If η ≥ α, then there is a (Gt )t∈[0,T ]-adapted process (ht )t∈[0,T ] solution, for every t ∈ [0, T ], to equation (22) and such

that there exists C > 0 depending only on b and f for which
∫ T

0

∫
R

|ht (k)|2 dk dt ≤ C holds almost surely.
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Proof. By the substitution y = xt (u), equation (22) is equivalent to

B(y, xt ) =
∫
R

e−ikyf (k)ht (k)dk (23)

for every y ∈ Im(xt ). In particular, if a process (ht )t∈[0,T ] satisfies (23) for every y ∈ R, then it satisfies (22) for every
u ∈ [0,1]. Computing the Fourier transform on each side of equation (23), we have F(f ht ) = 1√

2π
B(·, xt ). Therefore,

the process defined by

ht (k) := 1√
2πf (k)

F−1(B(·, xt )
)
(k) (24)

solves equation (22), provided that ht is square integrable for every t ∈ [0, T ]. Let us compute the L2-norm of h: there
are C1 and C2 such that∫ T

0

∫
R

∣∣ht (k)
∣∣2 dk dt ≤ C1

∫ T

0

∫
R

〈k〉2α
∣∣F−1(B(·, xt )

)
(k)

∣∣2 dk dt

≤ C1

∫ T

0

∫
R

〈k〉2η
∣∣F−1(B(·, xt )

)
(k)

∣∣2 dk dt

= C1

∫ T

0

∫
R

〈k〉2η
∣∣F(

B(·, xt )
)
(k)

∣∣2 dk dt = C1

∫ T

0

∥∥B(·, xt )
∥∥

Hη dt ≤ C2,

where we used the fact that f is of order α, that α ≤ η and that F−1(φ)(·) =F(φ)(−·) for each φ ∈ L2(R). �

Let us give, in accordance with [17], the following sense to a weak solution to SDE (21).

Definition 16. A sextuple (,G, (Gt )t∈[0,T ],P, z,w) is said to be a weak solution to equation (21) if

- (,G, (Gt )t∈[0,T ],P) is a filtered probability space satisfying usual conditions,
- (zt )t∈[0,T ] is a continuous (Gt )t∈[0,T ]-adapted C[0,1]-valued process,
- w = (w�,w�), where (w�(k, t))k∈R,t∈[0,T ] and (w�(k, t))k∈R,t∈[0,T ] are two independent (Gt )t∈[0,T ]-Brownian sheets

under P,
- P-almost surely, for every t ∈ [0, T ],

zt (u) = g(u) +
∫ t

0

∫
R

cos
(
kzs(u)

)
f (k)dw�(k, s) +

∫ t

0

∫
R

sin
(
kzs(u)

)
f (k)dw�(k, s)

+
∫ t

0
B
(
zs(u), zs

)
ds, (25)

where B(x, z) := b(x,Leb[0,1] ◦z−1).

Theorem 17. Let g ∈ G1. Let f be of order α > 3
2 and b : R × P2(R) → R be a measurable function such that for

each μ ∈ P2(R), b(·,μ) belongs to Hη(R) with a uniform Hη-norm. If η ≥ α, there exists a unique weak solution to
equation (21).

Moreover, if (i,Gi , (Gi
t )t∈[0,T ],Pi , zi ,wi), i = 1,2, are two weak solutions to equation (21), then the laws of (z1,w1)

and (z2,w2) are equal in C([0,1] × [0, T ]) × C(R× [0, T ],R2).

Let us remark that the Brownian sheets w1 and w2 are seen here as taking values in R2, by an identification of R2 with
C.

Proof of Theorem 17, existence part. Let (,G, (Gt )t∈[0,T ],P) be a filtered probability space and let
(w(u, t))u∈[0,1],t∈[0,T ] be a (Gt )t∈[0,T ]-Brownian sheet. Since α > 3

2 , the map k �→ 〈k〉f (k) is square integrable. Let
us consider equation (15) with ϕ ≡ 1 or equivalently equation (25) with B ≡ 0:

yt (u) = g(u) +
∫ t

0

∫
R

cos
(
kys(u)

)
f (k)dw�(k, s) +

∫ t

0

∫
R

sin
(
kys(u)

)
f (k)dw�(k, s). (26)
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By Proposition 9, there is a unique process (yt )t∈[0,T ] satisfying equation (26) for every u ∈ [0,1]. Moreover, (yt )t∈[0,T ]
is a (Gt )t∈[0,T ]-adapted process taking values in C([0,1],R).

Therefore, by Lemma 15, there is a process (ht )t∈[0,T ] = (h�
t + ih�

t )t∈[0,T ] with values in L2(R,C) satisfying for
every t ∈ [0, T ] and u ∈ [0,1]:

B
(
yt (u), yt

) =
∫
R

cos
(
kyt (u)

)
f (k)h�

t (k)dk +
∫
R

sin
(
kyt (u)

)
f (k)h�

t (k)dk

and such that there exists a constant C such that almost surely,∫ T

0

∫
R

∣∣ht (k)
∣∣2 dk dt ≤ C. (27)

Therefore, we can rewrite equation (26) as follows:

yt (u) = g(u) +
∫ t

0

∫
R

cos
(
kys(u)

)
f (k)dw�(k, s) +

∫ t

0

∫
R

sin
(
kys(u)

)
f (k)dw�(k, s)

+
∫ t

0
B
(
ys(u), ys

)
ds −

∫ t

0

∫
R

cos
(
kys(u)

)
f (k)h�

s (k)dk −
∫ t

0

∫
R

sin
(
kys(u)

)
f (k)h�

s (k)dk

= g(u) +
∫ t

0

∫
R

cos
(
kys(u)

)
f (k)dw̃�(k, s) +

∫ t

0

∫
R

sin
(
kys(u)

)
f (k)dw̃�(k, s) +

∫ t

0
B
(
ys(u), ys

)
ds,

where we define for every k ∈R and for every s ∈ [0, T ]
dw̃�(k, s) := dw�(k, s) − h�

s (k)dk ds,

dw̃�(k, s) := dw�(k, s) − h�
s (k)dk ds.

Let us consider the process (Gt )t∈[0,T ] defined by:

Gt := exp

(∫ t

0

∫
R

h�
s (k)dw�(k, s) +

∫ t

0

∫
R

h�
s (k)dw�(k, s) − 1

2

∫ t

0

∫
R

∣∣hs(k)
∣∣2 dk ds

)
.

By (27), there is C > 0 such that exp( 1
2

∫ t

0

∫
R

|hs(k)|2 dk ds) ≤ C almost surely. Thus Novikov’s condition holds
and the process (Gt )t∈[0,T ] is a P-martingale. Let us define the probability measure Q by the absolutely continu-
ous measure with respect to P with density dQ

dP = GT . By Girsanov’s Theorem, under the probability measure Q,
(w̃�(k, t), w̃�(k, t))k∈R,t∈[0,T ] are two independent Brownian sheets on R× [0, T ] and the couple (y, w̃) satisfies equa-
tion (25). Thus (,G, (Gt )t∈[0,T ],Q, y, w̃) is a weak solution of equation (21). �

Let us start by proving the uniqueness part of Theorem 17 in the case where the drift function b ≡ 0 in equation (21),
namely in the case of equation (26).

Lemma 18. Let us assume that (i,Gi , (Gi
t )t∈[0,T ],Pi , zi ,wi), i = 1,2, are two weak solutions to equation (26). Then

(z1,w1) and (z2,w2) have same law in C([0,1] × [0, T ]) × C(R× [0, T ],R2).

Proof. By Proposition 9, equation (26) has a unique pathwise solution. By an infinite-dimensional version of Yamada–
Watanabe result (see [17, Prop 5.3.20]), it implies that the law of (z1,w1) under P1 is equal to the law of (z2,w2) under
P2. �

The proof of uniqueness in law for equation (21) is based on Girsanov’s Theorem. As in the proof of the existence
part, we will apply Lemma 15 to the drift function B and to a weak solution to equation (21).

Proof of Theorem 17, uniqueness part. Let us consider (i,Gi , (Gi
t )t∈[0,T ],Pi , zi ,wi), for i = 1,2, two weak solutions

to equation (21). Let i = 1 or 2. In particular, (zi
t )t∈[0,T ] is a (Gi

t )t∈[0,T ]-adapted process taking values in C([0,1],R).

Thus by Lemma 15, there is a (Gi
t )t∈[0,T ]-adapted process (hi

t )t∈[0,T ] such that
∫ T

0

∫
R

|hi
t (k)|2 dk ds ≤ C almost surely

and for all t ∈ [0, T ] and u ∈ [0,1],

B
(
zi
t (u), zi

t

) =
∫
R

cos
(
kzi

t (u)
)
f (k)h

i,�
t (k)dk +

∫
R

sin
(
kzi

t (u)
)
f (k)h

i,�
t (k)dk.
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Furthermore, by equation (24), there is a measurable map H : C[0,1] → L2(R,C) such that hi
t = H(zi

t ) for every t ∈
[0, T ] and for i = 1,2. The map H is defined by:

H(x) : k �→ 1√
2πf (k)

F−1(B(·,x)
)
(k)

for every x ∈ C[0,1].
Since (zi

t )t∈[0,T ] solves equation (25), we have Pi -almost surely for every t ∈ [0, T ] and for every u ∈ [0,1]:

zi
t (u) = g(u) +

∫ t

0

∫
R

cos
(
kzi

s(u)
)
f (k)

(
dwi,�(k, s) + hi,�

s (k)dk ds
)

+
∫ t

0

∫
R

sin
(
kzi

s(u)
)
f (k)

(
dwi,�(k, s) + hi,�

s (k)dk ds
)
.

Let us define for every k ∈R and every s ∈ [0, T ]
dw̃i,�(k, s) := dwi,�(k, s) + hi,�

s (k)dk ds,

dw̃i,�(k, s) := dwi,�(k, s) + hi,�
s (k)dk ds.

Let us consider the process (Gi
t )t∈[0,T ] defined by:

Gi
t := exp

(
−

∫ t

0

∫
R

hi,�
s (k)dwi,�(k, s) −

∫ t

0

∫
R

hi,�
s (k)dwi,�(k, s) − 1

2

∫ t

0

∫
R

∣∣hi
s(k)

∣∣2 dk ds

)
.

Novikov’s condition applies because
∫ T

0

∫
R

|hi
t (k)|2 dk ds ≤ C almost surely and the process (Gi

t )t∈[0,T ] is a Pi -
martingale. We define the probability measure Qi by the absolutely continuous measure with respect to Pi with density
dQi

dPi = Gi
T . By Girsanov’s Theorem, under Qi , w̃i = (w̃i,�, w̃i,�) is a couple of two independent Brownian sheets and

Qi -almost surely, for every t ∈ [0, T ],

zi
t (u) = g(u) +

∫ t

0

∫
R

f (k)
(
cos

(
kzi

s(u)
)

dw̃i,�(k, s) + sin
(
kzi

s(u)
)

dw̃i,�(k, s)
)
.

Thus (i,Gi , (Gi
t )t∈[0,T ],Qi , zi , w̃i), for i = 1,2, are two weak solutions to equation (21) in the case where B ≡ 0.

By Lemma 18, it follows that for every measurable function ψ : C([0,1] × [0, T ]) × C(R × [0, T ],R2) → R such that
EQi [|ψ(zi, w̃i)|] < +∞ for i = 1,2, we have

EQ1[
ψ

(
z1, w̃1)] = EQ2[

ψ
(
z2, w̃2)]. (28)

Let φ : C([0,1] × [0, T ]) × C(R× [0, T ],R2) → R be a bounded and measurable function. We have

EPi [
φ
(
zi,wi

)] = EQi [
φ
(
zi,wi

)(
Gi

T

)−1]
= EQi

[
φ
(
zi,wi

)
exp

(∫ T

0

∫
R

hi,�
s (k)dwi,�(k, s)

+
∫ T

0

∫
R

hi,�
s (k)dwi,�(k, s) + 1

2

∫ T

0

∫
R

∣∣hi
s(k)

∣∣2 dk ds

)]
= EQi

[
φ

(
zi, w̃i +

∫ ·

0

∫ ·

0
hi

s(k)dk ds

)
exp

(∫ T

0

∫
R

hi,�
s (k)dw̃i,�(k, s)

+
∫ T

0

∫
R

hi,�
s (k)dw̃i,�(k, s) − 1

2

∫ T

0

∫
R

∣∣hi
s(k)

∣∣2 dk ds

)]
= EQi [

ψ
(
zi, w̃i

)]
, (29)

where ψ : C([0,1] × [0, T ]) × C(R× [0, T ],R2) → R is a measurable function, because for each t ∈ [0, T ], hi
t = H(zi

t )

with H : C[0,1] → L2(R,C) a measurable function. By equality (28), we deduce that EP1[φ(z1,w1)] = EP2[φ(z2,w2)].
Thus (z1,w1) and (z2,w2) have the same law and this completes the proof of the theorem. �
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1.2.2. General case
In the previous paragraph, our assumptions on b were rather restrictive: for instance, the inversion statement of Lemma 15
does not apply for b ≡ 1 because it does not belong to Hη(R) for any positive η. In this paragraph, we explain briefly
how we can extend the well-posedness result for a larger class of drift functions b or general mass functions ϕ. Because
the proofs are very similar to the particular case seen above, the statements of this paragraph will be explained shortly
without the detailled proofs: the interest reader can find the complete proofs of the results stated below in [29, Parag. II.4].

Let us recall that we consider ϕ :R→ R an even C∞-function, such that ϕ is positive and decreasing on [0,+∞). For
every fixed M > 0, we define the following assumptions:

Definition 19. A process (xt )t∈[0,T ] with values in C[0,1] is said to satisfy the XM -hypotheses if:

(X1) (xt )t∈[0,T ] is (Gt )t∈[0,T ]-adapted.
(X2) almost surely, for every t ∈ [0, T ], u �→ xt (u) is strictly increasing.
(X3) almost surely, for every t ∈ [0, T ], |xt (1) − xt (0)| ≤ M .

As a consequence of Corollary 7 and of Proposition 9, the stopped process (yt∧τM
)t∈[0,T ] solution to the equation

without drift function satisfies the assumptions of Definition 19:

Proposition 20. Let g ∈ G1. Assume that f is of order α > 3
2 . Let (yt )t∈[0,T ] be the unique solution to equation (15)

given by Proposition 9. Let M > g(1) − g(0) and recall the definition of τM := inf{t ≥ 0 : yt (1) − yt (0) ≥ M} ∧ T . Then
(yt∧τM

)t∈[0,T ] satisfies the XM -hypotheses.

Under those less restrictive assumptions on ϕ, B and x, the following lemma shows the existence of an L2(R,C)-
valued process (ht )t∈[0,T ] = (h�

t + ih�
t )t∈[0,T ] such that

B
(
xt (u), xt

) = 1

(
∫ 1

0 ϕ(xt (u) − xt (v))dv)1/2

∫
R

e−ikxt (u)f (k)ht (k)dk. (30)

Lemma 21. Let M > g(1) − g(0), j ∈ N and α > 0. Let us assume that f is of order α, that B : R × L2[0,1] → R

satisfies the B-hypotheses of order 2j and thatthe process (xt )t∈[0,T ] satisfies the XM -hypotheses.
If 2j ≥ α, then there is a (Gt )t∈[0,T ]-adapted process (ht )t∈[0,T ] solution, for every t ∈ [0, T ], to equation (30) and

such that there exists CM > 0 depending only on B , f , ϕ and M for which inequality
∫ T

0

∫
R

|ht (k)|2 dk dt ≤ CM holds
almost surely.

Proof. Let (xt )t∈[0,T ] be a process satisfying the XM -hypotheses. Therefore, for a fixed t ∈ [0, T ], the map u �→ xt (u) is
a continuous strictly increasing function and can be seen as the quantile function of a measure μt ∈ P2(R). Let us denote
by Ft and pt respectively the c.d.f. and the density associated to μt . More precisely, Ft (xt (u)) = u for all u ∈ [0,1],
Ft (y) = 0 for all y ≤ xt (0) and Ft (y) = 1 for all y ≥ xt (1). Since almost surely, for every t ∈ [0, T ], xt (1) − xt (0) ≤ M ,
we have |Supppt | ≤ M , where |Supppt | denotes the Lebesgue measure of the support of pt .

By the substitution y = xt (u), equation (30) is equivalent to

B(y, xt )

(∫ 1

0
ϕ
(
y − xt (v)

)
dv

)1/2

=
∫
R

e−ikyf (k)ht (k)dk (31)

for every y ∈ [xt (0), xt (1)]. Let us fix a C∞-function � : R→ R that is equal to 0 on (−∞,0] and equal to 1 on [1,+∞).
For every a < b, we define the cut-off function ηa,b :R→ R by

ηa,b(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 on [a, b],
�(y − (a − 1)) on (a − 1, a),

�(b + 1 − y) on (b, b + 1).

0 elsewhere.

Let us denote by ηt := ηxt (0),xt (1). For every y ∈ [xt (0), xt (1)], ηt (y) = 1. Moreover, ηt has a compact support included
in [xt (0) − 1, xt (1) + 1]. Therefore, if a process (ht )t∈[0,T ] satisfies

B(y, xt )ηt (y)

(∫ 1

0
ϕ
(
y − xt (v)

)
dv

)1/2

=
∫
R

e−ikyf (k)ht (k)dk
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for every y ∈ R, then it satisfies (31) for every y ∈ [xt (0), xt (1)] and thus it satisfies (30) for every u ∈ [0,1]. Therefore,
the process defined by

ht (k) := 1√
2πf (k)

F−1
(

B(·, xt )ηt

(∫ 1

0
ϕ
(· − xt (v)

)
dv

)1/2)
(k)

solves equation (30), provided that ht is square integrable for every t ∈ [0, T ]. Define

�t := B(·, xt )ηt

(∫ 1

0
ϕ
(· − xt (v)

)
dv

)1/2

.

Note that for every t ∈ [0, T ], y �→ ηt (y)(
∫ 1

0 ϕ(y − xt (v))dv)1/2 is a bounded C∞-function with compact support and
y �→ B(y, xt ) is a bounded continuous function. Therefore, �t belongs to L1(R,C) and ht is well-defined. Moreover,
since (�t )t∈[0,T ] is (Gt )t∈[0,T ]-adapted, (ht )t∈[0,T ] is also (Gt )t∈[0,T ]-adapted.

Furthermore, we know by assumption that there is c > 0 such that for every k ∈ R, 1
f (k)

≤ c〈k〉α ≤ c〈k〉2j . Thus by
Plancherel’s Theorem (and denoting by � the Laplacian) we have

‖ht‖2
L2

=
∫
R

∣∣ht (k)
∣∣2 dk =

∫
R

1

2π

|F−1�t(k)|2
|f (k)|2 dk ≤ C

∫
R

∣∣〈k〉2jF−1�t(k)
∣∣2 dk

= C

∫
R

∣∣F−1((1 + �)j�t

)
(k)

∣∣2 dk

= C
∥∥(1 + �)j�t

∥∥2
L2

.

On the one hand, B satisfies the B-hypotheses of order 2j , then for every i ∈ {0,1, . . . ,2j }, for every t ∈ [0, T ] and
for every y ∈ R, |∂(i)

1 B(y, xt )| ≤ Ci(M). On the other hand, y �→ ηt (y)(
∫ 1

0 ϕ(y − xt (v))dv)1/2 is a C∞-function with
compact support, thus this function and all its derivatives are bounded on R. We deduce that for every i ≤ 2j , there is a
constant Ci depending on B and ϕ such that almost surely, for every t ∈ [0, T ], ‖∂i�t‖L∞ ≤ Ci .

Recall that the support of ηt is included in [xt (0) − 1, xt (1) + 1]. Henceforth, almost surely for every t ∈ [0, T ], the
Lebesgue measure of the support of �t is bounded by M + 2. Therefore, for every i ≤ 2j , there is a constant Ci,M such
that almost surely, for every t ∈ [0, T ],∥∥∂i�t

∥∥
L2

≤ |Supp�t |1/2
∥∥∂i�t

∥∥
L∞ ≤ Ci,M.

We deduce that there is CM > 0 such that
∫ T

0 ‖ht‖2
L2

dt ≤ CM almost surely, which completes the proof. �

Thus, we can state the following theorem, which is a rewriting of Theorem 1 under the precise assumptions on b.

Theorem 22. Let g ∈ G1 and j ∈ N\{0}. Let f be a function of order α > 3
2 . Let B : R × L2[0,1] → R satisfy the

B-hypotheses of order 2j . If 2j ≥ α, there exists a weak solution to equation (13) and uniqueness in law holds for this
equation.

Let us briefly explain the different steps of the proof of Theorem 22, the detailled proof being given in [29, Parag. II.4].
Step 1. Let us fix M ≥ g(1) − g(0) and let us define the stopped version of equation (13):{

dyt (u) = 1{t≤τM }(B(yt (u), yt )dt + 1
mt (u)1/2

∫
R

f (k)�(e−ikyt (u) dw(k, t))),

y0 = g,
(32)

where mt(u) = ∫ 1
0 ϕ(yt (u) − yt (v))dv and τM := inf{t ≥ 0 : yt (1) − yt (0) ≥ M} ∧ T . We start by proving, for f of order

α > 3
2 and for B satisfying the B-hypotheses of order 2j ≥ α, the existence of a weak solution to (32). The scheme of

proof is the following: since α > 3
2 , we know by Proposition 20 that (yt∧τM

)t∈[0,T ] satisfies the XM -hypotheses. Then,

by Lemma 21, there exists an appropriate process (ht )t∈[0,T ] such that
∫ T

0

∫
R

|ht (k)|2 dk dt ≤ CM . Then the proof is the
same as for Theorem 17.

Step 2. By analogy with Theorem 17, we prove that if (i,Gi , (Gi
t )t∈[0,T ],Pi , zi ,wi), i = 1,2, are two weak solutions

to equation (32), then the laws of (z1,w1) and (z2,w2) are equal in C([0,1] × [0, T ]) × C(R × [0, T ],R2). First, we
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observe that this statement is true for B ≡ 0, by an infinite-dimensional version of Yamada–Watanabe result (see [17,
Prop 5.3.20]). Then we show that a solution to equation (32) satisfies the XM -hypotheses. The statement of step 2 follows
by the same arguments as for Theorem 17.

Step 3. For each integer M greater than M0 := g(1) − g(0), we consider the solution to equation (32) on the canonical
probability space. Let  = 1 × 2, where 1 := C([0,1] × [0, T ]) and 2 := C(R × [0, T ],R2), equipped with the
class B() of Borel subsets of . To every z ∈ 1, we associate ζM

z = inf{t ≥ 0 : zt (1) − zt (0) ≥ M} ∧ T . Let GM

be the σ -algebra generated by the map πM : z ∈ 1 �→ z·∧ζM
z

∈ 1. By step 1, there is a weak solution (,GM ⊗
B(2), (Gt )t∈[0,T ],QM,z·∧ζM

z
,w) to equation (32).

We prove that the family (QM)M≥M0 is consistent, which follows from uniqueness in law proved in step 2. We use
Theorem V.4.2 of Parthasarathy’s book [32, p.143] to construct a probability measure Q on (,B()) such that for each
M ≥ M0, for each A ∈ GM and for each B ∈ B(2), Q[A × B] =QM [A × B].

Step 4. In order to prove the theorem, it remains to prove that Q[ζM
z < T ] → 0 when M → +∞. We control the

martingale part of a solution (zt )t∈[0,T ] to equation (13) by the same arguments as in Proposition 6. For the control of the
drift part, we use assumption (B3) on B (it is the only point where this assumption is needed) to obtain:

QM

[
sup
t≤T

∣∣∣∣∫ t∧ζM

0

(
B
(
zs(1), zs

) − B
(
zs(0), zs

))
ds

∣∣∣∣ ≥ M

2

]
≤ 2

M
2T C0(M) −→

M→+∞ 0.

This concludes the proof of weak well-posedness for equation (13).

2. A continuum of admissible drift functions

In this part, we make the connection between the result of restoration of uniqueness obtained in Theorem 17 and results
of existence and uniqueness for standard McKean–Vlasov equations driven by a velocity field that is merely measurable
in the space variable (see [16,27,30,34]). The connection reads in the form of a new existence and uniqueness result but
for a suitable notion of weak solution and for a class of admissible drifts. We address both in the next two subsections.

2.1. Description of the class of admissible drift functions

Recall the definition of the distance in total variation between two probability measures. For any μ,ν ∈ P(R),

dTV(μ, ν) = 2 inf
L(X)=μ
L(Y )=ν

P[X �= Y ], (33)

where the infimum is taken here over every coupling (X,Y ) of random variables X and Y in L2(,F,P) with respective
distributions μ and ν, where (,F,P) is any fixed Polish and atomless probability space.

Let us define the following space on which we will consider the drift function:

Definition 23. Let η > 0 and δ ∈ [0,1]. We say that b : R × P2(R) → R is of class (Hη,Cδ) if there are measurable
functions λ�, λ� :R×P2(R) → R and � : R→ R+ such that for every x ∈ R and μ ∈P2(R),

b(x,μ) =
∫
R

〈k〉−η
(
cos(kx)λ�(k,μ) + sin(kx)λ�(k,μ)

)
dk,

where

• λ := λ� + iλ� is bounded in the measure variable: for every k ∈R and μ ∈P2(R), |λ(k,μ)| ≤ �(k);
• λ is δ-Hölder continuous in the measure variable: for every k and for every μ,ν ∈ P2(R), |λ(k,μ) − λ(k, ν)| ≤

�(k)dTV(μ, ν)δ ;
• � ∈ L1(R) ∩ L2(R).

In particular, if b is of class (Hη,Cδ), then for every μ ∈ P2(R), the map x �→ b(x,μ) belongs to the Sobolev space
Hη(R). Indeed, denoting by F(b(·,μ)) the Fourier transform of b(·,μ), we have∫

R

∣∣〈k〉ηF(
b(·,μ)

)
(k)

∣∣2 dk ≤ C

∫
R

∣∣λ(−k,μ)
∣∣2 dk ≤ C

∫
R

�(−k)2 dk < +∞.
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Moreover, if b is of class (Hη,Cδ), then for every x ∈ R, μ �→ b(x,μ) is δ-Hölder continuous in total variation
distance:

∣∣b(x,μ) − b(x, ν)
∣∣ ≤

∫
R

〈k〉−η
∣∣λ(k,μ) − λ(k, ν)

∣∣dk ≤
∫
R

〈k〉−η�(k)dk dTV(μ, ν)δ.

Since η ≥ 0 and � ∈ L1(R),
∫
R
〈k〉−η�(k)dk is finite.

In order to apply our strategy, we need to assume the following minimal regularity assumption on the drift b:

η >
3

2
(1 − δ).

It describes a continuum of admissible drift functions b between the following two extremal classes:

• if δ = 0: the drift is only bounded in the measure variable. In that case, η has to satisfy η > 3
2 : this coincide exactly

with the assumptions of Theorem 17, where we assumed that for each μ ∈ P2(R), b(·,μ) belongs to Hη(R) with a
uniform Hη-norm for some η ≥ α > 3

2 .
• if δ = 1: the drift is Lipschitz-continuous in total variation distance with respect to the measure argument. Jourdain [16],

Mishura–Veretennikov [30], Chaudru de Raynal–Frikha [2], Lacker [27], Röckner–Zhang [34] among others have
proved results under this assumption if b is only measurable and bounded in the space variable. Our result applies if b

belongs to Hη(R) for some η > 0 and if the Fourier transform of b belongs to L1(R); it is a subset of the space C0(R)

of continuous functions vanishing at infinity.

2.2. Definition of the notion of solution

Let us consider a new model, with the purpose to make a link between the results obtained in this paper and recent
regularization by noise results for McKean–Vlasov equations obtained among others by [2,16,27,30,34]. There are some
important changes with respect to the model (13) previously studied in this work. The main modification consists in
adding a Brownian motion β , independent of w, in order to take benefit from some additional regularizing effect. In
short, the role of β in the model below is to smooth out the (finite dimensional) space variable in the drift coefficient.
Obviously, this comes in contrast with the role of the Brownian sheet w, the action of which is to mollify the velocity field
in the measure argument, as made clear by Theorem 17. Of course, we know from the standard diffusive case (i.e. w ≡ 0
and b(x,μ) ≡ b(x)) that, in order to fully benefit from the action of β onto the space variable, we should average out over
all the possible realizations of β (for instance, we may consider the semi-group generated by the diffusion process). In the
present context, this prompts us to disentangle the roles of the two noises β and w in the mean-field interaction. Similarly
to the standard McKean–Vlasov model, we shall compute the law of the particle (i.e. the mean-field component) with
respect to the noise carrying β and the initial condition, but, similarly to the model addressed in the previous section, we
shall freeze the realization of w. According to the terminology that has been used in the literature (see in particular the
mean-field game literature [1,15], see also the earlier references [3,7,25,26,38]), β will be regarded as an idiosyncratic
noise acting independently on each particle and w as a common (or systemic) noise. To sum-up, in the previous sections,
we defined μt as μt = Leb[0,1] ◦(zt )

−1, the space [0,1] therein carrying the initial condition in the form z0(u) = g(u) for
u ∈ [0,1]. Implicitly, this allowed us to identify μt with the conditional law of zt given (w(k, s))k∈R,s≤t . Now, μt will
be understood as the law of the particle over the randomness carrying both β and the initial condition. This idea is made
more precise in Remark 25.

There are two other modifications of the model introduced in this section. In the Girsanov’s arguments that we will
use in the following proofs, we will not be able to preserve the monotonicity of the solution with respect to the variable u

as in the first part. So we decide to use the same framework as usual in the literature on McKean–Vlasov SDEs, namely
we take as initial condition a random variable ξ of prescribed law, independent from β and w. Furthermore, we decide to
consider the easiest possible assumption on the mass, namely that it is constant equal to one.

Let η > 0 and δ ∈ [0,1] be such that η > 3
2 (1 − δ). Let b : R×P2(R) → R be of class (Hη,Cδ). Let f : R → R be a

function of order α, such that

3

2
< α ≤ η

1 − δ
, (34)
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(if δ = 1, we just require that α > 3
2 ). The condition η > 3

2 (1 − δ) insures that this choice of α is possible. Let μ0 be any
given initial condition in P2(R). Let us consider the following SDE:⎧⎪⎨⎪⎩

dzt = ∫
R

f (k)�(e−ikzt dw(k, t)) + dβt + b(zt ,μt )dt,

μt = LP(zt |Gμ,W
t ) a.s.

z0 = ξ, LP(ξ) = μ0,

(35)

where the filtration (Gμ,W
t )t∈[0,T ] is defined by Gμ,W

t := σ {w(·, s),μs; s ≤ t} and where (μ,w) is independent of (β, ξ).
Note: In that equation and in all this section, LP(X) denotes the law of the random variable X under the probability
measure P, that is the distribution P ◦ X−1.

Let us define the notion of weak solution to (35):

Definition 24. An element � = (,G, (Gt )t∈[0,T ],P, z,w,β, ξ) is said to be a weak solution to equation (35) if

- (,G, (Gt )t∈[0,T ],P) is a filtered probability space satisfying usual conditions,
- (w,β, ξ) are independent random variables on (,G), where

� w := (w�,w�), with (w�(k, t))k∈R,t∈[0,T ] and (w�(k, t))k∈R,t∈[0,T ] two independent (Gt )t∈[0,T ]-Brownian sheets
under P,

� (βt )t∈[0,T ] is a standard (Gt )t∈[0,T ]-Brownian motion under P,
� for any t ∈ [0, T ], the σ -field σ {w�(k, t ′)−w�(k, t),w�(k, t ′)−w�(k, t), βt ′ −βt ; k ∈R, t ′ ∈ [t, T ]} is independent

of Gt under P,
� ξ has distribution μ0 under P,

- (zt )t∈[0,T ] is a continuous (Gt )t∈[0,T ]-adapted process satisfying P-almost surely, for every t ∈ [0, T ],

zt = ξ +
∫ t

0

∫
R

f (k)�(
e−ikzs dw(k, s)

) + βt +
∫ t

0
b(zs,μs)ds,

- (μt )t∈[0,T ] is a P2(R)-valued continuous (Gt )t∈[0,T ]-adapted process such that, for every t ∈ [0, T ], P-almost surely,
μt = LP(zt |Gμ,W

t ), where Gμ,W
t := σ {w(k, s),μs; k ∈ R, s ≤ t},

- compatibility condition: (μ,w) is independent of (β, ξ) under P (and thus (μ,w), β and ξ are independent) and, more
generally, for every t ∈ [0, T ], the processes (ξ,w,μ) and β are conditionally independent given Gt .

Remark 25. The last two conditions are certainly the most difficult ones to understand. In fact, both are dictated by the
fact that we are looking for weak solutions only: a priori, nothing is said on the measurability of z and μ with respect to
the inputs ξ , w and β . In particular, at this stage, μ may not be measurable with respect to w (which comes in contrast
with the intuitive explanations we gave in Introduction of the section). This is the rationale for defining the McKean–
Vlasov constraint in terms of the conditional law of zt given the σ -field generated (up to time t ) not only by w but also
by μ itself. Similarly, the compatibility condition has been widely used (in a slightly stronger manner) in the analysis
of weak solutions to stochastic equations, see for instance [23,24]. In short, it says that the observation of z does not
corrupt the independence property of (ξ,μ,w) and β . Quite obviously, see for instance [1, Remark I.11], compatibility is
automatically satisfied if μ is adapted with respect to the completion of GW , in which case the solution should be called
semi-strong.

We will prove weak well-posedness for the SDE (35) in three steps: i) when the drift b is equal to zero; ii) when the
drift b is bounded and Lipschitz-continuous in total variation distance with respect to the measure variable; essentially,
we will adapt to our case the proof given by Lacker [27], where we will make use of the averaging over the noise β; iii)

in the general case, when the drift b belongs to the class (Hη,Cδ): we will use here the same arguments as in the first
part, using the infinite-dimensional Brownian sheet w to mollify b in the measure argument.

Let us first consider the case where the drift is zero:{
dzt = ∫

R
f (k)�(e−ikzt dw(k, t)) + dβt ,

z0 = ξ, LP(ξ) = μ0.
(36)

In this case, well-posedness holds even in a strong sense.

Proposition 26. Let f : R → R be a function of order α > 3
2 . Then there is a unique strong solution to equation (36).

Moreover, if �1 and �2 are two solutions to (36), then LP1
(z1,w1, β1) = LP2

(z2,w2, β2).
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Proof. Strong well-posedness can be proved by a classical fixed-point argument, as in the proof of Proposition 3 for
example (but the proof is now easier since the mass is equal to 1 everywhere). The additional noise β does not change
anything to this proof. Moreover, the assumption α > 3

2 insures that the assumption of square integrability of k �→ 〈k〉f (k)

is satisfied (see Proposition 3); in other words, it insures that the diffusive coefficient in front of the noise w is Lipschitz-
continuous.

Furthermore, by Yamada–Watanabe Theorem, the law of (z,w,β) solution to (36) is uniquely determined. That result
is stated and proved in [17, Prop 5.3.20, p.309] in a finite-dimensional case, but the proof is the same for an infinite
dimensional noise. Moreover, a corollary to Yamada–Watanabe Theorem [17, Cor 5.3.23, p.310] states the following
result: if � = (,G, (Gt )t∈[0,T ],P, z,w,β, ξ) is a solution to (36), then P-almost surely, for every t ∈ [0, T ],

zt =Zt (ξ,w,β),

where Z is a function defined on the canonical space

Z :R× C
(
R× [0, T ],R2) × C

([0, T ],R) → C
([0, T ],R)

(
x,ωW ,ωβ

) �→Z
(
x,ωW ,ωβ

)
,

(37)

which is progressively measurable with respect to the canonical filtration on C(R × [0, T ],R2) × C([0, T ],R). Remark
that C([0, T ],R) represents here the canonical space on which we define the Wiener measure of a standard Wiener process
on [0, T ], and C(R × [0, T ],R2) represents the Wiener space associated to the measure of a R2-valued Brownian sheet
(w�,w�) on R× [0, T ]. �

2.3. Case where the drift is Lipschitz continuous

Let us assume that b̃ : R × P2(R) → R is uniformly bounded and uniformly Lipschitz-continuous in total variation
distance in the measure variable. We consider the following SDE with the drift b̃:⎧⎪⎨⎪⎩

dzt = ∫
R

f (k)�(e−ikzt dw(k, t)) + dβt + b̃(zt ,μt )dt,

μt = LP(zt |Gμ,W
t ),

z0 = ξ, LP(ξ) = μ0,

(38)

with the same assumptions and the same interpretation as in Definition 24. Let us prove existence and uniqueness of a
weak solution.

Proposition 27. Let f : R→R be a function of order α > 3
2 . Let b̃ :R×P2(R) →R be a function such that there exists

C > 0 satisfying for every x ∈R and for every μ,ν ∈P2(R)

- |̃b(x,μ)| ≤ C;
- |̃b(x,μ) − b̃(x, ν)| ≤ C dTV(μ, ν).

Then there exists a weak solution to (38).

Proposition 28. Under the same assumptions as Proposition 27, if �1 and �2 are two weak solutions to (38), then
LP1

(z1,w1) = LP2
(z2,w2). In particular, uniqueness in law holds for the SDE (38). Moreover, for any weak solution �,

(μt )t∈[0,T ] is adapted to the completion of (GW
t = σ {w(·, s); s ≤ t})t∈[0,T ].

Note that the statement of Proposition 28 shows that the weak solution of (38) is adapted to the filtration generated by
the noise w.

Remark 29. The question of the filtration under which the measure-valued process (μt )t∈[0,T ] is adapted is important
here. Actually, we will see in the proof of existence that the weak solution that we will construct is automatically adapted
with respect to the filtration generated by w. Nevertheless, we want to give a more general statement for uniqueness, i.e.
we want to be able to compare two weak solutions where (μt )t∈[0,T ] is adapted with respect to a filtration generated by
w and possibly another source of randomness, provided (μ,W) remains independent of (β, ξ). This will be useful in
the proof of Theorem 32, which states well-posedness for the SDE with (Hη,Cδ)-drift b, since for this general case, our
proof based on Girsanov’s Theorem does not imply that (μt )t∈[0,T ] is adapted with respect to the filtration generated by
w (see Remark 34).

The assumptions on b̃ are the same as in [27]. We will essentially apply the same proof, which we will recall hereafter.
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2.3.1. Existence of a weak solution to the intermediate SDE
Let us prove in this paragraph Proposition 27. We begin by constructing a weak solution on the canonical space.

Proof of Proposition 27. Let us consider the filtered canonical probability space, which is denoted by (W ,GW,

(GW
t )t∈[0,T ],PW), where W := C(R × [0, T ],R2), GW is the Borel σ -algebra on W , (GW

t )t∈[0,T ] is the canonical
filtration on (W ,GW) and PW is the probability measure on (W ,GW) such that the distribution of the random variable
wW �→ wW is the law of two independent (real-valued) Brownian sheets on R× [0, T ].

Let (β,ξ ,Gβ,ξ , (Gβ,ξ
t )t∈[0,T ],Pβ,ξ ) be another filtered probability space on which we define two independent random

variables ξ and (βt )t∈[0,T ] such that (βt )t∈[0,T ] is a (Gβ,ξ
t )t∈[0,T ]-adapted Brownian motion and such that the law of ξ is

μ0.
Let (,G, (Gt )t∈[0,T ],P) be the product space:  = W × β,ξ , G = GW ⊗ GW,β , Gt = σ(GW

t ,Gβ,ξ
t ) and P = PW ⊗

Pβ,ξ . In particular, w is independent of (β, ξ) under P. Up to adding negligible subsets, we assume that the filtration
(Gt )t∈[0,T ] is complete. Let (zt )t∈[0,T ] be the unique solution on (,G, (Gt )t∈[0,T ],P) of the SDE:{

dzt = ∫
R

f (k)�(e−ikzt dw(k, t)) + dβt ,

z0 = ξ, LP(ξ) = μ0.
(39)

Existence and uniqueness of a strong solution to (39) is given by Proposition 26. Furthermore, by Yamada–Watanabe
Theorem, there is a (Gt )t∈[0,T ]-progressively measurable map Zt as defined in (37) such that P-almost surely, zt =
Zt (ξ,w,β).

Let us denote by C the space C([0, T ],R) and by P(C) the space of probability measures on C. For each time t ∈ [0, T ],
let us denote by πt : μT ∈ P(C) �→ μt ∈ P(C) the map associating to μT the push-forward measure of μT by the map
x ∈ C �→ x·∧t ∈ C. Let (X , d) be the complete metric space of functions

μ : W = C
(
R× [0, T ],R2) →P(C),

w �→ μT (w),

such that, for each t ∈ [0, T ], (μt = πt (μT ))t∈[0,T ] is (GW
t )t∈[0,T ]-progressively measurable. The distance d is defined by

d(μ, ν) := EW [dTV(μT , νT )2]1/2, where dTV is here understood as the total variation distance on P(C) (while we defined
it before on P(R)). Furthermore, for μ ∈ X and for t ∈ [0, T ], we call μt the image of μ by the mapping x ∈ C �→ xt ∈ R.

Let ν ∈X . Recall that b̃ : R×P2(R) → R is uniformly bounded. Therefore

Eν
t := exp

(∫ t

0
b̃(zs, νs)dβs − 1

2

∫ t

0

∣∣̃b(zs, νs)
∣∣2 ds

)
is a (Gt )t∈[0,T ]-martingale. Let Pν be the probability measure on (,G) absolutely continuous with respect to P= PW ⊗
Pβ,ξ , with density:

dPν

dP
= Eν

T .

For every w ∈ W , let us denote by Pν,β,ξ (w) the probability measure on (β,ξ ,Gβ,ξ ) with the following density with
respect to Pβ,ξ :

dPν,β,ξ (w)

dPβ,ξ
= Eν

T (w).

Equivalently, Pν,β,ξ : W × Gβ,ξ → R+ is also defined as the conditional probability satisfying for every (AW ,Aβ,ξ ) ∈
GW × Gβ,ξ

Pν
(
AW × Aβ,ξ

) =
∫

AW

Pν,β,ξ
(
w,Aβ,ξ

)
dPW(w).

Let us define dβ̃ν
t := dβt − b̃(zt , νt )dt . By Girsanov’s Theorem, (β̃ν

t )t∈[0,T ] is a Brownian motion under the measure Pν ,
(β̃ν, ξ,w) are independent under Pν and, for any t ∈ [0, T ], the σ -field σ {w(k, t ′) − w(k, t), β̃ν

t ′ − β̃ν
t ; k ∈ R, t ′ ∈ [t, T ]}

is independent of Gt under Pν . Moreover the process (zt )t∈[0,T ] satisfies:

dzt =
∫
R

f (k)�(
e−ikzt dw(k, t)

) + dβ̃ν
t + b̃(zt , νt )dt.
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If ν satisfies for every t ∈ [0, T ], PW -almost surely,

νt = LPν (
zt |GW

t

)
, (40)

then it also satisfies for every t ∈ [0, T ], PW -a.s., νt = LPν
(zt |Gν,W

t ), where Gν,W
t = σ {w(·, s), νs; s ≤ t}. Furthermore,

(ν,w) is adapted to the completion of GW ; hence under Pν , (ν,w) is independent of (β̃ν, ξ), and by Remark 25 the
compatibility condition is automatically satisfied. Thus if (40) is satisfied for any t ∈ [0, T ] PW -almost surely, then
(,G, (Gt )t∈[0,T ],Pν, z,w, β̃ν, ξ) is a weak solution to (38). Equivalently, it is a solution if for PW -almost every w ∈ W ,

for every t ∈ [0, T ], νt (w) = LPν,β,ξ (w)(Zt (·,w, ·)) (the latter obviously implying (40) and the converse following from
the fact that, in (40), GW

t can be replaced by GW
T , which implies not only that, for any t ∈ [0, T ], for PW -almost every

w ∈ W , νt (w) = LPν,β,ξ (w)(Zt (·,w, ·)) but also that the quantifiers for all t and for PW -almost every can be exchanged
by a standard continuity argument). Notice in particular, that by Fubini’s Theorem, w �→ LPν,β,ξ (w)(Zt (·,w, ·)) is GW

t -
measurable.

Let us prove that there is a process ν ∈ X satisfying (40). For every ν ∈ X , let us define φ(ν)t := w �→
LPν,β,ξ (w)(Zt (·,w, ·)). By construction, φ(ν) also belongs to X . For every μT ∈ X and for every t ∈ [0, T ], let us denote
by μt ∈ P(C) the push-forward measure of μT through the map x ∈ C �→ x·∧t ∈ C. In particular, for every t ∈ [0, T ],
φ(ν)t = LPν,β,ξ (w)(Z·∧t (·,w, ·)). For μ,ν ∈P2(C), let us denote by H(μ|ν) the relative entropy

H(μ|ν) =
∫
C

ln
dμ

dν
dμ if μ � ν, H(μ|ν) = +∞ otherwise.

Here, we apply the same strategy of proof as in [27, Thm 2.4]. Let us state the following lemma, which is shown at the
end of the current proof.

Lemma 30. For every μ,ν ∈ X and for every t ∈ [0, T ],

H
(
φ(μ)t |φ(ν)t

) = 1

2
EPμ

[∫ t

0

∣∣̃b(zs, νs) − b̃(zs,μs)
∣∣2 ds

∣∣∣∣GW
t

]
.

By Lipschitz-continuity of b̃, there is C > 0 such that

H
(
φ(μ)t |φ(ν)t

) ≤ C

∫ t

0
EPμ[

dTV(μs, νs)
2|GW

t

]
ds = C

∫ t

0
dTV(μs, νs)

2 ds ≤ C

∫ t

0
dTV

(
μs, νs

)2 ds.

By Pinsker’s inequality, dTV(φ(μ)t , φ(ν)t )2 ≤ 2H(φ(μ)t |φ(ν)t ). Therefore, there is C such that for every t ∈ [0, T ],

EW
[

dTV
(
φ(μ)t , φ(ν)t

)2] ≤ C

∫ t

0
EW

[
dTV

(
μs, νs

)2]ds. (41)

For every n ∈ N\{0}, let us write φ◦n for φ ◦ · · · ◦ φ︸ ︷︷ ︸
n times

. It follows from a simple recursion and from (41) that for every

t ∈ [0, T ] and n ∈N

EW
[

dTV
(
φ◦n(μ)t , φ◦n(ν)t

)2] ≤ Cntn

n! EW
[

dTV
(
μt , νt

)2]
.

Recall that the distance d on X is defined by d(μ, ν) = EW [dTV(μT , νT )2]1/2. Thus for every n ≥ 1 and for every
μ,ν ∈X ,

d
(
φ◦n(μ),φ◦n(ν)

)2 ≤ CnT n

n! d(μ, ν)2.

Therefore, for n large enough so that CnT n

n! < 1, φ◦n is a contraction. Therefore, by Picard’s fixed-point Theorem, there
is a unique solution, called μφ ∈ X , of μφ = φ(μφ). In particular, there exists a weak solution to equation (38). This
completes the proof of Proposition 27. �

Proof of Lemma 30. Let us first compute for every t ∈ [0, T ],

H
(
φ(μ)t |φ(ν)t

) =
∫
C

ln
dφ(μ)t

dφ(ν)t
dφ(μ)t = EPμ

[
ln

dφ(μ)t

dφ(ν)t
(z·∧t )

∣∣∣∣GW
t

]
. (42)
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Let us prove that

dφ(μ)t

dφ(ν)t
(z·∧t ) = EPν

[
dPμ

dPν

∣∣∣∣Gz,W
t

]
, (43)

where Gz,W
t = σ {zs,w(·, s); s ≤ t}. Indeed, for every measurable and bounded functions f : C([0, T ],R) → R and g :

C(R× [0, T ],R2) → R (recall that we denote by C the space C([0, T ],R)):

EPν

[
dPμ

dPν
f (z·∧t )g(w·∧t )

]
= EPμ[

f (z·∧t )g(w·∧t )
] = EPμ

[∫
C

f (x)dφ(μ)t (x)g(w·∧t )

]
= EPμ

[∫
C

f (x)
dφ(μ)t

dφ(ν)t
(x)dφ(ν)t (x)g(w·∧t )

]
= EPν

[
dPμ

dPν

∫
C

f (x)
dφ(μ)t

dφ(ν)t
(x)dφ(ν)t (x)g(w·∧t )

]
= EPν

[
EPν

[
dPμ

dPν

∣∣∣∣GW
t

]∫
C

f (x)
dφ(μ)t

dφ(ν)t
(x)dφ(ν)t (x)g(w·∧t )

]
= EPν

[
EPν

[
dPμ

dPν

∣∣∣∣GW
t

]
f (z·∧t )

dφ(μ)t

dφ(ν)t
(z·∧t )g(w·∧t )

]
. (44)

Moreover, recalling the relation dβs = dβ̃ν
s + b̃(zs, νs)ds,

EPν

[
dPμ

dPν

∣∣∣∣GW
t

]
= EPν [Eμ

T

(
Eν

T

)−1|GW
t

]
= EPν

[
exp

(∫ T

0

(
b̃(zs,μs) − b̃(zs, νs)

)
dβs − 1

2

∫ T

0

∣∣̃b(zs,μs)
∣∣2 ds + 1

2

∫ T

0

∣∣̃b(zs, νs)
∣∣2 ds

)∣∣∣∣GW
t

]
= EPν

[
exp

(∫ T

0

(
b̃(zs,μs) − b̃(zs, νs)

)
dβ̃ν

s − 1

2

∫ T

0

∣∣̃b(zs,μs) − b̃(zs, νs)
∣∣2 ds

)∣∣∣∣GW
t

]
.

For every bounded and measurable g : C(R× [0, T ],R2) → R

EPν

[
exp

(∫ T

0

(
b̃(zs,μs) − b̃(zs, νs)

)
dβ̃ν

s − 1

2

∫ T

0

∣∣̃b(zs,μs) − b̃(zs, νs)
∣∣2 ds

)
g(w·∧t )

]
= EPν

[
EPν,β,ξ (w)

[
exp

(∫ T

0

(̃
b(zs,μs) − b̃(zs, νs)

)
dβ̃ν

s − 1

2

∫ T

0

∣∣̃b(zs,μs) − b̃(zs, νs)
∣∣2 ds

)]
g(w·∧t )

]
= EPν [

g(w·∧t )
]
,

since under Pν , β̃ν and w are independent and since the exponential is a Pν,β,ξ (w)-martingale by Novikov’s condition
(recalling that b̃ is uniformly bounded). Thus

EPν

[
dPμ

dPν

∣∣∣∣GW
t

]
= 1. (45)

Using equalities (44) and (45), we get equality (43).
Therefore, back to equality (42), we obtain

H
(
φ(μ)t |φ(ν)t

) = EPμ

[
lnEPν

[
dPμ

dPν

∣∣∣∣Gz,W
t

]∣∣∣∣GW
t

]
.

Recall that (,G, (Gt )t∈[0,T ],Pν, z,w, β̃ν, ξ) is a weak solution to (38). Thus Pν -almost surely, β̃ν satisfies for every
t ∈ [0, T ]:

β̃ν
t = zt − z0 −

∫ t

0

∫
R

f (k)�(
e−ikzs dw(k, s)

) −
∫ t

0
b̃(zs,μs)ds.
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Thus (β̃ν
t )t∈[0,T ] is (Gz,W

t )t∈[0,T ]-adapted and we deduce that

H(φ(μ)t |φ(ν)t = EPμ

[
ln exp

(∫ t

0

(̃
b(zs,μs) − b̃(zs, νs)

)
dβ̃ν

s − 1

2

∫ t

0

∣∣̃b(zs,μs) − b̃(zs, νs)
∣∣2 ds

)∣∣∣∣GW
t

]
= EPμ

[∫ t

0

(̃
b(zs,μs) − b̃(zs, νs)

)
dβ̃ν

s − 1

2

∫ t

0

∣∣̃b(zs,μs) − b̃(zs, νs)
∣∣2 ds

∣∣∣∣GW
t

]
= EPμ

[∫ t

0

(̃
b(zs,μs) − b̃(zs, νs)

)
dβ̃μ

s + 1

2

∫ t

0

∣∣̃b(zs,μs) − b̃(zs, νs)
∣∣2 ds

∣∣∣∣GW
t

]
= EPμ

[
1

2

∫ t

0

∣∣̃b(zs,μs) − b̃(zs, νs)
∣∣2 ds

∣∣∣∣GW
t

]
,

because dβ̃ν
s − dβ̃

μ
s = (̃b(zs,μs) − b̃(zs, νs))ds. This completes the proof of the Lemma. �

2.3.2. Uniqueness in law for the intermediate SDE
Let us prove in this paragraph Proposition 28.

Proof of Proposition 28. Let �1 and �2 be two weak solutions to (38), often denoted by �n, n = 1,2. In particular, the
process (zn

t )t∈[0,T ] satisfies Pn-almost surely,

zn
t = ξn +

∫ t

0

∫
R

f (k)�(
e−ikzn

s dwn(k, s)
) + βn

t +
∫ t

0
b̃
(
zn
s ,μ

n
s

)
ds,

where for every t ∈ [0, T ], Pn-almost surely μn
t = LPn

(zn
t |Gμn,Wn

t ) and where (μn,wn) is independent of (βn, ξn).
Let Qn be the probability measure on (n,Gn) with the following density with respect to Pn,

dQn

dPn
= exp

(
−

∫ T

0
b̃
(
zn
s ,μ

n
s

)
dβn

s − 1

2

∫ T

0

∣∣̃b(zn
s ,μ

n
s

)∣∣2 ds

)
. (46)

Let β̃n
t = βn

t + ∫ t

0 b̃(zn
s ,μ

n
s )ds. By Girsanov’s Theorem, LQn

(wn, β̃n, ξn) = LPn
(wn,βn, ξn) and for any t ∈ [0, T ],

the σ -field σ {wn(k, t ′) − wn(k, t), β̃n
t ′ − β̃n

t , k ∈ R, t ′ ∈ [t, T ]} is independent of Gn
t under Qn. It follows that

�̃n = (n,Gn, (Gn
t )t∈[0,T ],Qn, zn,wn, β̃n, ξn) is a weak solution to the SDE (36) with zero drift. By Proposition 26,

LQ1
(z1,w1, β̃1) = LQ2

(z2,w2, β̃2) and Qn-almost surely, zn =Z(ξn,wn, β̃n), where Z is of the form (37).
Moreover, recall that for n = 1,2, μn

t = LPn
(zn

t |Gμn,Wn

t ). Recall also that μφ is defined as being the unique fixed-point
of φ in X (see proof of Proposition 27). Let us state the following lemma, which will be shown at the end of the current
proof.

Lemma 31. Let n = 1,2. Then Qn-almost surely, for every t ∈ [0, T ], μn
t = μφ(wn)t . In particular, (μn

t )t∈[0,T ] is adapted
to the completion of (GWn

t )t∈[0,T ], where GWn

t := σ {wn(k, s);k ∈R, s ≤ t}.

Let us consider a measurable function ψ : C([0, T ],R) × C(R × [0, T ],R2) → R such that EPn[|ψ(zn,wn)|] < +∞
for n = 1,2. It follows from (46) and from Lemma 31 that

EPn[
ψ

(
zn,wn

)] = EQn

[
ψ

(
zn,wn

)
exp

(∫ T

0
b̃
(
zn
s ,μ

n
s

)
dβn

s + 1

2

∫ T

0

∣∣̃b(zn
s ,μ

n
s

)∣∣2 ds

)]
= EQn

[
ψ

(
zn,wn

)
exp

(∫ T

0
b̃
(
zn
s ,μ

n
s

)
dβ̃n

s − 1

2

∫ T

0

∣∣̃b(zn
s ,μ

n
s

)∣∣2 ds

)]
= EQn

[
ψ

(
zn,wn

)
exp

(∫ T

0
b̃
(
zn
s ,μ

φ
(
wn

)
s

)
dβ̃n

s − 1

2

∫ T

0

∣∣̃b(zn
s ,μ

φ
(
wn

)
s

)∣∣2 ds

)]
= EQn[

ψ̃
(
zn,wn, β̃n

)]
,

where ψ̃ is a measurable map such that EQn [|ψ̃(zn,wn, β̃n)|] < +∞; the measurability of ψ̃ follows from the fact that μφ

belongs to X . Furthermore, μφ does not depend on n = 1,2, since it is the unique fixed-point of φ. Recalling the equal-
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ity LQ1
(z1,w1, β̃1) = LQ2

(z2,w2, β̃2), we conclude that EP1[ψ(z1,w1)] = EP2 [ψ(z2,w2)]. Moreover, by Lemma 31,
(μn

t )t∈[0,T ] is (GWn

t )t∈[0,T ]-measurable. This completes the proof of Proposition 28. �

Proof of Lemma 31. Let us forget about the exponent n in this proof. On the one hand, the process (μt )t∈[0,T ] satisfies
for every t ∈ [0, T ], μt = LP(zt |Gμ,W

t ) and (μ,w) is independent of (β, ξ). Moreover, it follows from equality (46) that
P is absolutely continuous with respect to Q with a density given by

dP

dQ
= exp

(∫ T

0
b̃(zs,μs)dβs + 1

2

∫ T

0

∣∣̃b(zs,μs)
∣∣2 ds

)
= exp

(∫ T

0
b̃(zs,μs)dβ̃s − 1

2

∫ T

0

∣∣̃b(zs,μs)
∣∣2 ds

)
. (47)

On the other hand, since μφ is the fixed point of φ, the process (μφ(w)t )t∈[0,T ] satisfies μφ(w) = φ(μφ)(w) =
LPμφ,β,ξ (w)(Z(·,w, ·)). Since under Q, z =Z(ξ,w, β̃), we deduce that for every t ∈ [0, T ], μφ(w)t = LR(zt |GW

t ), where
GW

t := σ {w(k, s); k ∈ R, s ≤ t} and R is defined by

dR

dQ
= exp

(∫ T

0
b̃
(
zs,μ

φ(w)s
)

dβ̃s − 1

2

∫ T

0

∣∣̃b(zs,μ
φ(w)s

)∣∣2 ds

)
. (48)

Let us prove that

(1) under the probability measure Q, (μ,w) is independent of (β̃, ξ);
(2) for every t ∈ [0, T ], R-almost surely, μφ(w)t = LR(zt |Gμ,W

t );
(3) conclude the proof of the lemma by comparing, for every t ∈ [0, T ], μt = LP(zt |Gμ,W

t ) with μφ(w)t = LR(zt |Gμ,W
t ).

Proof of (1). By definition of a weak solution, under probability measure P, w, β and ξ are independent random
variables and (μ,w) is independent of (β, ξ). Let us consider bounded and measurable functions f : R → R and ψ :
C([0, T ],P2(R))×C(R×[0, T ],R2) →R and let g : [0, T ] →R be a deterministic square integrable function. Recalling
that dβ̃t = dβt + b̃(zt ,μt )dt , let us compute

EQ

[
ψ(μ,w)f (ξ) exp

(∫ T

0
gs dβ̃s − 1

2

∫ T

0
g2

s ds

)]
= EP

[
ψ(μ,w)f (ξ) exp

(∫ T

0
gs dβ̃s − 1

2

∫ T

0
g2

s ds

)
exp

(
−

∫ T

0
b̃(zs,μs)dβs − 1

2

∫ T

0

∣∣̃b(zs,μs)
∣∣2 ds

)]
= EP

[
ψ(μ,w)f (ξ) exp

(∫ T

0

(
gs − b̃(zs,μs)

)
dβs − 1

2

∫ T

0

∣∣gs − b̃(zs,μs)
∣∣2 ds

)]
.

We now show that the last line is in fact equal to EP[ψ(μ,w)f (ξ)]. By expanding the exponential martingale by Itô’s
formula, it is in fact sufficient to prove that, for any (Gt )t∈[0,T ] progressively-measurable and square integrable process
(Ht )t∈[0,T ], the stochastic integral

∫ T

0 Hs dβs is orthogonal to ψ(μ,w)f (ξ) under P. By a standard approximation, it is
even sufficient to do so for simple processes (Ht )t∈[0,T ]. In other words, it suffices to prove that, for any 0 ≤ t ≤ t ′ ≤ T ,
for any Gt -measurable square-integrable random variable Ht ,

EP
[
ψ(μ,w)f (ξ)Ht (βt ′ − βt )

] = 0.

By taking the conditional expectation given Gt in the expectation appearing in the left-hand side, it is sufficient to prove
that, for any 0 ≤ t ≤ t ′ ≤ T ,

EP
[
ψ(μ,w)f (ξ)(βt ′ − βt )|Gt

] = 0.

Thanks to the compatibility condition in Definition 24,

EP
[
ψ(μ,w)f (ξ)(βt ′ − βt )|Gt

] = EP
[
ψ(μ,w)f (ξ)|Gt

]
EP

[
(βt ′ − βt )|Gt

] = 0

because βt ′ − βt is independent of Gt . Therefore,

EQ

[
ψ(μ,w)f (ξ) exp

(∫ T

0
gs dβ̃s − 1

2

∫ T

0
g2

s ds

)]
= EP

[
ψ(μ,w)f (ξ)

]
.
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It follows that

EQ

[
ψ(μ,w)f (ξ) exp

(∫ T

0
gs dβ̃s − 1

2

∫ T

0
g2

s ds

)]
= EP

[
ψ(μ,w)

] ·EP
[
f (ξ)

]
= EQ

[
ψ(μ,w)

] ·EQ
[
f (ξ)

]
= EQ

[
ψ(μ,w)

] ·EQ
[
f (ξ)

] ·EQ

[
exp

(∫ T

0
gs dβ̃s − 1

2

∫ T

0
g2

s ds

)]
,

since (exp(
∫ T

0 gs dβ̃s − 1
2

∫ T

0 g2
s ds))t∈[0,T ] is a martingale under the measure Q. Moreover, the linear span of

{exp(
∫ T

0 gs dβ̃s), g ∈ L2([0, T ],R)} is dense in L2(,Gβ̃ ,Q), where Gβ̃ is the σ -algebra generated by (β̃t )t∈[0,T ]. There-

fore, (f (ξ), exp(
∫ T

0 gs dβ̃s)) generates the σ -algebra Gξ,β̃ , and thus (μ,w) and (ξ, β̃) are independent under the proba-
bility measure Q.

Proof of (2). Recall that for every t ∈ [0, T ], μφ(w)t = LR(zt |GW
t ), and let us prove that for every t ∈ [0, T ], R-almost

surely, μφ(w)t = LR(zt |Gμ,W
t ). Let f : R → R, g : C([0, T ],P2(R)) → R and h : C(R × [0, T ],R2) → R be bounded

and measurable functions. Fix t ∈ [0, T ]. By (48), we have

ER
[
f (zt )g(μ·∧t )h(w·∧t )

]
= EQ

[
f (zt ) exp

(∫ t

0
b̃
(
zs,μ

φ(w)s
)

dβ̃s − 1

2

∫ t

0

∣∣̃b(zs,μ
φ(w)s

)∣∣2 ds

)
g(μ·∧t )h(w·∧t )

]
= EQ

[
EQ

[
Ft |Gμ,W

t

]
g(μ·∧t )h(w·∧t )

]
, (49)

where (recall that z has the form z =Z(ξ,w, β̃))

Ft := f (zt ) exp

(∫ t

0
b̃
(
zs,μ

φ(w)s
)

dβ̃s − 1

2

∫ t

0

∣∣̃b(zs,μ
φ(w)s

)∣∣2 ds

)
= f

(
Zt (ξ,w, β̃)

)
exp

(∫ t

0
b̃
(
Zs(ξ,w, β̃),μφ(w)s

)
dβ̃s − 1

2

∫ t

0

∣∣̃b(Zs(ξ,w, β̃),μφ(w)s
)∣∣2 ds

)
.

Note that Ft is GW,β,ξ
t -measurable. By statement (1), under probability measure Q, (μ,w) is independent of (β̃, ξ).

Hence EQ[Ft |Gμ,W
t ] is GW

t -measurable. Thus it follows from (49) that

ER
[
f (zt )g(μ·∧t )h(w·∧t )

] = EQ
[
EQ

[
Ft |Gμ,W

t

]
EQ

[
g(μ·∧t )|GW

t

]
h(w·∧t )

]
.

Since EQ[g(μ·∧t )|GW
t ]h(w·∧t ) is GW

t -measurable and bounded, there is a bounded and measurable function k : C(R ×
[0, T ],R2) → R such that EQ[g(μ·∧t )|GW

t ]h(w·∧t ) = k(w·∧t ). Thus, redoing the same computations in reverse, we ob-
tain:

ER
[
f (zt )g(μ·∧t )h(w·∧t )

] = EQ
[
EQ

[
Ft |Gμ,W

t

]
k(w·∧t )

] = EQ
[
Ftk(w·∧t )

] = ER
[
f (zt )k(w·∧t )

]
= ER

[∫
R

f (x)dμφ(w)t (x)k(w·∧t )

]
= ER

[∫
R

f (x)dμφ(w)t (x)EQ
[
g(μ·∧t )|GW

t

]
h(w·∧t )

]
= ER

[∫
R

f (x)dμφ(w)t (x)g(μ·∧t )h(w·∧t )

]
. (50)

Since the process (μφ(w)t )t∈[0,T ] is (GW
t )t∈[0,T ]-adapted, it is in particular (Gμ,W

t )t∈[0,T ]-adapted, thus equality (50)

implies that μφ(w)t = LR(zt |Gμ,W
t ). It completes the proof of (2).



Infinite-dimensional regularization of McKean–Vlasov equation with a Wasserstein diffusion 2345

Proof of (3). Let us denote for every t ∈ [0, T ], νt = μφ(w)t . We want to prove that (μt )t∈[0,T ] = (νt )t∈[0,T ]. Recall
that for every t ∈ [0, T ], Q-almost surely, μt = LP(zt |Gμ,W

t ) and, by point (2), νt = LR(zt |Gμ,W
t ). By (47) and (48),

dP

dQ
= exp

(∫ T

0
b̃(zs,μs)dβ̃s − 1

2

∫ T

0

∣∣̃b(zs,μs)
∣∣2 ds

)
;

dR

dQ
= exp

(∫ T

0
b̃(zs, νs)dβ̃s − 1

2

∫ T

0

∣∣̃b(zs, νs)
∣∣2 ds

)
.

Let us apply the same computation as in the proof of Lemma 30. Recall that for every t ∈ [0, T ], μt denotes LP(z·∧t |Gμ,W
t )

and νt := LR(z·∧t |Gμ,W
t ). For every t ∈ [0, T ],

H
(
νt |μt

) =
∫
R

ln
dνt

dμt
dνt = ER

[
ln

dνt

dμt
(z·∧t )

∣∣∣∣Gμ,W
t

]
.

We use the fact that under P, β is independent of (μ,w) in order to prove, exactly as in the proof of Lemma 30, that for
every t ∈ [0, T ], EP[ dR

dP |Gμ,W
t ] = 1. Again by mimicking the proof of (43), this leads to

dνt

dμt
(z·∧t ) = EP

[
dR

dP

∣∣∣∣Gz,μ,W
t

]
.

Therefore, we finally obtain

H
(
νt |μt

) = 1

2
ER

[∫ t

0

∣∣̃b(zs, νs) − b̃(zs,μs)
∣∣2 ds

∣∣∣∣Gμ,W
t

]
.

Applying Pinsker’s inequality and using the fact that b̃ is Lipschitz-continuous with respect to the measure variable, we
finally obtain for every t ∈ [0, T ],

EQ
[

dTV(νt ,μt )
2] ≤ EQ

[
dTV

(
νt ,μt

)2] ≤ C

∫ T

0
EQ

[
dTV(νs,μs)

2]ds.

Thus by Gronwall’s inequality, we obtain that for every t ∈ [0, T ], EQ[dTV(νt ,μt )
2] = 0. In particular, Q-almost surely,

the two continuous processes (μt )t∈[0,T ] and (νt )t∈[0,T ] are equal. This completes the proof of the lemma. �

2.4. Case where the drift is general

Let us state the well-posedness result for the general case:

Theorem 32. Let η > 0 and δ ∈ [0,1] satisfy the inequality η > 3
2 (1 − δ). Let b : R×P2(R) → R be of class (Hη,Cδ).

Let f :R→ R be a function of order α ∈ ( 3
2 ,

η
1−δ

].
Then existence of a weak solution and uniqueness in law hold for equation (35).

Note: The assumption on α is the same as the one given by inequality (34).
As a first step, let us show that a drift function b satisfying the assumptions of Theorem 32 can be written as a

sum b̃ + (b − b̃), where b̃ satisfies the assumptions of Proposition 27 and where b − b̃ satisfies assumptions similar to
Definition 12, and apply on b − b̃ the same Fourier inversion as in Lemma 15.

Recall that by Definition 23, b can be written as

b(x,μ) =
∫
R

〈k〉−η
(
cos(kx)λ�(k,μ) + sin(kx)λ�(k,μ)

)
dk, (51)

where λ = λ� + iλ� satisfies for every k ∈ R and for every μ,ν ∈P2(R),∣∣λ(k,μ)
∣∣ ≤ �(k); (52)∣∣λ(k,μ) − λ(k, ν)

∣∣ ≤ �(k)dTV(μ, ν)δ, (53)

and � belongs to L1(R) ∩ L2(R).
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Lemma 33. Let θ := α−η
δ

. There exists λ̃ = λ̃� + ĩλ�, where λ̃�, λ̃� :R×P2(R) →R, such that for each k ∈R and for
each μ,ν ∈ P2(R),

∣∣λ(k,μ) − λ̃(k,μ)
∣∣ ≤ C

〈k〉θδ
�(k); (54)∣∣̃λ(k,μ) − λ̃(k, ν)

∣∣ ≤ C〈k〉θ(1−δ)�(k)dTV(μ, ν), (55)

where C is independent of k, μ, ν and θ .

Proof. Let us fix k ∈R. We will focus on the proof for the real part; the case of the imaginary part is identical.

Let us define u : P2(R) → R by u(μ) := λ�(k,μ)
�(k)

. By (52) and (53), for every μ,ν ∈ P2(R), |u(μ)| ≤ 1 and |u(μ) −
u(ν)| ≤ dTV(μ, ν)δ . Let (,F,P) be a Polish and atomless probability space. Let us define v : L2() → R by v(X) :=
u(L(X)).

The following approximation method is inspired by the inf-convolution techniques. Let ε > 0. Let us define vε :
L2() →R by

vε(X) := inf
Y∈L2(×[0,1])

{
v(Y ) + 1

2ε
(P⊗ Leb[0,1])[X �= Y ]2

}
. (56)

We consider here the infimum over random variables in a larger probability space in order to be enseure the existence of
a random variable Y independent of X. In (56), the map v is extended to L2( × [0,1]) → R by v(Y ) := u(L(Y )). Let
us prove that

(i) vε(X) depends only on the law of X; thus we can define uε(μ) by letting uε(μ) := vε(X), whatever the choice of
the random variable X with distribution μ.

(ii) for every μ ∈P2(R), |uε(μ) − u(μ)| ≤ Cε
δ

2−δ .

(iii) for every μ,ν ∈ P2(R), |uε(μ) − uε(ν)| ≤ Cε
δ−1
2−δ dTV(μ, ν).

Proof of (i). Let X,X′ ∈ L2() with same law. We want to prove that vε(X) = vε(X′). Remark that by definition of
v, v(X) depends only on the law of X. Fix η > 0. There is Yη ∈ L2( × [0,1]) such that

v
(
Yη

) + 1

2ε
(P⊗ Leb[0,1])

[
X �= Yη

]2 ≤ vε(X) + η. (57)

Let ν : R × B(R) → R be the conditional law of Yη given X; in other words, for every fixed x ∈ R, ν(x, ·) belongs
to P2(R), for every fixed A ∈ B(R), x �→ ν(x,A) is measurable and for every f : R2 → R bounded and measurable,
(E⊗ Leb[0,1])[f (X,Y η)] = (E⊗ Leb[0,1])[

∫
R

f (X,y)ν(X, dy)].
Furthermore, for every fixed x ∈ R, let us denote by u ∈ [0,1] �→ g(x,u) the quantile function associated to the

probability measure ν(x, ·). For every t ∈ R and for every u ∈ [0,1], {x : g(x,u) ≤ t} = {x : ν(x, (−∞, t]) ≤ u} ∈ B(R),
so we deduce that for every u ∈ [0,1], x �→ g(x,u) is measurable. Moreover, u �→ g(x,u) is a càdlàg function. It follows
from [17, Proposition 1.13] that (x,u) �→ g(x,u) is measurable.

Let U ∈ L2([0,1]) be a random variable with uniform law on [0,1]; in particular, it is independent of X′ (remark
that we have considered a larger probability space in order to ensure the existence of U independent of X′). Let Y ′ :=
g(X′,U). Then for every f : R2 →R bounded and measurable

(E⊗ Leb[0,1])
[
f
(
X′, Y ′)] = (E⊗ Leb[0,1])

[
f
(
X′, g

(
X′,U

))]
= (E⊗ Leb[0,1])

[∫ 1

0
f
(
X′, g

(
X′, u

))
du

]
= (E⊗ Leb[0,1])

[∫
R

f
(
X′, y

)
ν
(
X′, dy

)]
.

Since X and X′ have same law, we deduce that

(E⊗ Leb[0,1])
[
f
(
X′, Y ′)] = (E⊗ Leb[0,1])

[∫
R

f (X,y)ν(X, dy)

]
= (E⊗ Leb[0,1])

[
f
(
X,Yη

)]
.
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Therefore, the pair (X′, Y ′) has same distribution as (X,Y η). It follows that

(P⊗ Leb[0,1])
[
X �= Yη

] = (P⊗ Leb[0,1])
[
X′ �= Y ′]

and v(Y η) = v(Y ′) since v depends only on the law of the random variable. Thus by inequality (57),

v
(
Y ′) + 1

2ε
(P⊗ Leb[0,1])

[
X′ �= Y ′]2 ≤ vε(X) + η.

By definition (56) of vε , vε(X′) ≤ v(Y ′) + 1
2ε

(P ⊗ Leb[0,1])[X′ �= Y ′]2, thus vε(X′) ≤ vε(X) + η. We proved that the
inequality holds with every η > 0, thus vε(X′) ≤ vε(X). By symmetry, vε(X) ≤ vε(X′), hence the equality holds true.

Proof of (ii). Let us prove that for every X ∈ L2(), |vε(X) − v(X)| ≤ Cε
δ

2−δ . Fix X ∈ L2(). By definition (56), it

is obvious that vε(X) ≤ v(X). Thus it is sufficient to prove that v(X) − vε(X) ≤ Cε
δ

2−δ .
Fix η > 0. There exists Yη such that (57). It follows that

v
(
Yη

) + 1

2ε
(P⊗ Leb[0,1])

[
X �= Yη

]2 ≤ v(X) + η.

By definition of v, |v(X) − v(Y η)| = |u(L(X)) − u(L(Y η))| ≤ dTV(L(X),L(Y η))δ . Therefore, by (33),

dTV
(
L(X),L

(
Yη

))2 ≤ 4(P⊗ Leb[0,1])
[
X �= Yη

]2 ≤ 8ε
[

dTV
(
L(X),L

(
Yη

))δ + η
]
. (58)

Let l := lim supη↘0 dTV(L(X),L(Y η)). Thus l2 ≤ 8εlδ , hence we get l2−δ ≤ 8ε. It follows that

lim sup
η↘0

dTV
(
L(X),L

(
Yη

)) ≤ 2
3

2−δ ε
1

2−δ . (59)

By inequality (57),

v(X) − vε(X) ≤ v(X) − v
(
Yη

) − 1

2ε
(P⊗ Leb[0,1])

[
X �= Yη

]2 + η

≤ ∣∣v(X) − v
(
Yη

)∣∣ + η ≤ dTV
(
L(X),L

(
Yη

))δ + η.

By passing to the limit η ↘ 0, we obtain v(X) − vε(X) ≤ Cε
δ

2−δ , which completes the proof of (ii).
Proof of (iii). Let us first prove that uε is also δ-Hölder continuous. Let μ,ν ∈ P2(R). Let X and X′ ∈ L2() with

respective distributions μ and ν. Fix η > 0. Let Yη satisfying (57). Then

vε
(
X′) − vε(X) ≤ vε

(
X′) − v

(
Yη

) − 1

2ε
(P⊗ Leb[0,1])

[
X �= Yη

]2 + η

≤ v
(
Yη + X′ − X

) + 1

2ε
(P⊗ Leb[0,1])

[
X′ �= Yη + X′ − X

]2

− v
(
Yη

) − 1

2ε
(P⊗ Leb[0,1])

[
X �= Yη

]2 + η

≤ ∣∣v(Yη + X′ − X
) − v

(
Yη

)∣∣ + η ≤ dTV
(
L
(
Yη + X′ − X

)
,L

(
Yη

))δ + η.

By definition of the distance in total variation, dTV(L(Y η + X′ − X),L(Y η)) ≤ 2P[X′ �= X]. Thus for every η > 0,
vε(X′)−vε(X) ≤ 2δP[X′ �= X]δ +η. By letting η tend to zero and by symmetry, we deduce that there is C > 0 depending
only on δ such that∣∣uε(μ) − uε(ν)

∣∣ = ∣∣vε(X) − vε
(
X′)∣∣ ≤ CP

[
X′ �= X

]δ
.

By taking the infimum over every coupling (X,X′) of (μ, ν), we finally get∣∣uε(μ) − uε(ν)
∣∣ ≤ C dTV(μ, ν)δ. (60)

Therefore, uε is also δ-Hölder continuous.
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Keep X,X′ ∈ L2() two random variables with laws μ and ν. Let (Y η)η>0 satisfy (57). It follows from (58) and (59)
that

lim sup
η↘0

(P⊗ Leb[0,1])
[
X �= Yη

] ≤
√

2ε2
3δ

2−δ ε
δ

2−δ = 2
1+δ
2−δ ε

1
2−δ .

For every η > 0, let us define

Sη := {
Y ∈ L2

(
 × [0,1]) : (P⊗ Leb[0,1])[X �= Y ] ≤ 2

1+δ
2−δ ε

1
2−δ + η

or (P⊗ Leb[0,1])
[
X′ �= Y

] ≤ 2
1+δ
2−δ ε

1
2−δ + η

}
.

Fix η > 0. Thus there is Yη ∈ Sη such that (57) holds true. We deduce that

vε
(
X′) − vε(X) ≤ v

(
Yη

) + 1

2ε
(P⊗ Leb[0,1])

[
X′ �= Yη

]2

− v
(
Yη

) − 1

2ε
(P⊗ Leb[0,1])

[
X �= Yη

]2 + η

≤ 1

2ε

(
(P⊗ Leb[0,1])

[
X′ �= Yη

]2 − (P⊗ Leb[0,1])
[
X �= Yη

]2) + η.

By symmetry, we deduce that

∣∣vε
(
X′) − vε(X)

∣∣ ≤ 1

2ε
sup
Y∈Sη

∣∣(P⊗ Leb[0,1])
[
X′ �= Y

]2 − (P⊗ Leb[0,1])[X �= Y ]2
∣∣ + η.

Moreover,∣∣(P⊗ Leb[0,1])
[
X′ �= Y

]2 − (P⊗ Leb[0,1])[X �= Y ]2
∣∣

≤ ∣∣(P⊗ Leb[0,1])
[
X′ �= Y

] − (P⊗ Leb[0,1])[X �= Y ]∣∣
× ∣∣(P⊗ Leb[0,1])

[
X′ �= Y

] + (P⊗ Leb[0,1])[X �= Y ]∣∣
≤ P

[
X′ �= X

] · ∣∣(P⊗ Leb[0,1])
[
X′ �= Y

] + (P⊗ Leb[0,1])[X �= Y ]∣∣.
For every Y ∈ Sη , we have∣∣(P⊗ Leb[0,1])

[
X′ �= Y

] + (P⊗ Leb[0,1])[X �= Y ]∣∣ ≤ P
[
X �= X′] + 2

(
2

1+δ
2−δ ε

1
2−δ + η

)
.

By passing to the limit η ↘ 0 it follows that there exists C > 0 depending on δ such that for every X,X′ ∈ L2() with
respective distributions μ and ν,

∣∣uε(μ) − uε(ν)
∣∣ = ∣∣vε(X) − vε

(
X′)∣∣ ≤ 1

2ε
P
[
X′ �= X

](
P
[
X′ �= X

] + Cε
1

2−δ
)
.

Let us distinguish two cases:

• if dTV(μ, ν) < ε
1

2−δ : by definition (33), there exists a coupling (X,X′) of law (μ, ν) such that P[X �= X′] < ε
1

2−δ . Thus

∣∣uε(μ) − uε(ν)
∣∣ ≤ C

ε
1

2−δ

ε
P
[
X′ �= X

] ≤ Cε
δ−1
2−δ dTV(μ, ν);

• if dTV(μ, ν) ≥ ε
1

2−δ : recall that uε is δ-Hölder continuous (see (60)). Thus

∣∣uε(μ) − uε(ν)
∣∣ ≤ C dTV(μ, ν)δ ≤ C

dTV(μ, ν)

dTV(μ, ν)1−δ
≤ Cε

δ−1
2−δ dTV(μ, ν).

This completes the proof of (iii).
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Let us conclude the proof of Lemma 33. Let us define λ̃�(k,μ) := �(k)uε(μ), with ε = 1
〈k〉θ(2−δ) . For every μ,ν ∈

P2(R), we have∣∣̃λ�(k,μ) − λ�(k,μ)
∣∣ ≤ �(k)

∣∣uε(μ) − u(μ)
∣∣ ≤ C�(k)ε

δ
2−δ ≤ C�(k)

1

〈k〉θδ
;

∣∣̃λ�(k,μ) − λ̃�(k, ν)
∣∣ ≤ �(k)

∣∣uε(μ) − uε(ν)
∣∣ ≤ C�(k)ε

δ−1
2−δ dTV(μ, ν) ≤ C�(k)〈k〉θ(1−δ) dTV(μ, ν).

It completes the proof of (54) and (55) for the case of the real part. The proof for the imaginary part is the same. �

In particular, it follows from (52) and from (54) that there exists C > 0 such that for each k ∈R, |̃λ(k, ·)| ≤ C�(k).
Let us define

b̃(x,μ) :=
∫
R

〈k〉−η
(
cos(kx)̃λ�(k,μ) + sin(kx)̃λ�(k,μ)

)
dk. (61)

For every x ∈ R and μ ∈P2(R),∣∣̃b(x,μ)
∣∣ ≤ C

∫
R

〈k〉−η
(∣∣̃λ�(k,μ)

∣∣ + ∣∣̃λ�(k,μ)
∣∣)dk ≤ C

∫
R

〈k〉−η�(k)dk ≤ C,

since η > 0 and � ∈ L1(R). Furthermore, by (55), for every x ∈R and for every μ,ν ∈P2(R),∣∣̃b(x,μ) − b̃(x, ν)
∣∣ ≤

∫
R

〈k〉−η
(∣∣̃λ�(k,μ) − λ̃�(k, ν)

∣∣ + ∣∣̃λ�(k,μ) − λ̃�(k, ν)
∣∣)dk

≤ C

∫
R

〈k〉−η〈k〉θ(1−δ)�(k)dk dTV(μ, ν).

Moreover, η − θ(1 − δ) ≥ 0. Indeed, η − θ(1 − δ) = η + θδ − θ = α − α−η
δ

= η−α(1−δ)
δ

≥ 0 by inequality (34). Since �

belongs to L1(R), it implies that
∫
R
〈k〉−η〈k〉θ(1−δ)�(k)dk < +∞. Therefore, the drift function b̃ is uniformly bounded

and uniformly Lipschitz-continuous in the measure variable.

2.4.1. Existence of a weak solution to the SDE with drift function b

Let us prove existence of a weak solution to equation (35). We follow the same idea as in Theorem 17.

Proof of Theorem 32, existence part. Let � be a weak solution to the SDE (38) with drift b̃ given by (61). In particular,
P-almost surely and for every t ∈ [0, T ],

zt = ξ +
∫ t

0

∫
R

f (k)�(
e−ikzs dw(k, s)

) + βt +
∫ t

0
b̃(zs,μs)ds,

where for every t ∈ [0, T ], μt = LP(zt |GW
t ) and GW

t := σ {w(k, s), k ∈ R, s ≤ t}. Recall that Proposition 28 states that
every weak solution has this form, i.e. (μt )t∈[0,T ] is adapted to (the completion of) (GW

t )t∈[0,T ].
Let (ht )t∈[0,T ] = (h�

t + ih�
t )t∈[0,T ] be a process with values in L2(R,C) satisfying for every t ∈ [0, T ] and for every

x ∈ R,

(b − b̃)(x,μt ) =
∫
R

f (k)
(
cos(kx)h�

t (k) + sin(kx)h�
t (k)

)
dk. (62)

By (51) and (61), the unique solution to (62) is given, for every k ∈R and for every t ∈ [0, T ], by

ht (k) = 1

f (k)
〈k〉−η

(
λ(k,μt ) − λ̃(k,μt )

)
.

Since μt is a (GW
t )t∈[0,T ]-adapted process, the process (ht )t∈[0,T ] is also (GW

t )t∈[0,T ]-adapted. Furthermore, by (54) and
since f is of order α,∫ T

0

∫
R

∣∣ht (k)
∣∣2 dk dt ≤ C

∫ T

0

∫
R

〈k〉2α−2η
∣∣λ(k,μt ) − λ̃(k,μt )

∣∣2 dk dt ≤ C

∫ T

0

∫
R

〈k〉2α−2η−2θδ�(k)2 dk dt.
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Since α = η + θδ and � ∈ L2(R), we deduce that
∫ T

0

∫
R

|ht (k)|2 dk dt is bounded by a deterministic constant. Therefore,
the measure Q on (,G) with the following density with respect to P:

dQ

dP
= exp

(∫ T

0

∫
R

h�
t (k)dw�(k, t) +

∫ T

0

∫
R

h�
t (k)dw�(k, t) − 1

2

∫ T

0

∫
R

∣∣ht (k)
∣∣2 dk dt

)
is a probability measure. Let us define w̃(k, t) = w̃�(k, t) + iw̃�(k, t), where

w̃�(k, t) := w�(k, t) −
∫ t

0

∫ k

0
h�

s (l)dl ds, w̃�(k, t) := w�(k, t) −
∫ t

0

∫ k

0
h�

s (l)dl ds.

By Girsanov’s Theorem, LQ(w̃, β, ξ) = LP(w,β, ξ) and for any t ∈ [0, T ], the σ -field σ {w̃(k, t ′)− w̃(k, t), βt ′ −βt , k ∈
R, t ′ ∈ [t, T ]} is independent of Gt under Q. Moreover, Q-almost surely, the process (zt )t∈[0,T ] satisfies

zt = ξ +
∫ t

0

∫
R

f (k)�(
e−ikzs dw̃(k, s)

) +
∫ t

0

∫
R

f (k)
(
cos(kzs)h

�
t (k) + sin(kzs)h

�
t (k)

)
dk ds

+ βt +
∫ t

0
b̃(zs,μs)ds

= ξ +
∫ t

0

∫
R

f (k)�(
e−ikzs dw̃(k, s)

) +
∫ t

0
(b − b̃)(zs,μs)ds + βt +

∫ t

0
b̃(zs,μs)ds

= ξ +
∫ t

0

∫
R

f (k)�(
e−ikzs dw̃(k, s)

) + βt +
∫ t

0
b(zs,μs)ds.

Furthermore, recall that for every t ∈ [0, T ] P-almost surely, μt = LP(zt |GW
t ). We want to prove that for every t ∈

[0, T ] Q-almost surely, μt = LQ(zt |Gμ,W̃
t ), where the filtration (Gμ,W̃

t )t∈[0,T ] is defined by Gμ,W̃
t = σ {w̃(k, s),μs; k ∈

R, s ≤ t}. Let ψ : R → R and ϕ : C([0, T ],P2(R)) × C(R× [0, T ],R2) → R be bounded and measurable functions. Fix
t ∈ [0, T ]. Then

EQ
[
ψ(zt )ϕ(μ·∧t , w̃·∧t )

]
= EP

[
ψ(zt )ϕ(μ·∧t , w̃·∧t ) exp

(∫ t

0

∫
R

�(
ht (k)dw(k, t)

) − 1

2

∫ t

0

∫
R

∣∣ht (k)
∣∣2 dk dt

)]
.

Recall that the process (ht )t∈[0,T ] is (GW
t )t∈[0,T ]-adapted. It follows that the process (w̃·∧t )t∈[0,T ] is also (GW

t )t∈[0,T ]-
adapted, since w̃·∧t = w·∧t − ∫ ·∧t

0

∫ ·
0 hs(l)dl ds. Thus

EQ
[
ψ(zt )ϕ(μ·∧t , w̃·∧t )

]
= EP

[
EP

[
ψ(zt )|GW

t

]
ϕ(μ·∧t , w̃·∧t ) exp

(∫ t

0

∫
R

�(
ht (k)dw(k, t)

) − 1

2

∫ t

0

∫
R

∣∣ht (k)
∣∣2 dk dt

)]
= EP

[∫
R

ψ(x)dμt(x)ϕ(μ·∧t , w̃·∧t ) exp

(∫ t

0

∫
R

�(
ht (k)dw(k, t)

) − 1

2

∫ t

0

∫
R

∣∣ht (k)
∣∣2 dk dt

)]
= EQ

[∫
R

ψ(x)dμt(x)ϕ(μ·∧t , w̃·∧t )

]
. (63)

Therefore, for every t ∈ [0, T ], EQ[ψ(zt )|Gμ,W̃
t ] = ∫

R
ψ(x)dμt(x). We deduce that for every t ∈ [0, T ], Q-almost surely

μt = LQ(zt |Gμ,W̃
t ).

Furthermore, the pair (μ, w̃) is GW -measurable and, subsequently, dQ
dP

is also GW -measurable. By independence of
(ξ,w,β) under P, we deduce that (μ, w̃) and (β, ξ) are independent under Q. By the same argument and by the compat-
ibility property under P, we deduce that, under Q, for any t ∈ [0, T ], (ξ, w̃,μ) and β are conditionally independent given
Gt , which is the required compatibility condition.

Therefore (,G, (Gt )t∈[0,T ],Q, z, w̃, β, ξ) is a weak solution to (35). This proves the first statement of Theorem 32. �
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Remark 34. In Remark 29, we emphasized the importance of the filtration under which (μt )t∈[0,T ] is adapted. It makes

sense in (63), because in order to identify
∫
R

ψ(x)dμt(x) with the conditional expectation EQ[ψ(zt )|Gμ,W̃
t ], we need to

know that μt is Gμ,W̃
t -measurable. This is obviously true, but it is not necessarily true with GW̃

t instead of Gμ,W̃
t .

2.4.2. Uniqueness in law for the SDE with drift function b

Let us conclude the proof of Theorem 32 by showing uniqueness in law for equation (35). We follow the same idea as in
Theorem 17.

Proof of Theorem 32, uniqueness part. Let �1 and �2 be two weak solutions to (35). We want to prove that LP1
(z1) =

LP2
(z2). In particular, for n = 1,2, Pn-almost surely, the process (zn

t )t∈[0,T ] satisfies

zn
t = ξn +

∫ t

0

∫
R

f (k)�(
e−ikzn

s dwn(k, s)
) + βn

t +
∫ t

0
b
(
zn
s ,μ

n
s

)
ds,

where for every t ∈ [0, T ], μn
t = LPn

(zn
t |Gμn,Wn

t ), Gμn,Wn

t := σ {wn(k, s),μn
s ; k ∈ R, s ≤ t} and (μn,wn) is independent

of (βn, ξn) under Pn.
For n = 1,2, define the process (hn

t )t∈[0,T ] by hn
t (k) := 1

f (k)
〈k〉−η(λ(k,μn

t ) − λ̃(k,μn
t )) for every k ∈ R and for every

t ∈ [0, T ]. It is (Gμn

t )t∈[0,T ]-adapted,
∫ T

0

∫
R

|hn
t (k)|2 dk dt is bounded and (hn

t )t∈[0,T ] satisfies for every x ∈ R and for
every t ∈ [0, T ]

(b − b̃)
(
x,μn

t

) =
∫
R

f (k)
(
cos(kx)h

�,i
t (k) + sin(kx)h

�,i
t (k)

)
dk.

Let us define Qn as the absolutely continuous probability measure with respect to Pn with density

dQn

dPn
= exp

(
−

∫ T

0

∫
R

�(
hn

t (k)dwn(k, t)
) − 1

2

∫ T

0

∫
R

∣∣hn
t (k)

∣∣2 dk dt

)
.

Let us denote dw̃n(k, t) = dwn(k, t) + hn
t (k)dk dt . It follows from Girsanov’s Theorem that LQn

(w̃n, βn, ξn) =
LPn

(wn,βn, ξn) and that, for any t ∈ [0, T ], the σ -field σ {w̃n(k, t ′)− w̃n(k, t), βn
t ′ −βn

t , k ∈ R, t ′ ∈ [t, T ]} is independent
of Gn

t under Qn. Moreover, (zn
t )t∈[0,T ] satisfies

zn
t = ξn +

∫ t

0

∫
R

f (k)�(
e−ikzn

s dw̃n(k, s)
) + βn

t +
∫ t

0
b̃
(
zn
s ,μ

n
s

)
ds.

Let us remark that (exp(− ∫ t

0

∫
R

�(hn
s (k)dwn(k, s))− 1

2

∫ t

0

∫
R

|hn
s (k)|2 dk ds))t∈[0,T ] and w̃n·∧t = wn·∧t −

∫ ·∧t

0

∫ ·
0 hn

s (l)dl ds

are (Gμn,Wn

t )t∈[0,T ]-adapted. Let us consider the same function ϕ and ψ as in equality (63). We obtain by a similar
computation:

EQn[
ψ

(
zn
t

)
ϕ
(
μn·∧t , w̃

n·∧t

)]
= EPn

[
ψ

(
zn
t

)
ϕ
(
μn·∧t , w̃

n·∧t

)
exp

(
−

∫ t

0

∫
R

�(
hn

s (k)dwn(k, s)
) − 1

2

∫ t

0

∫
R

∣∣hn
s (k)

∣∣2 dk ds

)]
= EPn

[
EPn[

ψ
(
zn
t

)|Gμn,Wn

t

]
ϕ
(
μn·∧t , w̃

n·∧t

)
exp

(
−

∫ t

0

∫
R

�(
hn

s (k)dwn(k, s)
) − 1

2

∫ t

0

∫
R

∣∣hn
s (k)

∣∣2 dk ds

)]
= EPn

[∫
R

ψ(x)dμn
t (x)ϕ

(
μn·∧t , w̃

n·∧t

)
exp

(
−

∫ t

0

∫
R

�(
hn

s (k)dwn(k, s)
) − 1

2

∫ t

0

∫
R

∣∣hn
s (k)

∣∣2 dk ds

)]
= EQn

[∫
R

ψ(x)dμn
t (x)ϕ

(
μn·∧t , w̃

n·∧t

)]
,

and thus for every t ∈ [0, T ], Qn-almost surely, μn
t = LQn

(zn
t |Gμn,W̃n

t ).
Moreover (μn, w̃n) and dQn

dPn are Gμn,Wn
-measurable and under Pn, (μn,wn) is independent of (βn, ξn). Thus for any

bounded and measurable functions g : C([0, T ],R) × R → R and f : C([0, T ],P2(R)) × C(R × [0, T ],R2) → R, we



2352 V. Marx

have

EQn[
f
(
μn, w̃n

)
g
(
βn, ξn

)] = EPn

[
f
(
μn, w̃n

)dQn

dPn
g
(
βn, ξn

)] = EPn

[
f
(
μn, w̃n

)dQn

dPn

]
·EPn[

g
(
βn, ξn

)]
= EQn[

f
(
μn, w̃n

)] ·EQn[
g
(
βn, ξn

)]
.

Thus under Qn, (μn, w̃n) is independent of (βn, ξn). By the same argument and by the compatibility property under Pn,
we get that, under Qn, for any t ∈ [0, T ], (ξn, w̃n,μn) and βn are conditionally independent given Gn

t , which proves
compatibility under Qn.

Thus we deduce that for n = 1,2, (n,Gn, (Gn
t )t∈[0,T ],Qn, zn, w̃n,βn, ξn) are weak solutions to the SDE (38) with

drift b̃. By Proposition 28, it follows that LQ1
(z1, w̃1) = LQ2

(z2, w̃2) and that for every t ∈ [0, T ], μn
t = LQn

(zn
t |GW̃n

t ).
Then, we apply the same computation as (29): for each bounded and measurable φ : C([0, T ],R) →R,

EPn[
φ
(
zn

)] = EQn

[
φ
(
zn

)
exp

(∫ T

0

∫
R

�(
hn

t (k)dw̃n(k, t)
) − 1

2

∫ T

0

∫
R

∣∣hn
t (k)

∣∣2 dk dt

)]
.

Recall that hn
t (k) = 1

f (k)
〈k〉−η(λ(k,μn

t ) − λ̃(k,μn
t )) and that μn

t = LQn
(zn

t |GW̃n

t ). Hence the process (hn
t )t∈[0,T ] is

(GW̃n

t )t∈[0,T ]-progressively measurable. It follows that there is a measurable map ψ : C(R×[0, T ],R2) → R, independent
of n, such that EQn[|ψ(w̃n)|] < +∞ and

EP1[
φ
(
z1)] = EQ1[

φ
(
z1)ψ(

w̃1)] = EQ2[
φ
(
z2)ψ(

w̃2)] = EP2[
φ
(
z2)].

We conclude that LP1
(z1) = LP2

(z2). This completes the proof of Theorem 32. �

Remark 35. As the last computation right above highlights it, we have in fact that LP1
(z1, w̃1) = LP2

(z2, w̃2) and then
LP1

(z1,μ1) = LP2
(z2,μ2).
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