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aInstitute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland. E-mail: r.adamczak@mimuw.edu.pl
bInstitute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland.
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Abstract. We study a family of random permutation models on the Hamming graph H(2, n) (i.e., the 2-fold Cartesian product of
complete graphs), containing the interchange process and the cycle-weighted interchange process with parameter θ > 0. This family
contains the random walk representation of the quantum Heisenberg ferromagnet. We show that in these models the cycle structure of
permutations undergoes a phase transition – when the number of transpositions defining the permutation is ≤ cn2, for small enough
c > 0, all cycles are microscopic, while for more than ≥ Cn2 transpositions, for large enough C > 0, macroscopic cycles emerge with
high probability.

We provide bounds on values C, c depending on the parameter θ of the model, in particular for the interchange process we pinpoint
exactly the critical time of the phase transition. Our results imply also the existence of a phase transition in the quantum Heisenberg
ferromagnet on H(2, n), namely for low enough temperatures spontaneous magnetization occurs, while it is not the case for high
temperatures.

At the core of our approach is a novel application of the cyclic random walk, which might be of independent interest. By analyzing
explorations of the cyclic random walk, we show that sufficiently long cycles of a random permutation are uniformly spread on the
graph, which makes it possible to compare our models to the mean-field case, i.e., the interchange process on the complete graph,
extending the approach used earlier by Schramm.

Résumé. Nous étudions une famille de modèles de permutations aléatoires sur le graphe de Hamming H(2, n) (c’est-à-dire le produit
cartésien de deux graphes complets), incluant le processus d’échange et le processus d’échange pondéré par les cycles avec paramètre
θ > 0. Cette famille comprend la représentation par marches aléatoires du modèle de Heisenberg quantique ferromagnétique. Nous
montrons que dans ces modèles, la structure des cycles des permutations satisfait une transition de phase – lorsque le nombre de
transpositions définissant la permutation est ≤ cn2, pour c > 0 assez petit, tous les cycles sont microscopiques, tandis que lorsque ce
nombre est ≥ Cn2 avec C > 0 assez grand, des cycles macroscopiques apparaissent avec grande probabilité.

Nous déterminons des bornes sur les constantes C, c dépendant du paramètre θ du modèle, en particulier, pour le processus
d’échange, nous déterminons exactement le temps critique de la transition de phase. Nos résultats impliquent également l’existence
d’une transition de phase pour le modèle de Heisenberg quantique ferromagnétique sur H(2, n), stipulant que pour des températeurs
assez basses, une magnétisation spontanée apparaît alors que cela n’est pas le cas aux hautes températures.

Le cœur de notre approche consiste en une nouvelle application de la marche aléatoire cyclique, qui pourrait être intéressante en
elle-même. En analysant les explorations de la marche aléatoire cyclique, nous montrons que des cycles suffisamment longs d’une
permutation aléatoire sont répartis uniformément sur le graphe, ce qui rend possible une comparaison entre nos modèles au cas du
champ moyen, c’est-à-dire le processus d’échange sur le graphe complet, étendant ainsi l’approche antérieure utilisée par Schramm.
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1. Introduction

In this paper we investigate the cycle structure of random permutations in the interchange process (sometimes called the
random stirring process) and its generalizations. For a finite graph G= (V ,E) the interchange process σ = (σt )t≥0 on G

is defined as follows: put particles numbered from 1 to |V | on vertices of the graph and Poisson clocks of rate 1/|E| on
each edge. Whenever the clock on an edge e ∈ E rings, the particles at the endpoints of e are swapped. In this way for
each t ≥ 0 we obtain a permutation σt : V → V , which is determined by the sequence of transpositions corresponding to
swaps occurring up to time t .

The model has attracted considerable attention, in particular one is interested in how the cycle structure of σt changes
with t , especially in the asymptotic case where G=Gn belongs to a family of graphs with |V | = n→∞. The starting
point of our work is a remarkable result due to Schramm [28], which shows that in the case of the complete graph G=Kn

the model exhibits a phase transition. Suppose the interchange process is run for time cn, then if c > 1/2, the resulting
permutation will, with high probability, contain a macroscopic cycle (i.e., of size comparable to n), while for c < 1/2 all
cycles will have size o(n). Furthermore, for c > 1/2 after proper rescaling the joint distribution of macroscopic cycle sizes
converges to the Poisson-Dirichlet distribution with parameter 1 (which is also the limiting distribution of macroscopic
cycles for permutations chosen from the uniform measure on Sn). This should be contrasted with the classical result of
Diaconis and Shahshahani [14] that the mixing time of the random transposition process on Kn is 1

2n logn, in particular
Schramm’s result shows that long cycles equilibrate long before the distribution of the whole permutation.

Our main interest is twofold – first, to move beyond the complete graph and extend these results to graphs with non-
trivial geometry, and second, to obtain similar results for a certain generalization of the interchange process, motivated
by studies of models in statistical physics.

Namely, we will be interested in the cycle-weighted interchange process, depending on an additional parameter θ > 0,
in which the probability of a sequence of transpositions is weighted depending on the number of cycles in the resulting
permutation (a more precise definition will be given shortly). The physical importance of this model is that for θ = 2 it
corresponds to the random walk representation of the quantum Heisenberg ferromagnet.

We will first state our main result informally and just for the case of the interchange process, with more precise
statements given afterwards.

Main result. Let G be the Hamming graph H(2, n)=Kn×Kn, where Kn is the complete graph on n vertices. Consider
the interchange process on G run up to time t = βn2. Then the permutation σt obtained at time t exhibits a phase
transition: for β > 1/2 with high probability σt contains macroscopic cycles, while for β < 1/2 all cycles of σt are with
high probability of size o(n).

We will now introduce the more general setup, which will allow us to formulate our results rigorously.
We consider the Hamming graph H =Hn =H(2, n)= (V ,E). The vertices V = {0, . . . , n− 1}2 are given by a subset

of the square lattice and an edge is present between a pair of vertices if they are either in the same row or the same column,
where for i ∈ {0, . . . , n− 1} the sets Li = {0, . . . , n− 1} × {i} are called rows and Di = {i} × {0, . . . , n− 1} columns.
One can check that |V | = n2 and |E| = n2(n− 1). In the whole paper, we assume implicitly that n≥ 2.

Let X be the space of finite subsets of E×[0,1), which we will call configurations. Given X ∈X we denote by X↑ the
sequence (e1, . . . , e|X|), where (e1, t1), . . . , (e|X|, t|X|) are all points of X ordered with respect to the second coordinate
(and an arbitrary fixed order on E if ti = tj ). We define σ(X), a permutation associated with the configuration X, by

σ(X) := e|X| ◦ e|X|−1 ◦ · · · ◦ e1, (1)

where any edge ei ∈E is identified with the transposition of its endpoints.
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We call a function C : X 	→ R+ admissible if for any X,Y ∈ X we have C(X) = C(Y ) whenever X↑ = Y↑ and the
following Lipschitz condition holds∣∣C(X)− C(Y )

∣∣≤ |X
Y |, (2)

where 
 is the symmetric difference of sets.
Fix β > 0. Let B be the law of a Poisson point process on E × [0,1) with intensity measure given by β

n−1 #(·)⊗ Leb,
where #(·) is the counting measure and Leb is the Lebesgue measure. Here we treat the Poisson process as a random
element of X (we endow this space with a σ -field S , being a completion with respect to the measure B of the σ -field
generated by all functions of the form X 	→X ∩A, where A ∈ 2E ⊗Bor([0,1))).

By rescaling time and changing intensity on the edges to 1/|E| one easily sees that if a configuration X is drawn at
random according to B, the resulting sequence of transpositions has the same distribution as the interchange process on
H after time βn2. In particular the intensity is chosen so that X has size |E| · β

n−1 = βn2 on average.
Fix θ > 0 and an admissible function C. We define a probability distribution μβ,θ,C on X which will be the main object

of our study

μβ,θ,C(U) := Z−1
β,θ,C

∫
X

1U(X)θC(X)B(dX), (3)

where Zβ,θ,C =
∫
X

θC(X)B(dX) is the partition function normalizing the measure to 1. Note that the condition (2) ensures
that the measure is well defined. Throughout the paper we set � :=max(θ−1, θ).

The process defined by μβ,θ,C will be called the weighted interchange process in general and we will use the name
cycle-weighted interchange process if C(X) is the number of cycles in σ(X) (which is easily seen to be an admissible
function). Note that θ = 1 corresponds simply to the interchange process.

The main result of our paper states that for β large enough the random permutation induced by the measure μβ,θ,C has
macroscopic cycles with high probability

Theorem 1.1. Let β, θ > 0 be such that β > �/2 and let C be an admissible function. Let X be randomly sampled from
μβ,θ,C . Then

lim
ε→0

lim inf
n→+∞P

(
there exists a cycle of σ(X) of length at least εn2)= 1.

This contrasts with the situation when β is small.

Theorem 1.2. Let β, θ > 0 be such that β < �−1/2 and let C be an admissible function. Let X be randomly sampled
from μβ,θ,C . Then for some C > 0

lim
n→+∞P

(
all cycles of σ(X) are shorter than C logn

)= 1.

Together our results imply the existence of a phase transition from microscopic cycles when β < �−1/2 to macro-
scopic ones when β > �/2. We expect that the point of the phase transition is unique, possibly under some mild assump-
tions on C.

The two most important cases in which our results apply are θ = 1 and θ = 2 (with C being the number of cycles).

Interchange process. In the special case of the interchange process, corresponding to θ = 1, we have �−1/2=�/2=
1/2, so the above theorems determine precisely the transition point for the occurrence of large cycles: for β < 1/2 (and
large n) with high probability all the cycles are of logarithmic size, while for β > 1/2 we get cycles of length comparable
to the size of the graph with probability arbitrarily close to one.

Quantum Heisenberg model. The case θ = 2 is particularly interesting from the point of view of statistical physics,
since it corresponds to the random walk representation of the quantum Heisenberg ferromagnet. In this representation,
introduced by Tóth in [30], the existence of macroscopic cycles translates to nonvanishing spontaneous magnetization in
the model. We describe the connection very briefly here, referring the reader to the survey [17] for more details on this
model.

The quantum Heisenberg ferromagnet is a model of a spin system whose physical properties depend on a parameter
β > 0 called the inverse temperature. One of the major questions about the model is whether a spontaneous ordering of
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spins occurs at low enough temperatures (corresponding to high β). Tóth’s random walk representation of the Heisenberg
model is given by the measure μβ,θ,C with β equal to the inverse temperature, θ = 2 and C(X) being the number of
cycles in the permutation σ(X). One can then express all physical quantities of interest in terms of the cycle-weighted
interchange process given by μβ,θ,C . For example, the correlation between spins at sites u and v corresponds to the
probability that u and v are in the same cycle of σ(X) when X is sampled from μβ,θ,C .

Crucially, our results in Theorem 1.1 and Theorem 1.2 imply the existence of a phase transition for the model on the
Hamming graph – for β < 1/4 there is no magnetic ordering as n→∞, while it emerges for β > 1. Our methods do
not imply sharpness of the phase transition, although we conjecture that it is indeed sharp, with the critical value being
β = 1. It is a major open problem to determine whether a similar phase transition occurs for Gn = [−n,n]d ∩Zd , d ≥ 2,
as n→∞.

For a more precise relation between the existence of macroscopic cycles and the phase transition for spontaneous
magnetization see Section 4 of [17].

Outline of proof strategy. We now outline the main ideas behind the proof of Theorem 1.1 (the proof of Theorem 1.2 is
much less involved). First, however, we would like to stress that the novelty of our paper comes not only from the result
itself but also from the methods developed for this purpose. Our new techniques establish a precise geometric picture of
cycles which is believed to hold for a much broader family of graphs. We also note that the tools developed in this paper
proved useful in the analysis of loop models related to the XXZ model on the complete graph [10].

Broadly speaking, we would like to follow the approach used by Schramm for the complete graph, which consists of
showing that after a long enough time cycles of mesoscopic size appear and then quickly merge into macroscopic ones.
This in turn relies on analyzing a split-merge process of cycles in the complete graph, with each new transposition either
causing two cycles to split or to merge. In the case of the complete graph it is easy to give an upper bound on the rate at
which cycles split and a lower bound on the rate at which (long enough) cycles merge.

The key difficulty which appears on any graph with non-trivial geometry, in particular in the case of the Hamming
graph Hn, is that, unlike on the complete graph, the split-merge probabilities depend not only on sizes of the cycles, but
also on their spatial structure, more precisely on their isoperimetric properties. We are able to prove that long enough
fragments of cycles on Hn are typically “uniformly spread” on the graph, resembling an exploration of a simple random
walk and thus making their isoperimetric properties easy to analyze. In particular, the split-merge probabilities (and thus
the behavior of the interchange process) can be approximated by the mean-field (complete graph) case.

This intermediate result is at the core of our arguments and we believe it might be of independent interest when
analyzing random transposition processes on other graphs. The crucial tool that we employ is the so-called cyclic random
walk (abbreviated by CRW), introduced in [30] and later used by Angel in [5] under the name cyclic time random
walk. This is an exploration process which, given a configuration X of transpositions and a starting vertex v ∈ V , visits
subsequent vertices of the cycle of σ(X) containing v. The fundamental difficulty in the analysis of the CRW is that it
is a non-Markovian process, involving interactions of the random walk with vertices visited in the past. The bulk of our
effort is devoted to the analysis of these interactions.

We analyze the behavior of the CRW at a mesoscopic timescale which is:

• short enough so that the interactions with the history are tractable and it is possible to exploit methods similar to
excursion theory for random walks,

• long enough so that the trace of the CRW occupies the vertices of the graph in a uniform way, and probabilistic bounds
we obtain are strong enough to extend results (by union bound) to longer timescales, including macroscopic (i.e., of
the order of n2).

A more detailed outline of this part of the proof is given in Section 3.1. Once we know that the trace of the CRW with
high probability occupies the graph in a uniform way, we can extend this property to cycles of σ(X) and carry out the
analysis of the corresponding split-merge process described above. We note that the assumption β > �/2 is crucial in
our approach, as it enables us to show that the explorations of the CRW are sufficiently long.

Schramm’s approach requires as a prerequisite the existence of mesoscopic cycles. To prove that indeed they exist with
high probability, we employ a natural coupling between the random transposition process and a percolation process, with
the quality of the coupling on a fixed timescale depending on the isoperimetric bound.

We use this coupling twice to obtain cycles of mesoscopic length, and then employ the argument by Schramm relying
on the mean-field behavior of the split-merge probabilities. An abstract version of Schramm’s argument that we use is
presented in Section 5.1 and we believe that this part of the paper might be of independent interest, as the results are
formulated in a way convenient for application to general transposition processes (e.g., the interchange process on more
general graphs).

It is worth noting that an additional difficulty is present in both parts of the proof in the case of models with θ = 1,
as subsequent transpositions appear there in a non-i.i.d. fashion. Our methods are based on the observation that on small
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timescales having θ = 1 tilts the measure in a controllable way. Roughly speaking, adding or removing a transposition
from a configuration changes the number of cycles only by one, which can change the relative probability of the configu-
ration by at most a factor of �2. Thus we can compare this process with an i.i.d process, which makes the analysis of the
cyclic random walk and emergence of macroscopic cycles still possible. For θ = 1 this approach allows to analyze the
size of cycles for small and large β , however it does not give the critical value of the phase transition.

We end this part with a plan of the rest of the paper. The whole Section 3 is devoted to the analysis of the cyclic random
walk. The main results of this part are encapsulated in Proposition 3.1 and Proposition 3.3, providing an upper and a lower
bound on the typical isoperimetry of the trace of the CRW. In Section 4 we flesh out the connection between the CRW and
the cycles of the transposition process. The crucial property that split-merge probabilities are comparable to the mean-
field case is stated in Proposition 4.2. In Section 5.1 we provide an abstract formulation of Schramm’s argument regarding
macroscopic cycles. It is given in Lemma 5.1 and we believe it might of independent interest. We then use it together with
results from Section 4 to prove Theorem 1.1. The (much simpler) proof of Theorem 1.2 is given in Section 5.4.

Related works. By now the interchange process and its generalizations have attracted considerable attention, both from
the point of view of probability theory and mathematical physics. Here we mention some of the work that is most closely
related to the topic of this paper.

• The existence of a phase transition for the appearance of macroscopic cycles in the interchange process on the complete
graph, together with convergence of the law of macroscopic cycles to the Poisson-Dirichlet distribution, is due to
Schramm [28]. An alternative, simpler proof of the statement that large cycles appear after cn transpositions, for
c > 1/2, was given by Berestycki [6].

To the best of our knowledge, the only rigorous results concerning finite graphs other than the complete graph, all
in the case θ = 1, are due to Kotecký, Miłoś and Ueltschi [22] and Miłoś and Şengül [25]. In [22] it is proved that
on the hypercube {0,1}n with N = 2n vertices for any ε > 0 and large enough times a positive fraction of vertices is

contained in cycles of length at least N
1
2−ε .

In [25] it is proved that on the Hamming graph H(2, n) for β > 1/2 and any ε > 0 asymptotically almost surely
a constant fraction of vertices is contained in cycles of length at least n2−ε . In this work we build on the approach of
[25] and obtain significantly stronger results, proving the existence of truly macroscopic cycles and also considering
the case θ = 1, which, as mentioned above, poses an additional difficulty. The techniques of [25] enabled the authors to
analyze only relatively short explorations of the cyclic random walk (on a timescale of the order of n) and thus obtain
rather crude bounds on the isoperimetry of the cycles. The main improvement in our work is a detailed analysis of the
structure of explorations of the cyclic random walk (in particular its interactions with its history) on a long timescale,
enabling us to give tight isoperimetric bounds on the cycles’ spatial structure.

• Another approach to the analysis of the cycle structure of random permutations, based on representation theory of the
symmetric group, was developed in [2] and [7], with the second paper providing yet another proof of the existence of
macroscopic cycles in the interchange process on the complete graph. This approach was recently extended in [3] to
prove a sharp phase transition in the θ = 2 case on the complete graph (mean-field Heisenberg ferromagnet). Another
recent result by the same authors [4] implies that in the case θ = 1 macroscopic cycles emerge with positive probability
on the Hamming graph for large enough β (note, however, that their result does not identify the critical value of β and
concerns only cycles of length at least n2/2, instead of εn2 for any ε > 0).

• In [9] Björnberg, also using representation theory, computed the free energy and the critical temperature in a family
of quantum spin models on the complete graph corresponding to the cycle-weighted interchange process with θ =
2,3,4, . . .. This extends previous results obtained by Penrose [27] and Tóth [29] for θ = 2.

The existence of large cycles was established for arbitary θ > 1 by a different method in [8], where it is proved that
macroscopic cycles appear on the complete graph for θ > 1 as soon as β > θ (note, however, that apart from the case
θ = 2 this is strictly larger than the critical value βc determined in [9] for θ = 2,3,4, . . .).

• The interchange process can be defined in a natural way also on infinite bounded-degree graphs. Here one asks whether
infinite orbits appear almost surely when time exceeds certain critical value. It is conjectured that a phase transition
occurs if the underlying infinite graph is transient. The case of a d-regular infinite tree was first considered by Angel
[5], who proved that infinite orbits exist in an appropriate bounded time interval, and then in subsequent work by
Hammond [18,19], where an actual phase transition was established for large enough d . These results were recently
extended to more general random loop models (see below).

• Another generalization of the interchange process are the so-called random loop models, corresponding to a family of
quantum spin models containing, among others, the quantum Heisenberg antiferromagnet [17]. Recently it has been
proved by Hammond and Hegde [20], building upon earlier work by Björnberg and Ueltschi [11], that there exists a
phase transition for the appearance of infinite loops on the infinite d-regular tree for d large enough. In the case of
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finite graphs, it is proved [10] that on the complete graph the distribution of macroscopic loops for β > 1 converges to
the Poisson-Dirichlet distribution with parameter 1/2.

Further research and open questions. There are a number of open questions closely related to our paper. We believe
that techniques we have developed here could be useful in approaching some of them.

• We expect that the same techniques as for the Hamming graph H(2, n) could be used to analyze other families of
Hamming graphs {H(d,n)}n≥2, for fixed d ∈ N. Here H(d,n) has vertex set {0, . . . , n− 1}d and an edge is present
between any two vertices which differ in exactly one coordinate. In this paper we decided to focus only on the case
d = 2, so as not to obfuscate already long proofs.

On the other hand, it would be of interest to extend our results to Hamming graphs H(d,n) which satisfy d →∞
(as well as possibly n→∞). An extreme example is the hypercube {H(d,2)}d≥2, which is interesting as the degree
of each of its vertices diverges as d →∞, but only slowly (as it is logarithmic in the number of vertices of the graph).
We believe that many ideas from our paper should be applicable to this case, although some new insights will also be
required, as the geometry of the hypercube is more complicated that of {H(2, n)}n≥2. We expect that understanding
the hypercube would essentially enable one to analyze any Hamming graph.

• The results of this paper do not establish the critical value of β at which the phase transition occurs (apart from the case
θ = 1). It is conjectured (and partially proved, see results and discussion in [9]) that on the complete graph the critical
value is given by

βc(θ)=
{

θ if 0 < θ ≤ 2,

2( θ−1
θ−2 ) log(θ − 1) if θ > 2,

which coincides with the critical parameter of the random-cluster model on the complete graph with q = θ [12]. It
would be an interesting question to explore the possible connection between the two models further and determine the
critical value of β for the Hamming graph.

• We conjecture that the properly normalized list of macroscopic cycle lengths obtained in the weighted interchange pro-
cess with parameter θ should converge to the Poisson-Dirichlet distribution PD(θ). This would extend the convergence
to PD(1) in the case of θ = 1 on the complete graph proved in [28].

Glossary

To help the reader we include the glossary of notation used in the paper.
H =Hn the Hamming graph on n2 vertices 274
Li , Di rows and columns of the Hamming graph H 274
X the space of configurations (finite subsets of E × [0,1)) 274
X↑ sequence of edges corresponding to a configuration X 274
μβ,θ,C measure defining the weighted interchange process with parameters β, θ , C 275
Xs the cyclic random walk at time s 279
XI , ZI the path and trace of the cyclic random walk on interval I 279
Zs , Zk trace of the cyclic random walk (up to times s, resp. first k vertices) 279
Tk time of entering the k-th new vertex by the CRW 280
O, Ok the orbit of v under the permutation σ(X) and its first k vertices 280
Fs , Gk filtrations of the cyclic random walk 280
ι, χ isoperimetry upper and lower bound of a given set 280
T T ≤ n log2 n, timescale on which we study the trace of the CRW 282
Gt graph induced by the cyclic random walk 282
ϒt the bad set at time t 282
τ δ

iso time until which the trace of the cyclic random walk has small ι 283
τc time when the cyclic random walk closes into a cycle 283
I , I b, I d processes counting internal, bad and direct jumps 284
λ, λb, λd intensities of internal, bad and direct jumps 284
Pt potential of the path X[0,t) 286
Et (k) event that the CRW makes an excursion of length k at time t 289
G©

t core of the graph Gt 291
Dδ

t event that the graph Gt does not contain too many high degree vertices 292
Qt event that all straight paths of length log2 n in G©

t have good potential 295
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τk time of the visit to the k-th new vertex in L0 298
orbs(v), orb

s (v) orbit of vertex v in the permutation σs and its  first elements 304
I event that that orbits of σt have good isoperimetric properties 305
Ck() set of vertices belonging to components of σk of size at least  309
{Gs

u}u=0,...,|X|−s random graph process coupled to σs+u 312
Gs,u() vertices belonging to components of size at least  in Gs

u 313

2. The cyclic random walk – preliminaries

Let us now introduce the cyclic random walk (abbreviated as CRW), which will be the crucial tool in our analysis of
permutations arising from the distribution μβ,θ,C .

Recall that X consists of finite subsets of E × [0,1). For a configuration X = {(e1, t1), . . . , (ek, tk)} ∈ X the pairs
(ei, ti) will be called bridges. For a vertex v ∈ V the set {v} × [0,1) will be called the bar of vertex v. If ei = {v,w}, we
think of a bridge (ei, ti) as joining the bars of a vertex v and a vertex w at time ti ∈ [0,1).

We note that in the sequel X will always be sampled from a distribution for which almost surely all ti are pairwise
different and there are no bridges at prescribed deterministic times, hence there is no ambiguity in how the process is
defined.

Consider now a (possibly random) configuration X ∈ X. The associated cyclic random walk X = (Xs : s ≥ 0) is a
continuous time process with values in V × [0,1), exploring the bridges given by X. It starts at a point X0 = (v, t) ∈
V × [0,1), then moves upwards on the bar of the vertex v at unit speed, starting at height t , until it encounters a bridge
({v,w}, s) ∈X. Upon encountering a bridge, the CRW jumps to its other end and continues moving on the new bar. Once
it gets to height 1, the CRW moves to the bottom of the bar, at height 0. Note that the CRW can encounter an already
traversed bridge, in which case we say that it makes a backtrack.

Notice that the CRW is periodic. Once X reaches its starting point again (which will happen in a finite time), then it
will repeat itself. See Figure 1 for an example of a configuration X and the trajectory of the corresponding CRW.

The CRW as well as other jump processes we will consider in the paper will be always càdlàg.
For a time interval I by XI we denote the path of the CRW during I , likewise ZI is the set of vertices visited by XI ,

i.e.,

ZI :=
{
w ∈ V :Xs = (w, z) for some s ∈ I and z ∈ [0,1)

}
.

Fig. 1. A configuration of bridges and the corresponding CRW. (left) The dotted lines represent the bridges of X. The permutation σ(X) is determined
in the following way – the labels at the bottom are the labels of the vertices and at the top we have put where they map to under σ(X). In this example
we have σ(X)= (1365)(2)(4). (right) The path of the CRW using the bridges of X. The direction in which the CRW travels is indicated by the arrows.
Note that some bridges are traversed twice, which corresponds to backtracks.
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We will use the abbreviation Zs :=Z[0,s] and simply write Z for Z[0,∞). For k ∈N we denote by Tk := inf{s ≥ 0 : |Zs | ≥
k} the time at which the CRW discovers a previously unvisited vertex for the k-th time (where we use the convention that
inf∅=∞ and note that T1 = 0). For k ∈N we set Zk :=ZTk

.
The cyclic random walk started at (v,0) will be denoted by X (v) (and likewise for Z(v), Tk(v), Zk(v) etc.). We

will often write simply X = X (v), Z = Z(v) etc. if v is fixed. We will also often abuse notation and write Xs = v for
Xs = (v, t). Note that since the bars are of height one, the second coordinate t can be read from the time s, i.e., t = s

mod 1.
The reason for introducing the cyclic random walk is the following relation between the CRW X using the bridges of

X and the permutation σ(X). Consider the sets

O(v) := {
w ∈ V : ∃t≥0Xt (v)= (w,0)

}
, (4)

Ok(v) := {
w ∈ V : ∃t∈[0,k)Xt (v)= (w,0)

}
. (5)

It is readily seen that O(v) is equal to the orbit of the vertex v under the permutation σ(X). Moreover if the orbit
has size , then Ok(v) consists of the first k ∧  elements of the orbit. In other words, vertices visited by X (v) at
integer times enter the orbit of v under the permutation σ(X). Note that we have O(v) ⊂ Z(v) but not necessarily
Ok(v)⊂Zk(v). For example, the CRW shown in Figure 1, started at 1, visits vertices 1, 2 and 3 up to time 1 (blue path),
but O2(1)= {1,3} ⊂ {1,2} =Z2(1).

Suppose now that the set of bridges X is random. Then for v ∈ V the cyclic random walk X (v)= (Xs(v) : s ≥ 0) is
itself a stochastic process. Let F = (Fs : s ≥ 0) denote its natural filtration. Set also Gk :=FTk

.
In what follows we will be interested in the situation where X is drawn from the distribution μβ,θ,C defined in (3).

Fix β, θ > 0, an admissible function C, and let X ∈ X be distributed according to μβ,θ,C . For a fixed vertex v ∈ V , by
X β,θ,C(v) we will denote the corresponding cyclic random walk and call it the cyclic random walk associated to μβ,θ,C ,
started at v.

As a final note, we remark that on several occasions we will work with events defined in terms of uncountable inter-
sections over a set of times. Since the processes we are considering almost surely make only countably many jumps, all
such events will be in fact measurable.

3. Isoperimetry of the cyclic random walk

3.1. The setting and main results

We will now define a notion of isoperimetry for subsets of Hn. For a set A⊂ V let

ι(A) :=max
{

max
i∈{0,...,n−1}

|Li ∩A|, max
i∈{0,...,n−1}

|Di ∩A|
}

(6)

and

χ(A) :=min
{

min
i∈{0,...,n−1} |Li ∩A|, min

i∈{0,...,n−1} |Di ∩A|
}
. (7)

Given A⊂ V by E(A) we will denote the set of edges {v,w} ∈ E such that v,w ∈ A. As each vertex v ∈ A has at least
2(χ(A)− 1) and at most 2(ι(A)− 1) neighbors in A, we have the inequalities

χ(A)− 1≤ |E(A)|
|A| ≤ ι(A)− 1,

which justifies the name “isoperimetry”. Note also the following subadditivity property of ι: for any two subsets A,B ⊂ V

we have ι(A∪B)≤ ι(A)+ ι(B). We also have ι(A)≤ ι(B), χ(A)≤ χ(B) whenever A⊂ B , in particular both ι(Zt ) and
χ(Zt ) are nondecreasing in t .

Our main technical result is the following upper bound on ι of Zt

Proposition 3.1. Fix θ > 0, an admissible function C and let β0, β1 be such that β1 > β0 > �/2. Consider β ∈ [β0, β1]
and let Z(v) :=Zβ,θ,C(v) be the trace of the cyclic random walk associated to μβ,θ,C , started at v ∈ V . Then there exist
C,c > 0 (depending only on β0, β1, θ , in particular independent of C) such that

P
(∀v ∈ V ι

(
Zn log2 n(v)

)≤ C log2 n
)≥ 1−Ce−c log2 n.
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The above proposition will be a key tool in the proof of existence of long cycles. Together with a corresponding (easier)
lower bound on the quantity χ , given in Proposition 3.3 below, it gives good control of the isoperimetric properties of
mesoscopic segments of cycles (i.e., of length roughly n log2 n), which can be then lifted to isoperimetry of full cycles of
length at least n log2 n. This will enable us to prove that with high probability the conditional split and merge probabilities
in the evolution of cycles behave similarly as in the mean-field case, allowing for an application of a modification of an
argument due to Schramm.

The parameters β0, β1 are introduced for technical reasons. When applying the above proposition in the proof of
Theorem 1.1 we will need uniformity of constants for β belonging to the interval [β0, β1], with appropriately chosen β0,
β1.

The crucial part of the proof of Proposition 3.1 is a bootstrap argument regarding isoperimetry. Informally speaking,
we will show that if at some time T ≤ n log2 n we have with high probability “good” isoperimetry (of the order of nα

for some small enough α), then actually we have with high probability “very good” isoperimetry (of the order of log2 n).
This is formalized in the following

Lemma 3.2 (Bootstrap). Let θ , C, β0, β1, β , Z(v) be as in Proposition 3.1. Let α ∈ (0,1/100) and T ≤ n log2 n. Suppose
that for some C1, c1 > 0 we have

P
(∀v ∈ V ι

(
ZT (v)

)≤ nα
)≥ 1−C1e

−c1 log2 n.

Then there exist C,C2, c2 > 0 (depending only on θ , β0, β1, α, c1, C1) such that we have

P
(∀v ∈ V ι

(
ZT (v)

)≤ C log2 n
)≥ 1−C2e

−c2 log2 n.

With this lemma the proof of Proposition 3.1 is rather straightforward and is given in Section 3.6. The whole next
section will be devoted to the proof of Lemma 3.2.

Later on we will also need a lower bound on χ , which is analogous to Proposition 3.1 provided the orbit of the
permutation defined by the CRW contains at least n log2 n vertices. Recall the definition (4) of the sets Ok(v) and O(v).

Proposition 3.3. Fix θ > 0, an admissible function C and let β0, β1 > 0. Consider β ∈ [β0, β1] and let X (v) :=X β,θ,C(v)

be the cyclic random walk associated to μβ,θ,C , started at v. There exist C,c > 0 (depending only on β0, β1, θ , in
particular independent of C) such that

P
(∀v ∈ V χ

(
On log2 n(v)

)≥ c log2 n or
∣∣O(v)

∣∣< n log2 n
)≥ 1−Ce−c log2 n.

As the proof of the above proposition is much less involved than for Proposition 3.1, it is given separately in Section 3.7.

Outline of the proof of Lemma 3.2. Here we outline the proof strategy of the main technical result of this section –
Lemma 3.2. Most of our effort is devoted to the analysis of interactions of the CRW with its history. When the CRW enters
a previously visited vertex it may reuse already explored bridges, which can generate a complex behavior depending on
the graph Gt of already visited vertices.

One should keep in mind the following intuitive picture. By the assumption ι(ZT ) ≤ nα � n the trace of the CRW
is not too concentrated in any row or column. Thus, while moving on the bar of a vertex v, if the CRW discovers an
unexplored bridge, it will typically jump to a yet unexplored vertex. If it fails to discover a new bridge, it backtracks to
the vertex visited before v. Such backtracks are common and may cascade creating some interactions of the CRW with
its history. Due to the assumption β > �/2, the rate of discovery of new vertices is fast enough so that the CRW tends
to escape its history, making the above mentioned interactions short-ranged and thus fairly easy to analyze. For a very
similar reason, unless the CRW closes into a cycle quickly, it makes a fairly long cycle. When T is at least of the order
of n, the CRW occasionally jumps to a vertex visited a long time before. Analysis of such long-range interactions is the
main technical difficulty of the proof.

The main task is to show that the time between two subsequent visits in any fixed row or column, say L0, is cn

(for some c > 0) with uniformly positive probability. Having done that, by a comparison with a sum of independent
random variables it is straightforward to conclude that |Zn log2 n ∩L0| ≤ C log2 n with very high probability and thus also

ι(Zn log2 n)≤ C log2 n.
The CRW can hit L0 either by a direct jump using a previously unexplored bridge or by entering through its history.

As T ≤ n log2 n and at each step the CRW has chance roughly c/n of a direct jump, typically it will make c log2 n visits
of the first type.
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To analyze entering L0 through the history we distinguish two cases. The first is when the CRW jumps using a new
bridge to a vertex which is close in Gt to L0. The second is when the vertex is far from L0 and the CRW makes a long
backtrack employing already used edges.

To rule out the first possibility we show, using a rather delicate argument, that the dangerous zone (“bad set”) consisting
of small balls around L0 in Gt is small enough so that the CRW is quite unlikely to jump to it. Thus it is very unlikely to
observe log2 n of such jumps.

In the second case it is enough to show that any sufficiently long path in Gt has what we call “large potential”.
Intuitively speaking, the CRW traversing such a path has many chances to escape it by jumping to a new vertex and
performing a long excursion avoiding its history. Thus the CRW is unlikely to ever make a long backtrack. This part of
the argument is rather technical and again uses crucially the assumption β > �/2.

The roadmap to the proof is as follows. In the rest of this section and Section 3.2 we set up the framework for analyzing
the excursions made by the CRW, in particular providing bounds for the intensity of discovering new vertices, number
of jumps to the history (Lemma 3.12) and the rate at which the “potential” corresponding to bars is exhausted (Lemma
3.13). This is then used in Section 3.3 to show that the CRW is likely to make short excursions not intersecting its history
(Lemma 3.15). In Section 3.4 we show that the bad set described above is typically small (Proposition 3.20) and thus
is unlikely to be hit by the CRW (Lemma 3.21). In Section 3.5 we show that long paths typically have large potential
(Lemma 3.23) and thus are unlikely to be backtracked (Proposition 3.24). All these pieces are then used in Section 3.6 to
show that visits to L0 are infrequent (Lemma 3.25), which easily implies (Corollary 3.26) good isoperimetry claimed in
the conclusion of Lemma 3.2.

Basic notation and assumptions. Our goal for the rest of this section is to prove Lemma 3.2. Therefore, from now on
we fix

• θ > 0 and an admissible function C,
• β0, β1 such that β0 > �/2, and β ∈ [β0, β1],
• α ∈ (0,1/100) and T ≤ n log2 n,
• ε ∈ (0, 1

20 ) such that α < ε/4

(the parameter ε will play a technical role in intermediate calculations).
We will be considering the cyclic random walk X β,θ,C(v) associated to μβ,θ,C , started at (v,0) for a fixed vertex v.

From now on for brevity we write simply Xt =X β,θ,C
t (v), Zt =Zβ,θ,C

t (v) etc.
In what follows whenever we write about global constants like C, c we allow them to depend on β0, β1, ε (in addition

to dependence on θ and α), so that for β ∈ [β0, β1] all the statements hold with constants depending uniformly on β . The
dependence on θ , α, β0, β1, ε will be suppressed in the notation. Occasionally, if a constant depends additionally on some
other parameter δ, we will stress it by writing e.g., c = c(δ). All constants will be independent of the function C as long
as the Lipschitz condition (2) is satisfied.

In proofs we will often take n large enough, depending on the other parameters, but unless stated otherwise the
propositions being proved will be such that this can be absorbed into constants C, c appearing in the statements, so the
propositions in fact hold for all n.

We will now introduce several notions which will be useful in analyzing the explorations of the cyclic random walk
(see Figure 2 for an illustration of these definitions).

The graph Gt . The vertices Zt and bridges explored up to time t by the CRW induce a graph denoted by Gt (we
allow multiple edges if there is more than one bridge between two vertices). Let dGt (·, ·) be its natural graph metric. By
BGt (v, r) we denote the ball of radius r in this metric around the vertex v in Gt .

The bad set. Recall that ε is a parameter fixed at the beginning of this section. Let

ϒt :=
⋃

v∈Zt∩L0

BGt

(
v,nε

)
(8)

be the bad set at time t . Note that ϒt is nondecreasing in t .
The reason for calling this set ‘bad’ is that once the CRW ends up in ϒt , it might quickly backtrack its way to L0 and

then make multiple jumps inside the same row, thus ruining good isoperimetric properties of the trajectory.

Dead vertices. As the CRW explores the set of vertices, it might happen that at time t the bar {v}× [0,1) corresponding
to a vertex v is completely exhausted, i.e., {v} × [0,1)⊂X[0,t]. We will call such a vertex v dead.
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Stopping times. Later on it will be convenient to use the following stopping times related to the CRW. For δ > 0 we
define τ δ

iso as the time when the CRW loses good isoperimetric properties, i.e.

τ δ
iso := inf

{
t ≥ 0 : ι(Zt ) > nδ

}
,

and let τc be the time that the CRW closes into a cycle, i.e.

τc := inf
{
t > 0 :Xt = (v,0)

}
,

where v is the starting vertex, meaning X0 = (v,0).

Jumps. It will be important to distinguish several types of jumps that the CRW can make. We will call a jump fresh
when a previously unexplored bridge is used, otherwise we call it a backtrack. Suppose that X makes a fresh jump at
time t . We will call it an internal jump if Xt ∈ Zt−, a bad jump if Xt ∈ ϒt− and a direct jump to L0 if Xt− /∈ L0 and
Xt ∈L0.

3.2. Intensities of jumps and the potential

Recall that a counting process is a nondecreasing, integer valued càdlàg stochastic process starting at zero and with jumps
equal to one.

Intensity. Let Y be an Ft -adapted counting process. We will say that a nonnegative process λ is an intensity of Y if λ is
Ft -progressively measurable,

∫ t

0 λu du <∞ for all t , and the process Yt −
∫ t

0 λs ds is an Ft -martingale.
In what follows we will often need (conditional) concentration inequalities for counting processes. Two of them,

used most frequently, are stated below for convenience and the other two, which will be used only once, are stated in
Appendix A. Proofs of all of them can be found in Appendix A as well.

Lemma 3.4. Let Yt be a counting process with bounded intensity λ and compensator �t =
∫ t

0 λs ds. Assume that σ , τ

are bounded stopping times such that σ ≤ τ . Consider  > 0 and let X be a Poisson variable with parameter . Then for
any r ≥ 0 we have almost surely

P
({Yτ − Yσ ≥ r} ∩ {�τ −�σ ≤ }|Fσ

)≤ P(X ≥ r).

If r ≥ , we have in particular

P
({Yτ − Yσ ≥ r} ∩ {�τ −�σ ≤ }|Fσ

)≤ exp

(
−r log

(
r

e

)
− 

)
.

We will also need a corresponding lower bound.

Lemma 3.5. Let Yt be as in the previous lemma. Let σ , τ be bounded stopping times such that σ ≤ τ and let δ,  > 0.
Let also X be a Poisson random variable with parameter . Then with probability one,

P
({

Yτ − Yσ ≤ (1− δ)
}∩ {�τ −�σ ≥ }|Fσ

)≤ P
(
X ≤ (1− δ)

)≤ exp
(−δ2/2

)
,

where �t =
∫ t

0 λs ds.

Set of accessible vertices. By At we will denote the set of vertices which at time t are available to the CRW by a fresh
jump. Formally, At =∅ if the CRW has closed into a cycle before time t , otherwise let (w, z)=Xt and

At :=
{
v ∈ V : {v,w} ∈E and (v, z) /∈X[0,t)

}
.

Lemma 3.6 (Intensity of jumps). Let Qt be an Ft -adapted càdlàg process of subsets of V such that Qt can jump only
at times when Xt jumps. Let Jt = |{s ≤ t : X makes a fresh jump at time s and Xs ∈Qs−}|. Then the counting process J

has intensity λ which satisfies

λt�
−1 ≤ β

n− 1
|At ∩Qt | ≤ λt�.

In particular for θ = 1 we have λt = β
n−1 |At ∩Qt |.
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Fig. 2. Sketch of the evolution of the graph Gt , with the CRW started at v. Dead vertices are shown in grey. The bad set ϒt is marked in red.

The proof of this lemma is presented in Appendix C. We stress that the lemma is not specific to the Hamming graph
and its statement holds for any weighted transposition process on a finite graph (with β

n−1 replaced by the appropriate
edge intensity of the underlying point process).

Let It (resp. I b
t , I d

t ) denote the total number of internal (resp. bad, direct to L0) jumps up to time t . They are counting
processes. We will denote their intensities by λ (resp. λb , λd ). The intensity of the process |Zt | will be denoted by μ.

Corollary 3.7. For t < τc,

μt ≥ 2�−1β
n− ι(Zt )

n− 1
(9)

and

λt ≤ 4�β

n
ι(Zt ). (10)
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Proof. Let us start with (9). For any t ≥ 0 let the current vertex w =Xt belong to the column D and row L. Using Lemma
3.6 with Qt = V \Zt , together with the definition of the parameter ι and the obvious containment (D ∪L) \Zt ⊂At , we
have

μt ≥�−1 β

n− 1

∣∣(D ∪L) \Zt

∣∣=�−1 β

n− 1

(|D \Zt | + |L \Zt |
)≥�−1 2β

n− 1

(
n− ι(Zt )

)
,

as desired. For the proof of (10), we write again by the definition of ι and Lemma 3.6 applied with Qt =Zt

λt ≤�
β

n− 1
|At ∩Zt | ≤�

β

n− 1

(|D ∩Zt | + |L∩Zt |
)≤�

2β

n− 1
ι(Zt )≤�

4β

n
ι(Zt ). �

It will be useful to have an estimate of how quickly previously unexplored vertices are discovered by the CRW. We
have the following upper bound

Lemma 3.8 (New vertices are not very frequent). There exists an increasing function g : (1,∞)→ (0,∞) such that
for any δ > 2�β , k > 0 and l ∈N we have

P
(|ZTl+k \ZTl

| ≤ �δk�|Gl

)= P(Tl+�δk� ≥ Tl + k|Gl )≥ 1− e−ck,

where c= 2�βg( δ
2�β

).

Proof. By Lemma 3.6 the intensity μt of |Zt | satisfies

μt ≤�
β

n− 1
|At \Zt | ≤�

β

n− 1
|At | ≤ 2�β.

By Lemma 3.4 (applied with Yt = |Zt |, σ = Tl , τ = Tl + k, λ = μ,  = 2�βk, r = �δk� ≥ ) we obtain (recall that
�t =

∫ t

0 λsds),

P
(|ZTl+k \ZTl

|> �δk�|Gl

) = P
({|ZTl+k \ZTl

|> �δk�}∩ {�Tl+k −�Tl
≤ 2�βk}|Gl

)
≤ exp

(
−δk log

(
δ

2e�β

)
− 2�βk

)
.

Using again the inequality δ > 2�β , it is easy to see that the right hand side is bounded from above by e−ck , with
c= 2�βg( δ

2�β
) for g(x)= x logx + 1− x as desired. �

In the remaining part of this section we will work under the following assumption which will not be explicitly stated
in the hypotheses of theorems (we recall that we consider the CRW started at X0 = (v,0) for some fixed vertex v).

Assumption 3.9 (Main assumption). There exist C,c > 0 such that

P
(
ι(ZT ) > nα

)≤ Ce−c log2 n.

We will often need the following lemma, which is a consequence of Markov’s inequality.

Lemma 3.10. For any event A, any σ -field G, and any C, r ≥ 0, if P(A) ≥ 1 − Ce−r , then with probability at least
1−Ce−r/2,

P(A|G)≥ 1− e−r/2.

Corollary 3.11. There exist C,c > 0 such that for any stopping time η < T we have

P
(
ι(ZT )≤ nα|Fη

)≥ 1− e−c log2 n,

with probability at least 1−Ce−c log2 n.

In the next lemma we show that IT , the total number of internal jumps up to time T , is small with high probability.
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Lemma 3.12 (Internal jumps are rare). There exist C,c > 0 such that

P

(
IT ≥ 1

2
n2α

)
≤Ce−c log2 n.

Proof. We have

P

(
IT ≥ 1

2
n2α

)
≤ P

(
IT∧τα

iso
≥ 1

2
n2α

)
+ P

(
τα

iso ≤ T
)
.

By Assumption 3.9 the second term is small enough. Now we bound, for t < τα
iso, the intensity λt of It by Lemma 3.6

λt ≤ 4�β

n
ι(Zt )≤ 4�β

n
nα = 4�βnα−1.

Since T ≤ n log2 n and 1
2n2α > 4�βnα−1T for n large enough, we can apply Lemma 3.4 to the stopped process Yt =

It∧τα
iso

, obtaining for n large enough the bound

P

(
IT∧τα

iso
≥ 1

2
n2α

)
≤ exp

(
−1

2
n2α log

( 1
2n2α

4�βenα−1T

))
≤ exp

(
−1

2
n2α log

(
nα

8�βe log2 n

))
,

and the right hand side is at most e−c log2 n for some c > 0. �

The potential. While visiting a vertex the CRW does not necessarily exhaust its whole bar. For t > 0 by Pt we denote
the Lebesgue measure of unused parts of visited bars and call it the potential. Formally,

Pt := |Zt | −Ut ,

where the number of visited vertices |Zt | is equal to the total measure of visited bars and Ut is the measure of their used
parts, which is equal to the Lebesgue measure of the path X[0,t).

Notice that until time τc the potential Pt increases by 1 each time the CRW visits a previously unexplored vertex and
otherwise decreases linearly with t . This means that for t ≤ τc the potential Pt follows the equation (with P0 = 1)

Pt = |Zt | − t. (11)

In the following technical lemma we show that the potential of a path X[t,t+s] is typically proportional to s and cannot
drop significantly before time T . Furthermore, with probability bounded away from 0 it stays strictly positive. These
properties will be useful in the forthcoming analysis of excursions and backtracks of the CRW.

Lemma 3.13 (Controlling the change in potential). Fix a < �−1β0 − 1/2. There exist positive constants C = C(a),
c = c(a), q such that for n large enough, any stopping time η and any s ≥ 0 the following hold with probability at least
1−Ce−c log2 n:

1{T≥η+s} · P
({Pη+s −Pη ≤ as} ∩ {τc ≥ η+ s}|Fη

)≤ C
(
e−cs + e−c log2 n

)
, (12)

P(∀u≤T−ηPη+u −Pη + 1 > 0|Fη)≥ q, (13)

P
({∃s≤u≤T−ηPη+u −Pη + 1≤ as} ∩ {τc ≥ η+ s}|Fη

)≤ C
(
e−cs + e−c log2 n

)
. (14)

Proof. Let σ = inf{t > 0 : ι(Zt ) > nα} = τα
iso. Set τ = τc ∧ σ . Let

E = {Pη+s −Pη ≤ as} ∩ {τc ≥ η+ s} ∩ {T ≥ η+ s}.

By Corollary 3.11 and (11), with probability at least 1−Ce−c log2 n,

P(E |Fη)≤ P
(
E ∩ {σ > η+ s}|Fη

)+Ce−c log2 n

= P
({|Zη+s | − |Zη| ≤ (a + 1)s

}∩ {τ ≥ η+ s}|Fη

)+Ce−c log2 n.
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Recall that μt denotes the intensity of |Zt |. By (9) of Corollary 3.7 and the definition of σ , for t < τ we have

μt ≥ 2�−1β

n− 1

(
n− ι(Zt )

)≥ 2�−1β

n− 1

(
n− nα

)≥ 1+ 2a =: β ′ > 1, (15)

for n large enough. Thus, setting �t =
∫ t

0 μu du, we obtain

P
({|Zη+s | − |Zη| ≤ (a + 1)s

}∩ {τ ≥ η+ s}|Fη

)≤ P
({|Zη+s | − |Zη| ≤ (a + 1)s

}∩ {�η+s −�η ≥ β ′s
}|Fη

)
.

Recalling that a = 1
2 (β ′ − 1) > 0 and using Lemma 3.5 with = β ′s, δ = β ′−1−a

β ′ we obtain that the right-hand side
above is almost surely bounded by

e
−sβ ′ 1

2 (
β′−1
2β′ )2 = e−cs .

for some c > 0. This proves (12).
Let us now prove (13). Denoting the event there by E and noticing that once the CRW closes into a cycle the potential

stays constant, we estimate

P(E |Fη)= P
({∀u∈[0,T∧τc−η]Pη+u −Pη + 1≥ 0}|Fη

)
≥ P

({∀u∈[0,T∧τc−η]|Zη+u| − |Zη| ≥ u− 1
}∩ {σ > T }|Fη

)
≥ P

({∀u∈[0,τ−η]|Zη+u| − |Zη| ≥ u− 1
}∩ {σ > T }|Fη

)
≥ P

({∀u∈[0,τ−η]|Zη+u| − |Zη| ≥ u− 1
}|Fη

)− P(σ ≤ T |Fη).

By Corollary 3.11 the second term is with probability at least 1−Ce−c log2 n bounded by Ce−c log2 n and thus negligible.
As for the first term, note that thanks to (15) the intensity μt is bounded away from 1 for n large enough and t ∈ [η, τ ],
so Lemma A.2 guarantees that the increase of the associated counting process, i.e., |Zη+u|, is always at least u − 1,
with probability bounded from below by some q > 0 (observe also that Lemma A.2 does not require any of the involved
stopping times to dominate the other one). This concludes the proof of (13).

Now we pass to the proof of (14). Again denoting the event there by E and noticing that once the CRW closes into a
cycle the potential stays constant, we estimate

P(E |Fη)≤ P
({∃s≤u≤T∧τc−ηPη+u −Pη ≤ as − 1} ∩ {σ > T }|Fη

)+ P(σ ≤ T |Fη)

≤ P
(∃u∈[s,τ−η]|Zη+u| − |Zη| ≤ u+ as|Fη

)+Ce−c log2 n,

where the second inequality holds with probability at least 1−Ce−c log2 n (for some C,c > 0), by Corollary 3.11 applied
to the second term. Similarly as in the proof of (13), the intensity of |Zη+u| is bounded away from 1, so by Lemma A.3
(applied with β ′ instead of β), the first term is almost surely bounded by e−cs for some c > 0 depending only on β ′. �

3.3. Excursions

In this section we introduce lemmas which in the final proof will help us show that the CRW with probability bounded
away from zero may leave L0 (or more generally the bad set) and move far away from it (in the metric of the graph Gt ),
thus making a quick return difficult.

The first lemma is of technical nature and asserts that there is a non-negligible probability that the CRW will make a
move within its current column. The second lemma will be crucial in proving that the CRW with high probability will not
backtrack to L0.

Lemma 3.14 (Jumps within columns are quite likely). Let k ≥ 0 and let D(v) denote the column containing vertex v.
Let Xk :=XTk

. There exist C,p > 0 such that

P
({

Xk+1 ∈D(Xk)
}∩ {Tk+1 < Tk + 1}|Gk

)≥ p1{Tk≤T } (16)

with probability at least 1−Ce−c log2 n for some C,c > 0.
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Proof. Let Dt (resp. Lt ) denote the number of jumps of the CRW to a previously unexplored vertex in the same column
(resp. row). Then up to time τc by Lemma 3.6 their intensities (denote them by δt , νt resp.) satisfy δt�

−1 ≤ β
n−1 |At ∩

D(Xt )| ≤ δt� and νt�
−1 ≤ β

n−1 |At ∩L(Xt )| ≤ νt�. In particular, on the event {t < τα
iso ∧ τc} we have

m :=�−1 β

n− 1

(
n− nα

)≤ δt , νt . (17)

We also have trivially

δt , νt ≤�β. (18)

Consider the event A= {τα
iso > Tk} and two stopping times ρ = inf{t > Tk : Dt > DTk

} and γ = inf{t > Tk : Lt > LTk
}.

Define also E = {ρ < γ ∧ (Tk + 1)}. The lemma will follow once we prove that almost surely

P(E |Gk)≥ p1A. (19)

Indeed, the event {1A < 1{Tk≤T }} is contained in {τα
iso ≤ T } which by Assumption 3.9 has probability at most

Ce−c log2 n.
Let B be any element of Gk and denote P := P(E ∩A ∩ B). Note that on A we have Tk <∞. Observe also that with

probability one ρ = γ ∧ (Tk + 1) and so

P = E(Dρ∧γ∧(Tk+1) −DTk
)1A∩B = E

∫ ρ∧γ∧(Tk+1)

Tk

δs1A∩B ds,

where we used Doob’s theorem and the fact that A,B ∈ Gk .
Since between Tk and ρ ∧ γ ∧ (Tk + 1) the quantity ι(Zs) does not change and the CRW does not close into a cycle,

we can use (17) to estimate

P ≥ E
(
ρ ∧ γ ∧ (Tk + 1)− Tk

)
m1A∩B

= mE(ρ − Tk)1A∩B∩E +mE
(
γ ∧ (Tk + 1)− Tk

)
1A∩B

−mE
(
γ ∧ (Tk + 1)− Tk

)
1A∩B∩E

= mE
(
γ ∧ (Tk + 1)− Tk

)
1A∩B −mE

(
γ ∧ (Tk + 1)− ρ

)
1A∩B∩E . (20)

Note that

E
(
γ ∧ (Tk + 1)− ρ

)
1A∩B∩E ≤ 1

m
E

∫ γ∧(Tk+1)

ρ

νs ds1A∩B∩E

= 1

m
E(Lγ∧(Tk+1) −Lρ)1A∩B∩E = P

m
,

where in the first equality we used Doob’s theorem (note that A∩B ∩ E ∈Fρ ) and in the second one the observation that
on E we have Lγ∧(Tk+1) −Lρ ≤ 1.

Combining the above inequality with (20), we get

P ≥ m

2
E
(
γ ∧ (Tk + 1)− Tk

)
1A∩B. (21)

Integrating by parts we get

P ≥ m

2

∫ 1

0
E1A∩BP(γ − Tk > s|Gk) ds

= m

2

∫ 1

0
E1A∩BP

({LTk+s −LTk
= 0}|Gk

)
ds.

Using (18) and the concentration estimate from Lemma 3.4 with r = 0, we get that

P
({LTk+s −LTk

= 0}|Gk

)≥ P(X = 0),
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where X is a Poisson variable with parameter �βs. Thus

P ≥ P(A∩B)
m

2

∫ 1

0
e−�βs ds.

Setting p = m
2

∫ 1
0 e−�βs ds and using the definition of P together with the fact that A ∈ Gk , we get

E
(
P(E |Gk)1A1B

)= P(E ∩A∩B)≥ Ep1A1B

for all B ∈ Gk , which implies (19) and concludes the proof. �

Excursions. Let t be a stopping time. We will say that the CRW makes an excursion of length k starting at time t , the
event which we denote by Et (k), if there exists s > 0 such that the following conditions hold:

• Z[t,t+s] ∩ (Zt− ∪L0)=∅,
• Xt+s is at distance k from Xt in Gt+s or t + s = T .

Note that in particular if t+s < T then the CRW has to discover at least k previously unexplored vertices and it is possible
for X[t,t+s] to intersect itself. The condition t + s = T is included as we are interested in the CRW only up to time T .

Lemma 3.15 (Excursions are quite likely). There exists C,c, q > 0 such that for any l ≥ 1 we have

P
(
ETl

(
nε
)|Gl

)≥ q · 1{XTl
/∈L0}∩{Tl≤T }, (22)

with probability at least 1−Ce−c log2 n.

Proof. Throughout the proof we assume that {XTl
/∈L0} ∩ {Tl ≤ T } holds.

Let τ = inf{u ∈ (Tl,∞) : Xu makes an internal jump} and σ = inf{u ∈ (Tl,∞) : Xu makes a direct jump to L0}. For
k, s ∈N let s′ = s ∧ (T − Tl) and

Ẽ(k, s) := {τ > Tl + s} ∩ {∀u≤s′PTl+u −PTl− > 0} ∩ ({PTl+s −PTl
≥ k} ∪ {Tl + s > T })∩ {σ > Tl + s}. (23)

The lemma will follow once we prove Ẽ(k, s) ⊂ ETl
(k) and that with high probability P(Ẽ(nε, s)|Gl ) ≥ q for some

s > 0 and some constant q > 0.
The first two conditions of (23) imply that the subgraph Gl

s′ of GTl+s′ induced by the exploration X[Tl,Tl+s′] is a tree
and the CRW does not revisit ZTl−, i.e., Z[Tl,Tl+s′] ∩ ZTl− = ∅. Indeed, as there are no internal jumps the CRW can
revisit ZTl− only by backtracking the bridge used at time Tl . This happens only when all vertices Z[Tl,Tl+u] are dead at
some time u≤ s′ (we again use the fact that there are no internal jumps). This is equivalent to PTl+u −PTl− = 0 which
is impossible. Once we know that Z[Tl,Tl+s′] ∩ ZTl− = ∅ and there are no internal jumps during [Tl, Tl + s′], the only
possibility left is that the exploration is a tree. As a corollary we observe that the first two conditions of (23) imply that
the CRW does not close into a cycle, i.e., τc ≥ Tl + s′.

If Tl + s > T , then the second condition from the definition of an excursion is trivially satisfied. Assume therefore that
Tl + s ≤ T , so that s′ = s in the argument above. As Gl

s is a tree, one sees that the distance dGl
s

of the vertex XTl+s from
XTl

is f − b, where f (resp. b) is the number of fresh jumps (resp. backtracks) during time (Tl, Tl + s].
Notice that f = |Z(Tl ,Tl+s]| − 1= |ZTl+s | − |ZTl

|, as there are no internal jumps.
Moreover, we have b ≤ s, since a backtrack occurs only once a whole bar has been exhausted (i.e., the corresponding

vertex has become dead) and the CRW moves at unit speed. Altogether this implies

dGl
s
(XTl+s ,XTl

)≥ |ZTl+s | − |ZTl
| − s =PTl+s −PTl

.

To conclude we notice that dGTl+s
(XTl+s ,XTl

) = dGl
s
(XTl+s ,XTl

) and by the third condition of (23) the assumption
Tl + s ≤ T implies that the right hand side above is at least k.

The final condition of (23) together with {XTl
/∈L0} ensures that Z[Tl,Tl+s] ∩L0 =∅.

These arguments proved that Ẽ(k, s)⊂ ETl
(k), with the excursion taking total time s′. Now we are left with showing

that with probability at least 1− Ce−c log2 n we have P(Ẽ(nε, s)|Gl ) ≥ q for some s > 0 and q > 0. For this part we fix
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k = nε and s = k/a, for some a ∈ (0,�−1β − 1/2). We recall that the first two conditions of (23) imply τc ≥ Tl + s′.
Thus we have

P
(
Ẽ(k, s)|Gl

)≥ P
({τ > Tl + s} ∩ {∀u≤s′PTl+u −PTl− > 0} ∩ {σ > Tl + s}|Gl

)
− P

({PTl+s −PTl
< k} ∩ {Tl + s ≤ T } ∩ {τc ≥ Tl + s′

}|Gl

)
≥ P(∀u≤s′PTl+u −PTl− > 0|Gl )− P(τ ≤ Tl + s|Gl )− P(σ ≤ Tl + s|Gl )

− P
({PTl+s −PTl

< k} ∩ {Tl + s ≤ T } ∩ {τc ≥ Tl + s}|Gl

)
,

where on the event {Tl + s ≤ T } we replaced s′ with s.
By Lemma 3.13 with probability at least 1−Ce−c log2 n (for some C,c > 0) we have P(∀u≤s′PTl+u−PTl− > 0|Gl )≥ q

for some q > 0 (notice that PTl− + 1 = PTl
). Thus to conclude the proof it is enough to show that the other terms are

o(1). Fix δ > 2�β . We have

P(τ ≤ Tl + s|Gl )≤ P
({τ ≤ Tl + s} ∩ {Tl+�δs� ≥ Tl + s}|Gl

)+ P(Tl+�δs� < Tl + s|Gl ).

The second term is o(1) by Lemma 3.8. For the first term we write

P
({τ ≤ Tl + s} ∩ {Tl+�δs� > Tl + s}|Gl

)= P
({Ns ≥ 1} ∩ {Tl+�δs� > Tl + s}|Gl

)
,

where Nu = ITl+u − ITl
is the number of internal jumps during time [Tl, Tl + u]. Recall that by Corollary 3.11 the event

{ι(ZTl
)≤ nε} has high conditional probability. On this event for u≤ s ∧ (Tl+�δs� − Tl) we bound the intensity λu of Nu

by (10) from Lemma 3.6

λu ≤ 4�β

n
ι(ZTl+u)≤ 4�β

n

(
ι(ZTl

)+ �δs�)≤ 4�β

n

(
nε + δnε/a + 1

)=: λ̄.

Now we have λ̄ · s ≤ λ̄ ·nε/a = Cn2ε−1, for some C > 0. Thus by Markov’s inequality, Doob’s theorem and monotonicity
of N ,

P
({τ ≤ Tl + s} ∩ {Tl+�δs� > Tl + s}|Gl

)
1{ι(ZTl

)≤nε} ≤ E(Ns∧(Tl+�δs�−Tl)1{ι(ZTl
)≤nε}|Gl )

≤ E(λ̄s1{ι(ZTl
)≤nε}|Gl )≤Cn2ε−1 = o(1),

and consequently with probability at least 1−Ce−c log2 n (for some C,c > 0)

P(τ ≤ Tl + s|Gl )= o(1).

Analogously one can show that

P(σ ≤ Tl + s|Gl )= o(1).

Indeed, by Lemma 3.6 we can easily estimate the intensity of direct jumps by λd
u ≤ λ̄, as |Au ∩L0| ≤ 1.

Finally, by the choice of s above and (12) in Lemma 3.13 we have

P
({PTl+s −PTl

< k} ∩ {Tl + s ≤ T } ∩ {τc ≥ Tl + s′
}|Gl

)= o(1), (24)

thus the proof is finished. �

As in the forthcoming proofs we will need to apply Lemma 3.14 and Lemma 3.15 for random k, we state the following
easy corollary

Corollary 3.16. Let τ be a stopping time such that with probability one τ ∈ {Ti : i ≤ n2} and let τ ′ be such that τ ′ = Ti+1

on the event {τ = Ti}. Then with probability at least 1−Ce−c log2 n,

P
({
Xτ ′ ∈D(Xτ )

}∩ {τ ′ < τ + 1
}|Fτ

)≥ p1{τ≤T } (25)

and

P
(
Eτ

(
nε
)|Fτ

)≥ q · 1{Xτ /∈L0}∩{τ≤T }. (26)
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Fig. 3. Graph Gt and its core G©
t (edges shown as thicker blue lines). Parts of the graph removed in the construction of the core are shown in grey. The

starting and end vertices of the CRW, X0 and Xt , have been marked in green and red, respectively.

Proof. It is enough to note that

P
({
Xτ ′ ∈D(Xτ )

}∩ {τ ′ < τ + 1
}|Fτ

)= n2∑
k=1

P
({

Xk+1 ∈D(Xk)
}∩ {Tk+1 < Tk + 1}|Gk

)
1{τ=Tk},

so if (25) does not hold then (16) fails for some k ≤ n2. Now the statement follows from Lemma 3.14 and a union bound
over k.

Analogously, we can write

P
(
Eτ

(
nε
)|Fτ

)= n2∑
l=1

P
(
Eτ

(
nε
)|Fτ

)
1{τ=Tl} =

n2∑
l=1

P
(
ETl

(
nε
)|Gl

)
1{τ=Tl},

and (26) fails only if (22) fails for some l ≤ n2. Again we finish by Lemma 3.15 and a union bound. �

3.4. The bad set

Recall that the bad set ϒt , defined in (8), consists of vertices which are close in Gt to L0. Our goal is to show that the
CRW is unlikely to ever hit the bad set. Since it is difficult to know exactly which part of ϒt is accessible to the CRW at
time t , we will in fact prove a stronger statement, namely that with high probability ϒt itself is small for all t ≤ T .

The core of Gt . We now introduce a special subgraph of Gt , which will play an important role in the analysis of bad
jumps and backtracks.

For a graph G and a vertex v ∈ VG denote by degG(v) the degree of v in G, counted with multiplicities. Below, to
simplify the notation we will often write v ∈G instead of v ∈ VG.

Let G©
t be the subgraph of Gt obtained by successively removing dead vertices of degree one (i.e., we remove dead

vertices of degree one in Gt , obtaining the graph G
(1)
t , next we remove dead vertices of degree one in G

(1)
t , etc. until no

more vertices can be removed). We will call the graph G©
t the core of Gt (this is similar to what is called the 2-core of

Gt in graph theory, except that we allow possibly two vertices of degree one which are not dead). See Figure 3 for an
example of a graph Gt and its core.

The procedure described above corresponds to removing trees consisting of dead vertices, connected to the core. Note
that G©

t can still contain dead vertices and it is not necessarily nondecreasing in t . The role the graph G©
t will play in

subsequent arguments is twofold. In the analysis of the size of the bad set, it will be convenient to handle the intersection
of the bad set with the core and the trimmed trees separately. In the subsequent part we will also use the special structure
of the core to show that if the CRW is outside the bad set then it is very unlikely to backtrack all the way to L0.

The degrees of vertices in G©
t are in a simple relation with the number of internal jumps It .

Lemma 3.17. For any t ≥ 0,∑
v∈G©

t

(
degG©

t
(v)− 2

)− 2It =−2.
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Proof. We will first prove that for any t ≥ 0,∑
v∈Gt

(
degGt

(v)− 2
)− 2It =−2.

The expression on the left hand side equals −2 at time t = 0 and changes only when the CRW makes a fresh jump.
The increase of the degrees caused by such a jump is compensated either by the summand −2 (if the CRW explores a
new vertex) or by the increase of It (in the case of internal jumps). This proves the above formula.

To pass from Gt to G©
t note that whenever one removes a vertex of degree one then the sum of degrees decreases by

2 and the number of vertices decreases by one, so the sum in question does not change. �

For δ > 0 let us define

Dδ
t :=

{∑
v∈G©

t

(
degG©

t
(v)− 2

)≤ nδ

}
.

Combining the above lemma with Lemma 3.12 we obtain immediately

Lemma 3.18 (The core has few excess edges). There exist C,c > 0 such that

P
(∀t≤T D2α

t

)≥ 1−Ce−c log2 n.

Moreover, the intersection of the core and the bad set is small, as asserted in the following lemma

Lemma 3.19. There exist C,c > 0 such that

P

(
sup
t≤T

|VG©
t
∩ϒt | ≥ n4ε

)
≤ Ce−c log2 n.

Proof. We will first estimate the size of the k-neighborhood of any vertex in G©
t for arbitrary k ≥ 1.

To this end, fix any vertex r ∈G©
t and consider a spanning tree T of G©

t obtained by a breadth first search starting
from r , so that the distances between r and any other vertex of G©

t are the same in G©
t and in T .

Let Bi denote the ball BT (r, i) (we assume B−1 =∅) and let degT (w) be the degree of w in T . Obviously we have
degT (w)≤ degG©

t
(w). We have |B0| = 1, |B1| − |B0| = degT (r) and for any i ≥ 1,

|Bi+1| − |Bi | =
∑

w∈Bi\Bi−1

(
degT (w)− 1

)
,

since T is a tree. For j ≥ 1 we can sum these equalities from i = 0 to j − 1, getting

|Bj | − 1=
∑

w∈Bj−1

(
degT (w)− 1

)+ 1,

so

|Bj | =
∑

w∈Bj−1

(
degT (w)− 2

)+ |Bj−1| + 2.

In particular

|Bj | ≤
∑

w∈Bj−1

(
degG©

t
(w)− 2

)+ |Bj−1| + 2. (27)

Note that G©
t contains at most two vertices of degree one, X0 and Xt . Therefore∑

w∈Bj−1

(
degG©

t
(w)− 2

)≤ 2+
∑

w∈G©
t

(
degG©

t
(w)− 2

)
.
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By Lemma 3.18 with probability at least 1− Ce−c log2 n (for some C,c > 0) for all t ≤ T the right hand side above is
bounded by n2α + 2≤ nε + 2. From this and (27) we obtain

|Bj | ≤ nε + 2+ |Bj−1| + 2

with high enough probability. This in turn implies that for any k ≥ 1 we have |Bk| ≤ k(nε + 5).
We now apply this estimate to bound the size of the intersection of the core with the bad set. For any v ∈ Zt ∩L0 let

G(v) be the induced subgraph of G©
t with the set of vertices equal to BGt (v,nε) ∩ VG©

t
. Note that it may happen that

v /∈G©
t , but if G(v) is nonempty, it is connected and of diameter at most 2nε . Indeed, G©

t is connected and distances in
G©

t between any two vertices w,u ∈G©
t are the same as in Gt (since the shortest paths between any elements of the core

are disjoint from the trees which are removed during its construction).
Now choose any r ∈G(v) and let Bk be defined as in the first part of the proof. Taking k = 2nε ≥ diam(G(v)) we get

G(v)⊂ Bk , which by our bound on |Bk| proves that for n large enough with probability at least 1− Ce−c log2 n, for any
t ≤ T and v ∈Zt ∩L0 we have∣∣BGt

(
v,nε

)∩ VG©
t

∣∣≤ 3n2ε. (28)

Now using the definition of the bad set we get

VG©
t
∩ϒt =

⋃
v∈Zt∩L0

BGt

(
v,nε

)∩ VG©
t
.

By Assumption 3.9 with probability at least 1−C1e
−c1 log2 n, for some C1, c1 > 0, we have |Zt ∩L0| ≤ nε . This estimate

together with (28) concludes the proof. �

To prove that the whole bad set is small up to time T , we will show that dead trees removed in the construction of G©
t

cannot be too large and then estimate the total number of such trees.

Proposition 3.20 (The bad set is small). There exist C,c > 0 such that

P
(|ϒT | ≥ n7ε

)≤ Ce−c log2 n.

Proof. Let K be the graph removed from GT in the construction of G©
T . We will first prove that

P
(|VK ∩ϒT | ≥ n6ε

)≤ Ce−c log2 n. (29)

To this end we first estimate the size of the largest connected component of K (i.e., the largest tree removed in the
construction of the core). Let A be the event that there is a component K ′ of size l ≥ nε . Note that after entering K ′
for the first time, say at time Tk , the CRW traverses the whole tree K ′ in a depth first search manner, exhausting all the
bars corresponding to visited vertices. Due to the constant speed of the CRW, the time needed for this equals exactly l.
Since the number of vertices and edges in a tree differ by one, during that time the CRW makes l− 1 jumps to previously
unexplored vertices and the same number of backtracks. It follows that

PTk+l −PTk
= l − 1− l =−1. (30)

Using (14) from Lemma 3.13 with η= Tk and s = nε/2 we get that for fixed k, l the probability that the condition (30) is
fulfilled is smaller that Ce−c log2 n for some C,c > 0. Observing that k, l ≤ n2 and applying a union bound we get

P(A)≤ C1e
−c1 log2 n, (31)

for some C1, c1 > 0. To prove (29) it remains to bound the number of trees with nonempty intersection with ϒT . Note
that such a tree either

(a) is attached to a vertex from ϒT ∩ VG©
T

(b) or contains an element from ZT ∩L0.
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The number of the former trees is at most the sum of degrees of vertices in ϒT ∩ VG©
T

. The number of the latter trees
equals at most ι(ZT ).

Now we show that with probability at least 1 − Ce−cnε
, for some C,c > 0, no vertex has degree greater than nε .

Indeed, for a fixed vertex w we can estimate the number of bridges incident to w by using Lemma B.1 (which gives a
general bound on the number of bridges in a given subset of E × [0,1) in terms of a Poisson process). More specifically,
we apply the second part of the lemma with A= Ew × [0,1), where Ew is the set of all edges incident to w. Note that
the Lebesgue measure of A satisfies |A| = 2(n− 1). Thus we obtain that with probability at least 1−C′e−c′nε

, for some
C′, c′ > 0, the total number of bridges incident to w is at most nε . A union bound over w finishes the argument.

Using Lemma 3.19 with probability at least 1−Ce−c log2 n we have |VG©
T
∩ϒT | ≤ n4ε . Recall that the size of a single

dead tree is smaller than nε with high probability, see (31). Thus the total number of vertices belonging to trees from case
(a) above is at most n4ε · nε · nε = n6ε with high probability.

On the other hand, by Assumption 3.9 the total number of vertices from trees satisfying case b) is at most nε ·nε = n2ε

with high probability. Combining the two cases yields (29).
Thus with the required probability, |ϒT | = |ϒT ∩ VK | + |ϒT ∩ VG©

T
| ≤ n4ε + n6ε ≤ n7ε for n large enough. �

Bad hits process. Here we prove that I b
T , i.e., the number of bad jumps up to time T is small with high probability. The

argument is similar as in Lemma 3.12, but more subtle.

Lemma 3.21. There exist C,c, δ > 0 such that for any stopping time η we have

P
(
I b
T − I b

η ≥ 1|Fη

)≤ 1

nδ
,

with probability at least 1−Ce−c log2 n.

Proof. We will work on the event {η ≤ T } (on its complement the probability in question vanishes due to monotonicity
of I b). Let us set

τ = inf
{
t ≥ 0 : ι(Zt ) > nε or |ϒt |> n7ε

}
.

Using a union bound we write

P
(
I b
T − I b

η ≥ 1|Fη

)≤ P
(
I b
T∧τ − I b

η ≥ 1|Fη

)+ P(τ ≤ T |Fη). (32)

Observe that P(τ ≤ T |Fη)≤ e−c log2 n with probability at least 1− Ce−c log2 n (for some C,c > 0), since by Proposition
3.20 the bad set is small with high probability (and thus, by Lemma 3.10, also conditionally on Fη), and by Corollary
3.11 ι(Zt ) is small with high probability conditionally on Fη.

To deal with the first term we estimate the intensity λb of I b . For any t such that η ≤ t < T ∧ τ let D(ϒt) (resp. L(ϒt))
denote the set of columns (resp. rows) which have non-empty intersection with ϒt . Formally, D(ϒt)= {Di :Di∩ϒt =∅}
(and likewise for L(ϒt)). Let Kt =D(ϒt) ∪ L(ϒt). Recall that by At we denote the set of vertices accessible at time t

by a fresh jump. Observe that if w = Xt is a vertex in a row or column belonging to Kt , then |At ∩ϒt | ≤ n7ε , otherwise
|At ∩ϒt | = 0. Note also that At =∅ if t ≥ τc. By Lemma 3.6 we have

� :=
∫ T∧τ

η

λb
t dt ≤ �β

n− 1

∫ T∧τ

η

|At ∩ϒt |dt ≤ �β

n− 1
n7ε

∫ T∧τ∧τc

η

1{Xt∈⋃Kt } dt,

where Xt ∈⋃Kt means that Xt is at a vertex belonging to a row or column having nonempty intersection with ϒt . As
ϒt is nondecreasing in t , so is Kt , thus we can further estimate

�≤ �β

n− 1
n7ε

∫ T∧τ∧τc

η

1{Xt∈⋃KT∧τ } dt = �β

n− 1
n7ε

∑
F∈KT∧τ

∫ T∧τ∧τc

η

1{Xt∈F } dt.

For any row or column F ∈KT∧τ we have∫ T∧τ∧τc

η

1{Xt∈F } dt =
∑
v∈F

∫ T∧τ∧τc

η

1{Xt=v} dt ≤ |F ∩ZT∧τ | ≤ ι(ZT∧τ ).
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We used the fact that for a fixed vertex v the integral is bounded by 1, since t ≤ τc and the bar corresponding to v has
height 1. Combining the above facts we obtain

�≤ �β

n− 1
n7ε|KT∧τ |ι(ZT∧τ ).

We have |ϒT∧τ | ≤ n7ε , thus |KT∧τ | ≤ 2n7ε . Moreover, ι(ZT∧τ )≤ nε and thus �≤ 4�βn15ε−1.
As I b

t −
∫ t

0 λb
u du is a martingale, we have by Doob’s theorem

E
((

Ib
T∧τ − I b

η

)
1{T∧τ≥η}|Fη

)= E

(
1{T∧τ≥η}

∫ T∧τ

η

λb
t dt |Fη

)
≤ 4�βn15ε−1.

Now by an application of the conditional Markov inequality we bound the first term of (32) by n−δ for some δ > 0. This
concludes the proof. �

3.5. Backtracks

We will now show that after an internal jump the CRW is unlikely to backtrack its steps back to L0.
We start with a deterministic lemma about the structure of the core G©

t . Recall that a path in a graph is a sequence of
pairwise distinct vertices v1, . . . , vk such that for all i < k vertices vi and vi+1 are adjacent.

Lemma 3.22. Suppose that G©
t contains at most nδ vertices of degree greater than 2, for some δ ∈ (0, ε). Then there

exists n0 ≥ 1 such that for any n≥ n0 and any v ∈ L0 ∩G©
t the following holds: every simple path in Gt which connects

v with ϒc
t ∩G©

t must contain a subpath of length at least log2 n consisting only of vertices of degree two in G©
t .

Proof. By the definition of the bad set any path connecting v with ϒc
t has length nε . Note that if the end vertex of the

path is in G©
t then the whole path is fully contained in G©

t (otherwise to return to G©
t the path would have to repeat

one of its vertices). Dividing the path into consecutive subpaths of length log2 n we obtain nε/ log2 n subpaths. Since
nδ < nε/ log2 n for n large enough and we assumed there are at most nδ vertices of degree more than 2 in G©

t , there must
be at least one subpath with only vertices of degree 2. �

Let P be a path in G©
t− consisting only of vertices of degree two in G©

t−. We will call such a path straight. If t < τc,
we will call the potential of P the total Lebesgue measure of these parts of bars corresponding to vertices of P which
have not been explored up to time t . For t ≥ τc we set the potential to be zero. Formally, if we denote the potential of P

by P(P ), we have

P(P ) := 1{t<τc}Leb
((

V (P )× [0,1
)) \X[0,t]),

where V (P ) is the set of vertices of P . We stress that this notion as well as the property of being a straight path depends
strongly on t , which is suppressed in the notation but should not lead to misunderstanding in the sequel.

Suppose that t < τc. Let t1(P ) be the time the CRW entered a vertex of P for the first time, and t2(P ) ≤ t the time
when it left a vertex of P for the last time before t . Because of the property (11) at time t the potential of P equals to
Pt2(P )− −Pt1(P ).

Given b > 0, we will say that P has large potential with constant b if

P(P )≥ b|P |, (33)

where |P | is the length of P , i.e., the number of its vertices minus one. Later on the parameter b will be fixed and we will
simply use the term “large potential”, with b being implicit.

We now introduce the event

Qt (b) := {
all straight paths in G©

t of length
⌈

log2 n
⌉

have large potential with constant b
}
. (34)

Lemma 3.23 (Straight paths have large potential). There exist C,c > 0 and b > 0 such that

P
(∀t<T∧τcQt (b)

)≥ 1−Ce−c log2 n.
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Proof. Let γ = 1/4�β1, fix arbitrary a < �−1β0−1/2 and let b= aγ . Suppose that there exists t < T ∧τc and a straight
path P in G©

t of length m= �log2 n� which does not have large potential. In particular this implies that there exist l ≥ 1
and k ≥m such that

PTl+k− −PTl
< bm. (35)

Indeed, we can take t1(P ) = Tl and let Tl+k ≤ t be the moment the CRW enters the other end vertex of P . Note that
k ≥m since the CRW may have traversed some dead trees between Tl and Tl+k .

The lemma will be shown once we prove that

p := P(∃l≥1∃k≥mPTl+k− −PTl
< bm and Tl+k ≤ T )≤ Ce−c log2 n, (36)

for some C,c > 0. Note that writing Tl+k ≤ T we implicitly assume that the CRW visits at least l + k vertices. Now, if
the event in the definition of p holds, then either after some time Tl we have discovered at least k ≥m additional vertices
very quickly (so that Tl+k − Tl ≤ γm and Tl+k ≤ T ), or after Tl the potential failed to increase by bm in a time interval
of length at least γm. Thus we may estimate

p ≤ P(∃l≥1∃u∈[γm,T−Tl ]PTl+u −PTl
< bm and τc ≥ Tl + γm)+ P(∃l≥1∃k≥mTl+k − Tl ≤ γm and Tl+k ≤ T ).

Note that we have chosen γ small enough so that by Lemma 3.8 we get

P(∃l≥1∃k≥mTl+k − Tl < γm)≤
n2∑
l=1

∑
k≥m

e−ck ≤ C1e
−c1m.

Thus

p ≤ P(∃l≥1∃u∈[γm,T−Tl ]PTl+u −PTl
< bm and τc ≥ Tl + γm)+C1e

−c1m,

for some C1, c1 > 0. Now using a union bound over l (observe that Tl =∞ for l > n2) and (14) from Lemma 3.13 (recall
that b= aγ ) we obtain (36), thus concluding the proof. �

From now on we fix b to be the constant guaranteed by Lemma 3.23. Let St be the set of endpoints of all straight paths
in G©

t− with potential at time t at least b log2 n and let ρk denote the k-th moment t when the CRW enters a vertex from
St by a backtrack. More precisely, set ρ0 = 0, and for k ≥ 1,

ρk = inf
{
t > ρk−1 : Xt ∈ St ,Xt− /∈ St and the bridge

({Xt ,Xt−}, t
)

has been traversed before time t
}
.

Note that ρk are stopping times and ρk < τc (since if t > τc, then St =∅). Moreover, the minimal path in G©
ρk− with

potential at time ρk at least b log2 n, and starting at Xρk
, is uniquely determined. Let us denote this path by Pk .

Let us say that the CRW completely covers Pk if after entering its end vertex by a backtrack it eventually exhausts all
the bars corresponding to vertices of Pk , possibly departing from them at some intermediate time intervals. Denote by
Ak the event that ρk <∞, the CRW completely covers Pk before time T and while traversing Pk it does not make an
excursion of length nε (recall Definition 3.3). Formally,

Ak =
⋃

t∈(0,T ]

({t > ρk} ∩
{
Pk × [0,1

)⊂X[0,t]
}∩ ⋂

s∈(0,t]

(
Es

(
nε
)∩ {s > ρk}

)c
).

Proposition 3.24 (No straight paths of large potential are covered without excursions). There exist C,c > 0 such
that

P

( ∞⋃
k=1

Ak

)
≤ Ce−c log2 n.

In other words, the probability that before time T the CRW completely covers some straight path of potential (at the time
of entry) at least b log2 n without making an excursion of length nε in the process, is bounded by Ce−c log2 n.
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Proof. Note first that for some C > 0 we have P(ρCn2 <∞)≤ e−n2
. Indeed, each ρk involves a backtrack and before the

CRW closes into a cycle each bridge can be used in at most one backtrack, so the number of moments ρk is bounded by
the total numer of bridges in the process. It follows from Lemma B.2 (applied with t = 0, s = 1 and k = Cn2 for suitably
chosen C > 0) that this number is at most Cn2, for some C > 0, with the required probability.

Thus, as we can perform a union bound over k ≤ Cn2, it is enough to show that for every k ≥ 1 we have P(Ak) ≤
Ce−c log2 n for some C,c > 0.

To simplify the notation, in what follows we will drop the subscript k and write simply ρ, P for ρk , Pk . We will also
identify P with (V (P )× [0,1)) \X[0,ρ], i.e., with the part of all the bars corresponding to vertices from P which at time
ρ was unused.

Let us first introduce a change of time to merge into one interval all the random intervals of time during which the
CRW stays on P . Define

Ht =
∫ t

0
1P (Xρ+s) ds,

where in the case ρ =∞ we interpret 1P (Xρ+s) as zero (we will use this convention throughout the proof). The process
Ht measures how much of the potential that the path P had at time ρ has been used up to time t . In particular P gets
completely backtracked up to time t if and only if Ht−ρ equals the potential of the path at time ρ.

Define now σ0 = 0 and for s > 0

σs =
(
inf{t > 0 : Ht ≥ s})∧ (T − ρ)+.

Consider also the processes

• Js = |Zs \L0|,
• Mt =

∫ t

0 1P (X(ρ+s)−) dJρ+s – the number of jumps to previously unexplored vertices outside L0 that the CRW makes
from P between times ρ and ρ + t .

• Ns =Mσs – the number of jumps to previously unexplored vertices outside L0 the CRW makes during the first s time
units spent on P during the backtrack.

Note that σs is a stopping time with respect to the filtration (Fρ+t )t≥0. Moreover, if σs < T − ρ, then X(ρ+σs)− ∈ P .
Our strategy for proving that P(Ak) is small is as follows. First we will show that on the set Ak ∩ {τα

iso > T } we have
Nb log2 n > c log2 n, i.e., the CRW makes many jumps to previously unexplored vertices while backtracking P . Then, to
finish the argument, we will use Lemma 3.15 to show that the probability that none of those jumps is a beginning of a
forbidden excursion is small.

Let us thus first estimate the intensity of Nt for t ≤ b log2 n with respect to the filtration (Fρ+σs )s≥0 on the event
{σb log2 n < T − ρ} ∩ {τα

iso > T }.
Denote by μJ

t is the intensity of Jt and note that by Doob’s theorem and the properties of integrals with respect to
counting processes, the intensity of Mt with respect to (Fρ+t )t≥0 equals 1P (X(ρ+t)−)μJ

ρ+t .
Now, again we employ Doob’s theorem together with a change of variables (note that function s 	→ σs is constant on

intervals where 1P (X(ρ+σs)−) vanishes and otherwise increases linearly with speed one) to conclude that the intensity of
Ns with respect to (Fρ+σs )s≥0 equals

μ̃s = 1P (X(ρ+σs)−)μJ
ρ+σs

.

Therefore we can use the same argument as in the proof of (9) in Lemma 3.7 to conclude that if T < τα
iso, then for

Lebesgue almost all s such that ρ + σs < T ∧ τc we have

μ̃s ≥ �−1β

n− 1

(
n− 2− nα

)≥ c′ > 0

for some c′ > 0. Since Ak ⊂ {ρ + σb log2 n ≤ T ∧ τc} we have

�b log2 n :=
∫ b log2 n

0
μ̃s ds ≥ c′b log2 n

on the event Ak ∩ {τα
iso > T } and thus by Lemma 3.5 and Assumption 3.9, we get for some constants C,c > 0

P
(
Ak ∩

{
Nb log2 n ≤ c log2 n

})≤ Ce−c log2 n. (37)
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It remains to bound the probability P(Ak ∩ {Nb log2 n > c log2 n}).
Denote thus by γ1, γ2, . . . the times of subsequent jumps from P to previously unexplored vertices outside L0 made

after time ρ. The condition Nb log2 n > c log2 n translates into γ�c log2 n� ≤ ρ + σb log2 n. Thus Ak ∩ {Nb log2 n > c log2 n} ⊂
Ak ∩ {γ�c log2 n� < T }.

Let

J := inf
{
r ≥ 1 : P(Eγr

(
nε
)|Fγr

)
< q · 1{Xγr /∈L0}1{γr≤T }

}
.

with q as in Corollary 3.16. J is a stopping time with respect to the discrete time filtration (Fγr )r≥1. By Corollary 3.16,

for each r the probability that the inequality in the definition of J holds is bounded by Ce−c log2 n. Taking the union bound
over r ≤ �c log2 n� we get P(J ≤ �c log2 n�)≤C′e−c′ log2 n for some C′, c′ > 0.

We can now estimate

P
(
Ak ∩

{
Nb log2 n > c log2 n

})≤ P
(
Ak ∩ {γ�c log2 n� < T })

≤ P

(�c log2 n�⋂
r=1

Eγr

(
nε
)c ∩ {γ�c log2 n� ≤ T } ∩ {J >

⌈
c log2 n

⌉})+C′e−c′ log2 n

≤ (1− q)c log2 n +C′e−c′ log2 n ≤ 2e−c′′ log2 n,

where the third inequality is obtained by a sequence of conditionings with respect to Fγr , r = �c log2 n�, . . . ,1. Together
with (37) this shows that for all k,

P(Ak)≤ Ce−c log2 n,

which ends the proof of the proposition. �

3.6. Isoperimetry upper bound

Let τ0 = 0 and for k ≥ 1 let

τk := inf{t > τk−1 : Xt ∈ L0,Xt /∈Zt−}
be the k-th time a new vertex from L0 is visited by X .

First we present the main technical lemma stating that the CRW does not visit L0 too often. This result will be used to
prove the forthcoming Corollary 3.26 claiming good isoperimetry.

Lemma 3.25. There exists C,c,p > 0 such that for any k ∈N

P
(
τk+1 − τk > n∧ (T − τk)|Fτk

)≥ p · 1{τk≤T−1}

holds with probability at least 1−Ce−c log2 n.

Proof. Throughout the proof we will use “with high probability” as a shorthand for “with probability at least
1−Ce−c log2 n” for some constants C,c > 0 (whose values may change from line to line).

At time τk a new vertex w ∈ L0 is visited (unless k = 0 and X0 /∈ L0, which is easily dealt with below). Our first aim
is to show that the CRW escapes from L0 and then from the bad set (with conditional probability uniformly bounded
away from 0). Define the stopping time σ = inf{t > τk : Xt /∈ ϒt }. By Lemma 3.14 with high probability the CRW has
a chance bounded away from 0 of performing (in time less than 1) a jump from w to a previously unvisited vertex from
the same column, thus leaving L0. From the new vertex the CRW can, with probability bounded away from 0, make
an excursion described in Corollary 3.16. Note that if this happens, then σ < τk+1. Thus with high probability we have
P(σ < τk+1|Fτk

) > q for some q > 0, independent of n.
Note that if τk+1 > σ > T then, τk+1 − τk > σ − τk > T − τk , so it is enough to prove that for some q ′ > 0 we have

P(Z[σ,(σ+n)∧T ] ∩L0 =∅|Fσ )≥ q ′1{σ≤T ,σ<τk+1}, (38)

with high probability. This also takes care of the case k = 0, X0 /∈L0, since then σ = τ0.
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From now on we will implicitly work on the event {σ ≤ T ,σ < τk+1}. Denote by τ the time of the first hit of L0
after time σ . This hit can happen either by a direct jump or by a backtrack. Denote the event that the former (resp. the
latter) situation happens and τk+1 ≤ (σ + n)∧ T by R (resp. by K). Clearly on R and K we also have τ ≤ (σ + n)∧ T .
Moreover on K we have τ < τk+1 <∞, so in particular τ < τc.

Recall that I d
t is the number of direct jumps to L0 in the time interval [0, t]. By Lemma 3.6 the intensity λd

t of I d
t is at

most �β
n−1 as long as the CRW is outside L0, in particular on the interval [σ, τ) (the intensity can be 0 if the only possible

vertex in L0 is dead). Denoting �t =
∫ t

0 λd
t , we thus get

P(R|Fσ )= P

({
I d
τ∧(σ+n)∧T − I d

σ ≥ 1
}∩ {�τ∧(σ+n) −�σ ≤ n

n− 1
�β

}
|Fσ

)
and by Lemma 3.4 the right hand side is bounded from above by P(X ≥ 1), where X is a Poisson random variable with
parameter n

n−1�β ≤ 2�β . We conclude that almost surely P(R|Fσ ) is uniformly bounded away from 1 or, equivalently,
for some q > 0 we have

P
(
Rc|Fσ

)≥ q1{σ≤T∧τk+1} ≥ q. (39)

As K⊂Rc, to obtain (38) it thus suffices to show that P(K|Fσ )= o(1) with high probability. We will first show that
we can restrict to an event on which for all t ≤ T the sets ϒt have at most nε/2 vertices of degree greater than 2 in G©

t ,
there are no bad jumps for t ≤ τ , and all straight paths in G©

t of length at least log2 n have potential greater than b log2 n.
To this end recall the notation of Lemmas 3.18, 3.21, 3.23 and define

C :=
⋂
t≤T

Dε/2
t ∩ {I b

T = 0
}∩⋂

t≤T

Qt (b),

with b as guaranteed by Lemma 3.23.
We see that C satisfies all the properties mentioned above and moreover by the aforesaid lemmas (and Lemma 3.10),

with probability at least 1− Ce−c log2 n we have P(C|Fσ ) ≥ 1− Cn−δ for some δ > 0. Thus it is enough to show that
P(K ∩ C|Fσ )= o(1) with high probability.

By definition we have Xσ /∈ϒσ . Let

t =max
{
s ∈ [σ, τ) : Xs =Xs−, and Xs /∈ϒs

}
i.e., t is the time of the last jump of the CRW before τ such that Xt /∈ϒt (note that t < T ). On K ∩ C the assumptions of
Lemma 3.22 are satisfied, so every simple path in Gt from Xt to L0 must contain a straight subpath in G©

t of length at least
log2 n. By the definition of the event C at time t every such path has potential at least b log2 n. Since on K ∩ C ⊂Rc ∩ C
there are no bad jumps or direct hits to L0, to get from Xt to L0 the CRW must completely cover at least one such path
(we give a formal proof of this intuitively clear fact below).

Moreover, between t and τ the CRW does not make an excursion of length nε , since at the end of such an excursion it
would be outside the current bad set, which would contradict the definition of t . Therefore, by Proposition 3.24, P(K ∩
C)≤ Ce−c log2 n, which by Lemma 3.10 shows that P(K∩ C|Fσ )≤ e− c

2 log2 n with probability at least 1−Ce− c
2 log2 n. We

have thus proved that P(K|Fσ ) = o(1) with probability at least 1− Ce−c log2 n for some C,c > 0, which together with
(39) proves (38).

We finish with a formal proof of the existence of a straight path with large potential which is covered by the CRW
between time t and τ (assuming that the event C holds). First, it is easy to see that the next vertex visited by the CRW after
time t must belong to ϒt . Indeed, assume that the next jump happened at time s. Then by the definition of t , Xs ∈ ϒs .
Moreover the shortest path in Gs from Xs to L0 avoids Xt (otherwise we would have Xt ∈ϒt ). Thus this path uses only
edges from Gt , and so Xs ∈ϒt .

Now, between t and τ there are finitely many jumps. Denote by v1, . . . , vM consecutive vertices from ϒt , visited by
the CRW between times t and τ . Let t1, . . . , tM be the times of visits to v1, . . . , vM . Note that in particular tM = τ , since
by the definition of τ and the event K, Xτ ∈Gσ ⊂Gt .

We will show by induction that each vk is connected to ϒc
t ∩G©

t by a path in Gt consisting only of vertices which
have been visited by the CRW between times t and tk .

This is true for v1 =Xs because it belongs to ϒt =ϒs− and so (due to absence of bad jumps) the jump from Xt to Xs

is necessarily a backtrack. Assuming that the statement in question holds for v1, . . . , vk , we have three possibilities:

• The vertex vk+1 is visited directly after vk , in which case the statement extends to vk+1 since due to absence of bad
jumps between times t and tk+1 the bridge used for this jump corresponds to an edge in Gt .
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• The CRW leaves ϒt after visiting vk and the re-entry into ϒt happens by a bridge corresponding to an edge in Gt . In
this case the statement in question also holds for vk+1, since then Xtk+1− ∈G©

t ).
• The CRW leaves ϒt after visiting vk and the re-entry into ϒt happens via a bridge which up to time t was unexplored.

Since vk+1 ∈ ϒt and after time t there were no bad jumps, in this situation, the vertex vk+1 must equal vl for some
l ≤ k, since the bridge used for re-entry must have been used for the first time only after time t and it could have been
used only to leave ϒt .

Thus in particular Xτ is connected with ϒc
t ∩G©

t by a path P in Gt consisting only of vertices visited by the CRW
between times t and τ . Note that since τ < τc, we must have Xτ ∈G©

t . By Lemma 3.22 the path P contains a straight
subpath P ′ of length at least log2 n. It is now easy to see that this subpath is completely covered between t and τ . Indeed,
using again the absence of bad jumps and the fact that on K we have τ < τc, we see that the order in which the vertices of
P ′ are visited by the CRW between times t and τ is uniquely determined – the first entry into each consecutive vertex of
P ′ must be made by a backtrack from the previous one and after each departure from P ′ the CRW returns by backtrack
using the same bridge through which it has left. This shows that the whole path P ′ must be exhausted before time τ .
Denote by t ′ the first time after t when the CRW enters a vertex of P ′. Then clearly P ′ is a straight path in G©

t ′− and
therefore by the definition of the event C it has large potential at time t ′. In particular t ′ = ρk for some k (recall the
definition of ρk given before Proposition 3.24). �

Corollary 3.26. There exist C,c > 0 such that

P
(|ZT ∩L0| ≥ C log2 n

)≤ Ce−c log2 n.

Proof. Let Hk =Fτk
and let Ak denote the event that the estimate from Lemma 3.25 holds. For k ≥ 0 consider the events

Ek =
({

τk+1 − τk > n∧ (T − τk)
}∩Ak ∩ {τk ≤ T − 1})∪Ac

k ∪ {τk > T − 1}.
We have

P(Ek|Hk)= 1Ak∩{τk≤T−1}P
({

τk+1 − τk > n∧ (T − τk)
}|Hk

)+ 1Ac
k∪{τk>T−1},

and by applying Lemma 3.25 we can estimate

P(Ek|Hk)≥ p1Ak
1{τk≤T−1} + 1Ac

k∪{τk>T−1} ≥ p. (40)

Now let K = 2
p
�log2 n� and consider the sum 1E1 + · · · + 1EK

. Introducing ξk := 1Ek
− p, we observe that by (40) the

sum MN = ξ1+ · · ·+ ξN (with M0 = 0) forms a submartingale with increments bounded by 1. As any submartingale can
be written as a martingale plus a nonnegative predictable term and here the martingale part has bounded increments, by
Azuma’s inequality for martingales with bounded increments [24] we get

P(MN ≤−t)≤ e−
t2
2N

for any t ≥ 0 and N ≥ 1. Taking N =K , t = pK
2 and rewriting the inequality in terms of 1Ek

we obtain the estimate

P

(
1E1 + · · · + 1EK

≤ pK

2

)
≤ e−

p2K
8 .

Therefore with high probability at least pK/2 of the events Ek hold. Since P(Ak) ≥ 1− Ce−c log2 n for some C,c > 0,
by doing a union bound over k we can assume that none of the events Ac

k hold. This implies that either τk > T − 1 for
some k = 1, . . . ,K , or the event {τk+1 − τk > n} holds at least pK/2 times, which implies τK ≥ npK/2 ∧ (T − 1). As
T ≤ n log2 n, in both cases we have τK ≥ T − 1, so with probability at least 1− e−c log2 n (for some c > 0) we have at
most K = � 2

p
log2 n� vertices from L0 visited up to time T −1. An easy estimate shows that with high enough probability

there are at most c log2 n visits to L0 between times T − 1 and T , which ends the proof. �

Proofs of Lemma 3.2 and Proposition 3.1. Using the results of Section 3.6 the proof of Lemma 3.2 is now immediate.

Proof of Lemma 3.2. Since in Corollary 3.26 the starting vertex of the CRW was arbitrary, by symmetry of the graph
Hn the claim of the corollary holds with L0 replaced by any other row or column. Thus by performing a union bound
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over all rows and columns, and all starting vertices v ∈ V , we obtain that there exist constants C,C′, c′ > 0 such that

P
(∀v ∈ V ι

(
ZT (v)

)≤ C log2 n
)≥ 1−C′e−c′ log2 n.

Since we worked under Assumption 3.9, this finishes the proof of Lemma 3.2. �

With this lemma we can finally prove Proposition 3.1.

Proof of Proposition 3.1. Fix α ∈ (0,1/100) and T = nα/2. Consider the cyclic random walk X = X (v) started at a
vertex v. By Lemma 3.8 we have

P
(
T�4�βnα/2� <

⌊
nα/2⌋)≤ Ce−cnα/2

for some C,c > 0. Since �4�βnα/2� < nα and e−cnα/2 ≤ e−c log2 n for n large enough, we obtain that with probability
at least 1− C1e

−c1 log2 n, for some C1, c1 > 0, until time T fewer than nα vertices have been explored by the CRW. In
particular, this implies ι(ZT ) < nα .

Now by a union bound over starting vertices v and Lemma 3.2 we obtain that for some C,C2, c2 > 0 we have

P
(∀v ∈ V ι

(
ZT (v)

)≤ C log2 n
)≥ 1−C2e

−c2 log2 n.

The rest of the argument is inductive. Suppose that for some T ∈ [nα/2, n1−α/2 log2 n] we have

P
(∀v ∈ V ι

(
ZT (v)

)≤ C log2 n
)≥ 1−C′e−c′ log2 n (41)

for some C′, c′ > 0. Consider the CRW started at a fixed vertex w and run up to time T ′ = �T ��nα/2�. Divide the
time interval [0, T ′] into k = �nα/2� intervals Ii = [Si, Si+1) of length S = �T �. Observe now that for any v ∈ V by
construction of the cyclic random walk we have Z[Si ,Si+1](v) = Z[0,S](XSi

(v)). Since S ≤ T and the bound in (41) is
uniform over all vertices, we obtain

P
(∀i=1,...,k∀v ∈ V ι

(
Z[Si ,Si+1](v)

)≤ C log2 n
)≥ 1−C′e−c′ log2 n.

for some C′, c′ > 0. Finally, by subadditivity of ι we can bound ι(ZT ′(v)) by the sum of ι(Z[Si ,Si+1](v)) for i = 1, . . . , k,
obtaining

P
(∀v ∈ V ι

(
ZT ′(v)

)≤ C
⌊
nα/2⌋ log2 n

)≥ 1−C′e−c′ log2 n.

As C�nα/2� log2 n < nα for n large enough, we obtain that for some constants C1, c1 > 0

P
(∀v ∈ V ι

(
ZT ′(v)

)≤ nα
)≥ 1−C1e

−c1 log2 n.

Now an application of Lemma 3.2 gives for some constants C,C2, c2 > 0

P
(∀v ∈ V ι

(
ZT ′(v)

)≤ C log2 n
)≥ 1−C2e

−c2 log2 n,

which finishes the inductive step.
Now, since we started from T = nα/2 and at each step we increase the time by a factor of �nα/2�, after at most � 2

α
�+ 1

steps we obtain

P
(∀v ∈ V ι

(
Zn log2 n(v)

)≤C log2 n
)≥ 1−Ce−c log2 n

for some constants C,c > 0 depending on α, but not on n. This finishes the proof. �

3.7. Isoperimetry lower bound

In this section we prove the isoperimetry lower bound given by Proposition 3.3. The proof is independent of the previous
section (we will only make use of Lemma 3.6 and Lemma 3.8, which do not require Assumption 3.9).
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Proposition 3.27. Fix θ > 0, an admissible function C and β0, β1 > 0. Consider β ∈ [β0, β1] and let X (v) :=X β,θ,C(v)

be the cyclic random walk associated to μβ,θ,C , started at v. There exist C,c > 0 (depending only on β0, β1, θ ) such that

P
({∣∣Zn log2 n(v)∩L0

∣∣≤ c log2 n
}∩ {Tn log2 n(v) <∞})≤Ce−c log2 n.

Proof. Let κ < 1/2�β1 and T ≥ κn log2 n. Let Yt = |Zt ∩ L0| and let λt be the corresponding intensity of the process
Yt . Fix δ < β0�

−1κ/2. We will first show that

P
({

YT ≤ δ log2 n
}∩ {τc ≥ T })≤ Ce−c log2 n (42)

for some C,c > 0.
Consider �t =

∫ t

0 λs ds. Observe that{
YT ≤ κ

2
log2 n

}
∩ {τc ≥ T } ⊂

{
�T ≥ β0�

−1κ

2
log2 n

}
. (43)

Indeed, up to time τc, unless the CRW is at a vertex from a column containing an already visited vertex from L0, the
intensity of making a direct jump to L0 (and thus necessarily discovering a previously unvisited vertex from L0) is

bounded from below by β�−1

n−1 >
β0�

−1

n
by Lemma 3.6. Note that there are at most nYT such bad vertices and until time

τc the CRW can spend time at most 1 at any given vertex. Thus on the event {YT ≤ κ
2 log2 n} ∩ {τc ≥ T } the total time

spent at bad vertices before T is at most nYT ≤ κ
2 n log2 n. We thus have

�T =
∫ T

0
λt dt ≥ β0�

−1

n

(
T − κ

2
n log2 n

)
≥ β0�

−1κ

2
log2 n,

proving (43). As δ < β0�
−1κ/2 we thus get

P
({

YT ≤ δ log2 n
}∩ {τc ≥ T })≤P({YT ≤ δ log2 n

}∩ {�T ≥ β0�
−1κ

2
log2 n

})
and by Lemma 3.5 the right-hand side above is bounded by Ce−c log2 n for some C,c > 0. This proves (42).

Now we prove the statement of the proposition. Let M = n log2 n and A= {|ZM ∩L0| ≤ δ log2 n} ∩ {TM <∞}, with
the same δ as above. We have

P(A)≤ P
(
A∩ {TM ≤ κn log2 n

})+ P
(
A∩ {TM > κn log2 n

})
≤ P

(
TM ≤ κn log2 n

)+ P
(
A∩ {TM > κn log2 n

})
.

As 1/κ > 2�β1 ≥ 2�β , by Lemma 3.8 the first term on the right hand side does not exceed e−c′ log2 n for some c′ > 0.
For the second term we write

P
(
A∩ {TM > κn log2 n

})= P
({|ZM ∩L0| ≤ δ log2 n

}∩ {TM <∞}∩ {TM > κn log2 n
})

≤ P
({|Zκn log2 n ∩L0| ≤ δ log2 n

}∩ {τc ≥ κn log2 n
})

and by (42) the right hand side is small enough, which finishes the proof. �

The proof of Proposition 3.3 is now rather straightforward.

Proof of Proposition 3.3. Fix a starting vertex v. Let τ0 = 0 and let

τk = inf{t > τk−1 : Xt ∈ L0,Xt /∈Zt−}
be the k-th time a new vertex from L0 is visited. Let Jt be the total number of fresh jumps made up to time t . By Lemma
3.6 the intensity λ of J is bounded from above by 2β�. By Lemma 3.4 we obtain

P(Jτk+1 − Jτk
≥ 1|Fτk

)1{τk<∞} ≤ P(X ≥ 1),
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where X is a Poisson variable with parameter 2β�. In particular this implies that for some p > 0 bounded away from
0 the following holds: each time the CRW visits a new vertex Xτk

= w from L0, with probability at least p it makes no
fresh jumps for time 1, thus exhausting the whole bar of w. In particular with probability p > 0 the vertex w enters the
orbit O(v).

The rest of the proof is a rather standard concentration estimate. Let K = �c log2 n�, with c as in Proposition 3.27. Let
Hk =Fτk

and

Ak =
({τk <∞}∩ {Xτk

∈O(v)
})∪ {τk =∞}.

By the argument above we have P(Ak|Hk)≥ p, which implies that for ξk := 1Ak
−p the sum MN = ξ1 + · · · + ξN (with

M0 = 0) forms a submartingale with increments bounded by 1. As any submartingale can be written as a martingale
plus a nonnegative predictable term and here the martingale part has bounded increments, by Azuma’s inequality for
martingales with bounded increments [24] we get

P(MN ≤−t)≤ e−
t2
2N

for any t ≥ 0 and N ≥ 1. Taking N =K and t = pK
2 we obtain the estimate

P

(
1A1 + · · · + 1AK

≤ pK

2

)
≤ e−

p2K
8 .

Together with Proposition 3.27 this implies that with probability at least 1− C′e−c′ log2 n (for some C′, c′ > 0) we have
either

• Tn log2 n(v)=∞, which implies |O(v)|< n log2 n,

• or τK ≤ Tn log2 n <∞ and
∑K

k=1 1Ak
≥ pK

2 .

In the latter case we get that the event {τk <∞} ∩ {Xτk
∈ O(v)} holds at least cp

2 log2 n times for k ≤ K , implying in
particular |On log2 n(v)∩L0| ≥ c′′ log2 n for some c′′ > 0 (note that for k ≥ 1 if Tk <∞, then Tk ≤ k− 1).

To finish the proof we note that by symmetry of Hn the above argument is valid with L0 replaced by any other row or
column (as Proposition 3.27 has the same symmetry) and the starting vertex v was arbitrary. Thus by performing a union
bound over starting vertices v ∈ V and all rows and columns we obtain the desired bound on χ(On log2 n(v)). �

4. General transposition processes

In this section we introduce the notion of a general transposition process, which is another perspective on the permuta-
tion model μβ,θ,C defined in (1) and (3) In this formalism we will state Lemma 4.1 and Proposition 4.2. These are all
prerequisites needed in the next, final section.

For X ∈ X let (e1, t1), (e2, t2), . . ., (e|X|, t|X|) be the points of X sorted by the second coordinate. We define
{σt }t∈{0,1,...,|X|} by σ0 := id and for t ∈ {1, . . . , |X|}

σt := et ◦ · · · ◦ e1,

where any edge is identified with the transposition of its endpoints. This becomes a stochastic process when X is sampled
according to μβ,θ,C . Note that σ|X| = σ(X), with the latter permutation defined in (1).

In what follows we will consider (σi)
k
i=0 conditionally on �k := {|X| = k}. We use (Fi )

k
i=0 to denote the filtration on

�k associated with the process.
Obviously this transposition model depends on the parameters of μβ,θ,C . What might be surprising is that its evolution

is not far from the i.i.d. transposition process on the edges of Hn. This observation will play a crucial role in the proof of
forthcoming Proposition 4.2.

Lemma 4.1. Let β, θ > 0 and C be an admissible function. Let X be sampled from μβ,θ,C and let {σt }t≥0 be the associated
transposition process. For any i, k ∈N, i < k, e ∈E we have

P
(
σi+1 ◦ σ−1

i = e|Fi , |X| = k
) ∈ [�−2

|E| ,
�2

|E|
]
. (44)
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Proof. Let us fix e ∈E and a sequence of permutations σ = (σ1, . . . , σi) such that for any j ∈ {1, . . . , i − 1} the compo-
sition σj+1 ◦ σ−1

j is a transposition. Let Ui+1
σ,e be the set of all X ∈ X such that |X| = k, ei+1 = e and the transposition

process associated to X agrees with σ up to time i. For any ẽ ∈ E let T : Ui+1
σ,e 	→ Ui+1

σ,ẽ
be the mapping which swaps

the (i + 1)-th point of X from e to ẽ, i.e., (ei+1, ti+1)= (e, ti+1) in X is replaced by (ẽ, ti+1). Note that T is a bijection
which preserves the Poisson point process B. Thus we have

μβ,θ,C(Ui+1
σ,ẽ

)

μβ,θ,C(Ui+1
σ,e )

=
∫
X

1
Ui+1

σ,ẽ
(X)θC(X)B(dX)∫

X
1i+1

Uσ,e
(X)θC(X)B(dX)

=
∫
X

1
Ui+1

σ,e
(X)θC(T (X))B(dX)∫

X
1

Ui+1
σ,e

(X)θC(X)B(dX)
.

By the Lipschitz property (2) of C clearly we have |C(T (X))− C(X)| ≤ 2. Thus the integrands in the numerator and the
denominator above can differ by a factor of at most θ2, which leads to the estimate

μβ,θ,C
(
Ui+1

σ,ẽ

)
/μβ,θ,C

(
Ui+1

σ,e

)≤�2.

From this and an analogous argument for the lower bound it is straightforward to obtain (44). �

In the final arguments we will need statements holding uniformly in a large enough time window before time |X|. Thus,
conditionally on |X| = k, we let k′ =max{0, k− 2�n11/6�} and define the time interval I := {k′, . . . , k− 1}. We will now
prove that on I the transposition process corresponding to the measure μβ,θ,C behaves in a certain sense similarly to the
mean-field case (corresponding to θ = 1 on the complete graph), i.e., for most values of k the process, when conditioned
on |X| = k, with high probability has splitting and merging probabilities comparable to the mean-field case.

To formalize this intuition let us introduce a stopping time τ , corresponding to the moment when the cycles lose good
isoperimetric properties. Denote by orbσ (v) the cycle of the permutation σ containing v ∈ V and by orb

σ (v) its first
∧ |σ | elements. We will write orb

t (v) as a shorthand for orb
σt

(v).
For constants c1, c2 > 0 which will be fixed later we define

τ ι := inf
{
s ∈ I : ∃v ∈ V ι

(
orbn log2 n

s (v)
)
> c1 log2 n

}
,

τχ := inf
{
s ∈ I : ∃v ∈ V

∣∣orbs(v)
∣∣≥ n log2 n and χ

(
orbn log2 n

s (v)
)
< c2 log2 n)

}
,

τ := τ ι ∧ τχ .

Note that for each k, τ is a stopping time with respect to the natural filtration of the process (σt )
k
t=0 on {|X| = k}.

Proposition 4.2. Let β, θ > 0 be such that β > �/2 and let C be an admissible function. Let X be sampled from μβ,θ,C
and let {σt }t∈{0,...,|X|} be the associated transposition process.

Then there exists Kn ⊂N, C,c > 0 and constants c1, c2 in the definition of τ , depending only on β , θ and C, such that
the following properties hold.

(i) P(|X| ∈Kn)≥ 1−Ce−c log2 n

(ii) For k ∈Kn, P(τ =∞||X| = k)≥ 1−Ce−c log2 n.
(iii) Consider ≥ n log2 n. Denote by Di the event that in the transition from step i to i + 1 a cycle of σi is split into two

cycles, one of which has size smaller than . Then for every i ∈ I ,

P
(
Di |Fi , |X| = k

)
1{k∈Kn}1{τ>i} ≤ C



n2
.

(iv) Let C1, C2 be two cycles of σi such that |Cj | ≥ n log2 n, for j ∈ {1,2}. Denote by Mi the event that they are merged
in the transition from step i to i + 1. Then for every i ∈ I ,

P
(
Mi |Fi , |X| = k

)≥ c
|C1||C2|

n4
1{k∈Kn}1{τ>i}. (45)

The proof is deferred to the end of the next subsection.
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4.1. Isoperimetry and its consequences

Here we use the notation from the previous section and assume that {σt }t∈{0,...,|X|} is a transposition process associated to
the distribution μβ,θ,C . The proof of Proposition 4.2 is rather easy once we know that any (long enough) fragment of σt

is “spread evenly on the graph”. This is formalised in events I ι and Iχ defined below.
Recall that I = {k′, . . . , k−1}, where k′ =max{0, k−2�n11/6�}, conditionally on |X| = k. Let c1, c2 > 0 and consider

the events

I ι := {
τ ι ≥ |X|}= {∀s ∈ I ∀v ∈ V ι

(
orbn log2 n

s (v)
)≤ c1 log2 n

}
, (46)

Iχ := {
τχ ≥ |X|}= {∀s ∈ I ∀v ∈ V χ

(
orbn log2 n

s (v)
)≥ c2 log2 n1{|orbs (v)|≥n log2 n}

}
. (47)

Finally, let I := I ι ∩ Iχ .
We will show that the event I holds (for appropriate choice of c1, c2) with high probability. As a first step we prove

that the conclusions of Proposition 3.1 and Proposition 3.3 hold uniformly for cyclic random walks using their bars only
up to a certain level.

More precisely, for s, t ∈ (0,1) let Xs,t be the restriction of X to [s, t), i.e., the space of finite subsets of E×[s, t). We
can define measures μ

s,t
β,θ,C on Xs,t by a formula analogous to (3), i.e.,

μ
s,t
β,θ,C(U) := 1

Z
s,t
β,θ,C

∫
Xs,t

1U(Y )θC(Y )B(dY ). (48)

If X ∈ X and X = {(e1, t1), . . . , (ek, tk)}, we define the restriction of X to [s, t), denoted by Xs,t , by including only
these pairs (ei, ti) for which ti ∈ [s, t). We have Xs,t ∈Xs,t . For simplicity we will write Xt instead of X0,t , etc.

For Y ∈Xt let ZY (v) denote the trace of the cyclic random walk (started at (v,0)) using the bridges of Y and running
on bars of height t instead of height 1. Note that if Y is distributed according to μt

β,θ,C (for some β , θ , C), then the

process (ZY
T (v), T ≥ 0) has the same distribution as (ZX

T/t (v)), T ≥ 0), where X ∈ X is distributed according to μtβ,θ,C
(this follows directly by properties of the Poisson point process B).

Furthermore, if X is distributed according to μβ,θ,C , then the law of Xt under μβ,θ,C is given by μt
β,θ,Ct , where

Ct :Xt 	→R is a function defined by

θC
t (Y ) :=

∫
X

θC(Y∪Z|E×[t,1))B(dZ),

where Z|E×[t,1) = Z ∩ (E × [t,1)). It is easy to check that if C is admissible, then so is Ct .
Let us define the analogues of (46) and (47) for the CRW. Recall the sets Ok , O, defined in (4), and denote by OY

k , OY

the analogous sets for the process Y . For fixed t0 ∈ (0,1) and c1, c2 > 0 we set

Aι := {∀t ∈ [t0,1) ∀v ∈ V ι
(
ZXt

tn log2 n
(v)

)≤ c1 log2 n
}
,

Aχ := {∀t ∈ [t0,1) ∀v ∈ V χ
(
OXt

n log2 n
(v)

)≥ c2 log2 n1{|OXt
(v)|≥n log2 n}

}
.

We also set A :=Aι ∩Aχ . We will now prove

Proposition 4.3. Fix β , θ , C such that β > �/2 and let t0 ∈ (0,1) be such that t0β > �/2. Let X be distributed according
to μβ,θ,C . Then there exist C,c > 0 and c1, c2 > 0 in the definition of Aι and Aχ above such that

P(A)≥ 1−Ce−c log2 n.

Proof. It will be convenient to divide the time interval [0,1) into subintervals small enough so that each of them contains
at most one bridge, as then it will be enough to control isoperimetry at the endpoints and use a union bound.

Let κ > 0 (to be specified later in the proof). Let t0 = s0 < s1 < · · · < sk = 1 be such that k = �βn2eκ log2 n� and
|si+1− si | ≤ β−1n−2e−κ log2 n for i ∈ {0,1, . . . , k−1}. For simplicity we will write Xi :=Xsi and Xi,i+1 :=Xsi,si+1 (and
likewise for X).

Consider the event that there is at most one bridge in each interval [si , si+1)

E := {∀i∈{0,...,k−1}
∣∣Xi,i+1

∣∣≤ 1
}
.
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First note that

P
(
Ec
)≤ Ce−c log2 n (49)

for some C,c > 0. Indeed, for any fixed i = 0, . . . , k− 1 by Lemma B.2 applied with t = si , s = |si+1 − si | we have

P
(∣∣Xi,i+1

∣∣> 1
)≤ eCλiP(Yλi

≥ 2),

for some C > 0, where λi ≤ �e−κ log2 n and Yλi
is a Poisson variable with parameter λi . Using the simple estimate

P(Yλi
≥ 2)≤ λ2

i (valid for λi small enough) we obtain

P
(∣∣Xi,i+1

∣∣> 1
)≤ eC�e−κ log2 n

�2e−2κ log2 n ≤ C′e−2κ log2 n

for some C′ > 0. Applying union bound over all i = 0, . . . , k − 1, gives P(E) ≤ k · C′e−2κ log2 n ≤ 2C′βn2e−κ log2 n ≤
Ce−c log2 n for some C,c > 0.

Now we prove that each of the events defining A holds with high enough probability. We start with the event Aι.
Recall that ZXt

(v) is the trace of the CRW using bridges of Xt . Consider the event

J := {∀i∈{0,1,...,k} ∀v∈V ι
(
ZXsi

sin log2 n
(v)

)≤C log2 n
}

with C as in Proposition 3.1.
As remarked before, for any fixed i ∈ {0,1, . . . , k} the law of Xsi under μβ,θ,C is given by μ

si
β,θ,Csi

and the trace

ZXsi

T (v) has the same distribution as the trace ZX̃i

T /si
(v), where X̃i has distribution μβi,θ,Csi with βi = siβ (note that the

latter CRW uses bars of height 1). Note that βi > �/2, as by assumption t0β > �/2, and we have βi ∈ [t0β,β].
Therefore, by Proposition 3.1 we obtain for any fixed i

P
(∀v∈V ι

(
ZXsi

sin log2 n
(v)

)≤ C log2 n
)≥ 1−Ce−c log2 n,

with constants C, c depending only on �, β and t0 (but not on Csi ).
Applying a union bound over i = 0, . . . , k we get

P
(
J c

)≤ (k + 1)Ce−c log2 n ≤ 4Cβn2eκ log2 ne−c log2 n.

Now we can fix κ < c/2 to obtain that P(J )≥ 1−C′e−c′ log2 n for some C′, c′ > 0.
On the event E there is at most one bridge in each interval [si , si+1), which implies for any v ∈ V

sup
t∈[si ,si+1)

ι
(
ZXt

tn log2 n
(v)

)≤max
{
ι
(
ZXsi

sin log2 n
(v)

)
, ι
(
ZXsi+1

si+1n log2 n
(v)

)}
.

Thus on the event E ∩J we obtain

sup
t∈[t0,1)

max
v∈V

ι
(
ZXt

tn log2 n
(v)

)≤ C log2 n.

Since each event E and J occurs with high enough probability, we can take c1 = C to obtain that Aι holds with the
required probability.

The proof for the event Aχ is analogous. Using the same notation as above, let

K := {∀i∈{0,1,...,k} ∀v∈V χ
(
OXsi

n log2 n
(v)

)≥ C log2 n or
∣∣OXsi

(v)
∣∣< n log2 n

}
with C as in Proposition 3.3.

As before, (ZXsi

T (v), T ≥ 0) has the same distribution as (ZX̃i

T /si
(v), T ≥ 0), where X̃i is distributed according

to μβi,θ,Csi with βi = siβ . Applying Proposition 3.3 and performing a union bound over i gives us that P(K) ≥
1−C′e−c′ log2 n for some C′, c′ > 0 depending on θ , β , t0.

On the event E for each t ∈ [si , si+1) we have either OXt

tn log2 n
(v) = OXsi

sin log2 n
(v) and OXt

(v) = OXsi
(v), or

OXt

tn log2 n
(v) = OXsi+1

si+1n log2 n
(v) and OXt

(v) = OXsi+1
(v). Thus E ∩ K ⊆ Aχ . We finish by observing that both E and

K hold with high enough probability, so in the definition of Aχ we can take c2 = C with C as in the definition of K. �
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Now we can prove that the good isoperimetric properties I ι and Iχ defined in (46) and (47) hold in the discrete time
setting (for some c1, c2) with high probability. Recall that I = I ι ∩ Iχ .

Lemma 4.4. Let β, θ > 0 be such that β > �/2 and C be an admissible function. There exist c1, c2 > 0 in the definitions
(46) and (47), C,c, c′ > 0 and Kn ⊂N such that

P
(
I||X| = k

)≥ (
1−Ce−c log2 n

)
1{k∈Kn} and P

(|X| ∈Kn

)≥ 1− e−c′ log2 n.

Proof. Let X be sampled from μβ,θ,C and fix t0 ∈ (0,1) such that t0β > �/2.

We first prove that the event I = I ι ∩ Iχ holds with probability at least 1− Ce−c log2 n, for some C,c > 0, when c1,
c2 are chosen appropriately.

Consider the bridges σs = (es, ts) for s = |X| − 2�n11/6�, . . . , |X|. The event

S = {|X| ≥ 2
⌈
n11/6⌉}∩ {∀s∈{|X|−2�n11/6�,...,|X|}ts > t0}

holds with high probability. Indeed, if |X|< 2�n11/6� or ts ≤ t0 for some s, then necessarily |X∩(E×[t0,1))| ≤ 2�n11/6�.
An application of the second part of Lemma B.2 with kn = 2�n11/6� shows that with probability at least 1−Ce−cn2

, for
some C,c > 0, this does not happen.

From now on we work on the event S . As in the proof of Proposition 4.3 let Xts denote the restriction of X to the
interval [0, ts) and let ZXts

(v) be the trace of the corresponding cyclic random walk started at v.

By the construction of the cyclic random walk we have orbs(v)⊆ZXts
(v) and orbn log2 n

s (v)⊆ZXts

tsn log2 n
(v). Recalling

the definition of the event Aι, by Proposition 4.3 there exist C,c > 0 such that with probability at least 1−Ce−c log2 n we
have

sup
t∈[t0,1)

max
v∈V

ι
(
ZXt

tn log2 n
(v)

)≤ C log2 n.

As on S we have ts > t0 for all s = |X| − 2�n11/6�, . . . , |X|, together with the observation about the orbits this shows that
I ι, with c1 = C in the definition (46), holds with probability at least 1−C′e−c′ log2 n for some C′, c′ > 0.

For the proof that the event Iχ holds with high probability, note that OXts

tsn log2 n
(v) = orbn log2 n

s (v), in particular

orbs(v) = OXts
(v). Therefore, recalling the definition of Aχ , we can use Proposition 4.3 to conclude that with prob-

ability at least 1−C′e−c′ log2 n, for some C′, c′ > 0, we have

∀s ∈ I ∀v ∈ V χ
(
orbn log2 n

s (v)
)≥ C log2 n1{|orbs (v)|≥n log2 n}.

As before on the event S we have ts > t0, so if we take c2 = C in (47) we obtain that the event Iχ holds with probability
at least 1−C′e−c′ log2 n for some C′, c′ > 0.

Now suppose that C,c > 0 are such that P(I)≥ 1−Ce−c log2 n. Let

Kn :=
{
k ∈N : P(I||X| = k

)≥ 1−Ce−
c
2 log2 n

}
.

We write by definition of Kn

P
(
Ic
)= ∑

k∈Kn

P
(
Ic||X| = k

)
P
(|X| = k

)+ ∑
k /∈Kn

P
(
Ic||X| = k

)
P
(|X| = k

)
≥ P

(|X| /∈Kn

) ·Ce−
c
2 log2 n

and now the lower bound on P(I) together with a simple calculation gives us

P
(|X| ∈Kn

)≥ 1− Ce−c log2 n

Ce− c
2 log2 n

= 1− e−
c
2 log2 n

as desired, which proves the second assertion of the lemma with c′ = c/2. �

We will now relate good isoperimetric properties of cycles to the probabilities of splits and merges in the corresponding
transposition process.
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Lemma 4.5. Let σ be a permutation and let e= {u,w} be an edge chosen at random according to a distribution {pe}e∈E

satisfying c/|E| ≤ pe ≤C/|E|, for some C,c > 0. Let (u,w) denote the transposition of endpoints of e.

(i) Suppose that for some k,m ∈N and each v we have

ι
(
orbk

σ (v)
)≤m. (50)

Then for any ≥ k the probability that a cycle of σ is split in (u,w) ◦σ into two cycles, one of which has size smaller
than , is at most

4C

kn
m.

(ii) Suppose that for some k,m ∈N and each v satisfying |orbσ (v)| ≥ k we have

χ
(
orbk

σ (v)
)≥m. (51)

Then given two cycles C1, C2 of σ of length at least k, the probability that they are merged in (u,w) ◦σ into one cycle
is at least

c

2

|C1||C2|m2

n2k2
.

Proof. We start with the proof of (i). Fix a vertex v ∈ V , let D, L denote respectively the column and the row containing
v, and let orb−

σ (v) = orb
σ−1(v). The number of w ∈ V for which (v,w) is an edge such that a cycle of σ is split in

(v,w) ◦ σ into two cycles, one of which has size smaller than , is equal to∣∣(orb
σ (v)∪ orb−

σ (v)
)∩ (D ∪L \ {v})∣∣≤ 2ι

(
orb

σ (v)∪ orb−
σ (v)

)
.

By dividing orb
σ (v)∪ orb−

σ (v) into pieces of length k and exploiting subadditivity of ι we obtain

ι
(
orb

σ (v)∪ orb−
σ (v)

)≤ ⌈
2

k

⌉
max
v′∈V

ι
(
orbk

σ

(
v′
))≤ ⌈

2

k

⌉
m.

Thus for fixed v there are at most � 2
k
�m edges with one endpoint equal to v which would cause a cycle of σ to split with

one of the resulting pieces smaller than . By our assumptions each such edge e is chosen with probability pe ≤ C
|E| . As

each vertex has degree 2(n− 1) in Hn, we obtain that the total probability of such a split is at most

C

n− 1

⌈
2

k

⌉
m≤ 4C

kn
m,

as desired.
For the proof of (ii), consider two cycles C1 = orbσ (v1), C2 = orbσ (v2) of length at least k. By the assumption of the

lemma we have χ(orbk
σ (vj ))≥m for j = 1,2. By dividing Cj into segments of length k and recalling the definition of χ ,

we obtain that each Cj has at least � |Cj |
k
�m≥ 1

2
|Cj |m

k
vertices in each row and each column of Hn. This implies that there

are at least 2n( 1
2
|C1|m

k
)( 1

2
|C2|m

k
)= n

2
|C1||C2|m2

k2 edges joining a vertex from C1 with a vertex from C2.
For each such an edge e we have pe ≥ c

|E| . As choosing such an edge results in a merge between C1 and C2, we obtain

P(C1 and C2 are merged in (u,w) ◦ σ)≥ c

n2(n− 1)
· n

2

|C1||C2|m2

k2
≥ c

2

|C1||C2|m2

n2k2
,

as desired. �

Now we can finally employ Lemmas 4.1, 4.4 and 4.5 to prove Proposition 4.2.

Proof of Proposition 4.2. Let Kn ⊂ N and C,c, c′ > 0 be as in Lemma 4.4 (in particular (i) of Proposition 4.2 is
satisfied). We have

P
(
I||X| = k

)≥ (
1−Ce−c log2 n

)
1{k∈Kn},
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which in particular implies (ii), i.e.,

P
(
τ =∞||X| = k

)≥ (
1−Ce−c log2 n

)
1{k∈Kn}. (52)

Fix i ∈ I and let C1 = orbi (v1), C2 = orbi (v2) for some v1, v2 ∈ V . Let  ≥ n log2 n. As on the event {τ > i} we have

ι(orbn log2 n

i (v))≤ c1 log2 n for all v, by Lemma 4.1 and part (i) of Lemma 4.5 we obtain

P
(
Di |Fi , |X| = k

)
1{k∈Kn}1{τ>i} ≤ 4�−1

n · n log2 n
c1 log2 n= C′ 

n2

for some C′ > 0, giving (iii).
Let us now pass to the proof of (iv). Fix i ∈ I and let C1 = orbi (v1), C2 = orbi (v2) be two cycles of length at least

n log2 n. On the event {τ > i} we have χ(orbn log2 n

i (v)) ≥ c2 log2 n for j = 1,2. Thus by Lemma 4.1 and part (ii) of
Lemma 4.5 we obtain

P
(
Mi |Fi , |X| = k

)≥ �−1

2

|C1||C2|(c2 log2 n)2

n2(n log2 n)2
1{k∈Kn}1{τ>i} ≥ C′′ |C1||C2|

n4
1{k∈Kn}1{τ>i}

for some C′′ > 0 as desired. �

5. Macroscopic cycles

In this section we will prove our main results, namely Theorem 1.1 and Theorem 1.2. We will need one more ingredient,
which is a variant of an argument due to Schramm, described in the next subsection.

In most of this section we will work with the general transposition process introduced in Section 4.

5.1. Schramm’s argument

In this standalone part we develop ideas of [28]. Our contribution is to rephrase them in terms of an abstract split-merge
process. We will then apply the results of this subsection to transposition processes coming from measures μβ,θ,C (see
Section 5.3) and we believe that they might be useful in more general cases.

Let V be a finite set and h ∈ N. We say that {σk}k∈{0,1,...,h} is a random split-merge process over V if any σk is a
(random) partition of V . We refer to the sets of this partition as components. We call a random split-merge process simple
if in transition from σk to σk+1 (which we will call step k) we allow only

• a component to be split into two,
• two components to be merged.

We denote by {Fk}k∈{0,1,...,h} the natural filtration of the process and write Ck() for the set of v ∈ V which belong to
components of σk of size at least  ∈N. We set Ih := {0,1, . . . , h− 1}.

Now we state the main result of this section. Its proof is essentially the same as proofs in Section 2 of [28], with only
very slight modifications.

Lemma 5.1. Let h ∈ N and {σk}k∈{0,1,...,h} be a simple split-merge process over a finite set V . Let t0 ∈ Ih, δ ∈ (0,1],
ε ∈ (0,1/8) and j ∈ N be such that 2j ≤ εδ|V |. Assume moreover that for a stopping time τ the following conditions
hold

(i) there exists c1 > 0 such that for any k ∈ Ih, ≥ 2j we have

P
(
some component C of σk is split in transition from step k to k+ 1 into C1,C2

and min
(|C1|, |C2|

)≤ |Fk

)
1{τ>k} ≤ c1



|V | .

(ii) there exists c2 > 0 such that for any k ∈ Ih and any two components C1,C2 ∈ σk such that |C1|, |C2| ≥ 2j we have

P(components C1,C2 are merged in transition from step k to k + 1|Fk)≥ c2
|C1||C2|
|V |2 1{τ>k}.



310 R. Adamczak, M. Kotowski and P. Miłoś

Then there exist c3, c4 > 0, depending only on c1, c2, such that if

t1 := t0 + ��t�, �t = c3δ
−1 |V |

2j
log2

( |V |
2j

)
, (53)

satisfies t1 ≤ h, then

E
(∣∣Ct0

(
2j
) \ Ct1

(
εδ|V |)∣∣|Ft0

)
1{|Ct0 (2j )|≥δ|V |} ≤ c4δ

−1ε
∣∣log2(εδ)

∣∣|V | + c4δ
−1|V |P(τ ≤ t1|Ft0). (54)

In other words, if sufficiently many vertices are in components of size at least 2j at time t0, most of them will be in
components of size εδ|V | at time t1 (unless the split-merge properties (i) and (ii) fail, which is reflected in the second
term).

The proof is an implementation of the following simple idea. Fix K := �log2(εδ|V |)� and set milestones t0 = Tj <

Tj+1 < · · ·< TK = t1. In each epoch {Tj , Tj + 1, . . . , Tj+1} we expect the size of moderately large components to grow
by a factor of two. The subtlety lies in formalising this statement and finding the correct lengths of the epochs. They need
to be long enough so that most components have a chance to merge into bigger ones and at the same time to be short
enough so that not too many splits occur. It turns out that the proper choice is

Ti+1 − Ti =mi := �ai�, ai := 4

c2
δ−1 |V |

2i
log2

( |V |
2i

)
. (55)

Now the form of �t in (53) is rather natural.
In proofs below we will use N as shorthand for |V | and log for log2. All unspecified constants are assumed to be

independent of δ and ε. We implicitly assume that the condition t1 ≤ h is met. We can also assume that P({|Ct0(2
j )| ≥

δ|V |) > 0. For notational simplicity fix an arbitrary A ∈ Ft0 such that P(A ∩ {|Ct0(2
j )| ≥ δ|V |}) > 0 and set P(·) =

P(·|A∩ {|Ct0(2
j )| ≥ δ|V |}). We denote by E(·) the corresponding expectation. The inequality (54) is then equivalent to

E
∣∣Ct0

(
2j
) \ Ct1(εδN)

∣∣≤ c4δ
−1ε

∣∣log(εδ)
∣∣N + c4δ

−1NP(τ ≤ t1)

for all admissible sets A.
The idea behind the proof of Lemma 5.1 consists of showing that for any epoch i ∈ {j, . . . ,K − 1} the number of

vertices in CTi
(2i ) \ CTi+1(2

i+1) must be small.
The first reason for a vertex to fall in this set is splitting. Namely, by S̄i we denote the set of vertices v ∈ V which

at some time t ∈ {Ti, . . . , Ti+1 − 1} belong to a component which in transition to time t + 1 is split and v ends up in a
component of size smaller than 2i+1. In Lemma 5.2 we show that S̄i is small.

The second reason is failure of the components to merge. We define M̄i := CTi
(2i ) \ (CTi+1(2

i+1) ∪ S̄i ), the set con-
taining vertices whose components did not split, but failed to merge into a bigger one. In Lemma 5.3 we analyze M̄i in
more detail and prove that it is small as well.

We also denote

Sk :=
k⋃

i=j

S̄i , Mk :=
k⋃

i=j

M̄i .

The following inclusion reveals the rationale behind the above definitions:

CTj

(
2j
) \ CTk+1

(
2k+1)⊂ Sk ∪Mk. (56)

We first deal with splits

Lemma 5.2. Under assumptions of Lemma 5.1 there exists c > 0 such that

E
(|SK−1|1{τ>TK }

)≤ cε
∣∣log2(εδ)

∣∣N. (57)

Proof. Fix i ∈ {j, . . . ,K − 1} and let

Dt :=
{
a split occured in transition from time t to t + 1 creating a component of size smaller than 2i+1}.
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Whenever a split creates one or possibly two components of size smaller than 2i+1, at most 2 · 2i+1 vertices are added to
the set S̄i . Thus

|S̄i |1{τ>Ti } ≤ 2 · 2i+1
Ti+1−1∑
t=Ti

1Dt
1{τ>Ti }.

Applying assumption (i) of Lemma 5.1 we obtain 1{τ>Ti }P(Dt )≤ C2i+1/N , for some C > 0. As {τ > TK} ⊂ {τ > Ti},
we have

E
(|SK−1|1{τ>TK }

)≤ 8C

K−1∑
i=j

mi2
2i/N.

The rest of the proof follows by calculations employing the form of mi .

1

N

K−1∑
i=j

mi2
2i ≤ 2

N

K−1∑
i=j

ai2
2i = 8

c2
δ−1

K−1∑
i=j

2i log

(
N

2i

)
≤ 8

c2
δ−1

K−1∑
i=0

2i log

(
N

2i

)

= 8

c2
δ−1((2K − 1

)
logN − 2+ 2K+1 − 2KK

)
≤ 8

c2
δ−1((logN −K)2K + 2K+1).

Recalling K = �log2(εδN)�, we check easily that 2K+1 ≤ 4εδN and (logN −K)2K ≤ 2| log(εδ)|εδN , therefore (57)
follows. �

Analysing Mi is somewhat tricky. We introduce an additional index

σ :=min
{
i ∈ {j, . . . ,K − 1} : ∣∣Ct

(
2i
)∣∣< δN/2 for some t ∈ {Ti + 1, . . . , Ti+1}

}
, (58)

with the convention σ =+∞ when the set is empty. Now we can state

Lemma 5.3. Under assumptions of Lemma 5.1 we have

E
(|M(σ−1)∧(K−1)|1{τ>TK }

)≤ 2εδN. (59)

Proof. Consider an epoch i ∈ {j, . . . ,K − 1} and let v be any vertex. Recalling the definition of M̄i , if v ∈ M̄i , then at
time Ti the vertex v is in a component of size at least 2i , at time Ti+1 the component of v is smaller than 2i+1, and v /∈ S̄i ,
so there is no splitting between these two times which would put v in a component smaller than 2i+1. Therefore, we have
v ∈ Ct (2i ) \ Ct (2i+1) for all t ∈ {Ti, . . . , Ti+1 − 1}. For any step t of the epoch consider the event At that the component
of v merges with another component of size at least 2i . Notice that {v ∈ M̄i} ⊂⋂

t Ac
t , where the intersection is over t ∈

{Ti, . . . , Ti+1− 1}. Indeed, had any At happened the component of v would have been of size at least 2i+1 and, as v /∈ S̄i ,
it would have survived until the end of the epoch. Denote also the event Et := {|Ct (2i )| ≥ δN/2}∩ {v ∈ Ct (2i ) \Ct (2i+1)}.
By assumption (ii) of Lemma 5.1 we have

P(At |Ft )≥ c22i δN/2− 2i+1

N2
1Et

1{τ>t} ≥ c22iδ
1/2− 2ε

N
1Et

1{τ>t} ≥ c2

4

2iδ

N
1Et

1{τ>t}.

Using the facts above we conclude

P
({v ∈ M̄i} ∩ {σ > i} ∩ {τ ≥ Ti+1}

)≤ E(1⋂
t∈{Ti ,...,Ti+1−1}(Ac

t ∩Et )∩{τ>t})

≤ E
(
1⋂

t∈{Ti ,...,Ti+1−2}(Ac
t ∩Et )∩{τ>t}1ETi+1−11{τ>Ti+1−1}P

(
Ac

Ti+1−1|FTi+1−1
))

≤
(

1− c2

4

2iδ

N

)
·E(1⋂

t∈{Ti ,...,Ti+1−2}(Ac
t ∩Et )∩{τ>t})≤ · · · ≤

(
1− c2

4

2iδ

N

)mi

.
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The choice of mi in (55) is such that

P
({v ∈ M̄i} ∩ {σ > i} ∩ {τ ≥ Ti+1}|FTi

)≤ 2i/N.

The rest of the proof follows by the estimate

E
(|M(σ−1)∧(K−1)|1{τ>TK }

)≤ K−1∑
i=j

E
(|M̄i |1{σ>i}1{τ≥Ti+1}

)≤N
2K

N
≤ 2εδN.

�

We are now ready for

Proof of Lemma 5.1. By (56) on the event {σ < +∞} we have CTj
(2j ) \ CTσ (2σ ) ⊂ Sσ−1 ∪ Mσ−1. Consider now

t ∈ {Tσ + 1, . . . , Tσ+1} such that |Ct (2σ )| < δN/2 and any v ∈ CTj
(2j ) \ Ct (2σ ). Recall that we work on the event

{|Ct0(2
j )| ≥ δN}. If v /∈ CTσ (2σ ) then v ∈ Sσ−1 ∪Mσ−1, otherwise v ∈ CTσ (2σ ) \ Ct (2σ ) and so v ∈ S̄σ ⊂ SK−1. Thus

CTj
(2j ) \ Ct (2σ ) ⊂ M(σ−1)∧(K−1) ∪ SK−1. Since |CTj

(2j )| ≥ δN , we conclude that {σ < +∞} ⊂ {|M(σ−1)∧(K−1) ∪
SK−1| ≥ δN/2}.

Now let � := E|Ct0(2
j ) \ Ct1(εδN)|. Using (56) we have �≤ E|MK−1 ∪ SK−1|. Furthermore,

�≤ E
(|MK−1 ∪ SK−1|1{σ=+∞}

)+NP(σ <+∞)

≤ E|M(σ−1)∧(K−1) ∪ SK−1| +NP
(|M(σ−1)∧(K−1) ∪ SK−1| ≥ δN/2

)
≤ (1+ 2/δ)E|M(σ−1)∧(K−1) ∪ SK−1|
≤ (1+ 2/δ)

(
E|M(σ−1)∧(K−1)| +E|SK−1|

)
,

where in the second line we used Markov’s inequality. Furthermore, we write

E|M(σ−1)∧(K−1)| +E|SK−1| ≤ E
(|M(σ−1)∧(K−1)|1{τ>TK }

)+ (
E|SK−1|1{τ>TK }

)+ 2NP(τ ≤ TK)

Now applying Lemma 5.2 and Lemma 5.3 we get (recalling that TK = t1)

�≤ (1+ 2/δ)
(
2εδN + cε

∣∣log(εδ)
∣∣N)+ (2+ 4/δ)NP(τ ≤ t1).

As δ < 1 and ε < 1/8, one readily checks that the right hand side is bounded from above by

c′δ−1ε
∣∣log(εδ)

∣∣N + c′δ−1NP(τ ≤ t1)

for some c′ > 0, which concludes the proof. �

5.2. Mesoscopic cycles

In this section we will work in the setting of general transposition process, introduced in Section 4, for X sampled from
μβ,θ,C . All quantities like Ct (·) are implicitly related to this process. We focus on the supercritical phase β > �/2. Our
aim, formalized in Proposition 5.4, is to show that a substantial fraction of vertices belongs to mesoscopic cycles (of
size at least n log2 n). This result will be used in the next section as an input to Lemma 5.1 to prove the existence of
macroscopic cycles. The crucial ingredient that we use are the isoperimetric properties of the cycles stated in Proposition
4.2.

Proposition 5.4. Let β > �/2. There exist δ > 0 and sets Kn ⊂ {�n11/6�, �n11/6� + 1, . . .} such that limn→∞ P(|X| ∈
Kn)= 1 and

lim
n→∞ inf

k∈Kn

min
t∈{k−�n11/6�,...,k}

P
(∣∣Ct

(
n log2 n

)∣∣≥ δn2||X| = k
)= 1.

The proof of the proposition hinges on a coupling between the generalized transposition process and a random graph
process. Let s ∈ {0, . . . , |X|} and consider a process Gs = {Gs

u}u∈{0,...,|X|−s} of random graphs on the vertex set V defined
as follows. Initially, Gs

0 is a graph whose connected components are the cycles of σs . There might be many graphs
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satisfying this property and for our purposes it will not matter which one is chosen. Next, for any u ∈ {1, . . . , |X| − s} the
edge e corresponding to transposition es+u (i.e., σs+u = es+u ◦ σs+u−1) is added to the edge set of Gs

u.
Recall that Ct () is the set of vertices which belong to cycles of length at least  in σt . Correspondingly, let Gs,u()

be the set of vertices of Gs
u which belong to connected components of size at least . Importantly, any cycle of σs+u is

contained in a connected component Gs
u. Hence, it follows that Cs+u()⊂ Gs,u() for any s, u,  ∈N.

There are two key ingredients in the proof Proposition 5.4. First, Gs is monotonic and thus can be studied using
standard random graph techniques. In particular Lemma 5.6 below shows that macroscopic clusters emerge quickly in
Gs . Second, on sufficiently short time intervals the difference Gs,u()\Cs+u() is small, which is formalized in Lemma
5.5.

Consider an interval I ⊂ {0, . . . , |X|}, k ∈N and let c1 > 0 be the constant from Proposition 4.2. Let

Ik(I ) :=
{

sup
t∈I

max
v∈V

ι
(
orbk

t (v)
)≤ c1 log2 n

}
denote the event that fragments of permutation orbits for t ∈ I have good isoperimetric properties. Our first lemma
quantifies the quality of the coupling between Cs+u and Gs

u.

Lemma 5.5. Let s ∈ N and let � be an |X|-measurable N-valued random variable. Suppose that k,  ∈ N satisfy k ≤ .
Then for some C > 0 on the event s +�≤ |X| we have

E

[
max

u∈{0,...,�}
∣∣Gs,u()\Cs+u()

∣∣||X|]≤C
2�

kn
log2 n+ 2�P

(
Ik

({s, . . . , s +�})c||X|).
Proof. The proof is an adaptation of [25, Lemma 4.2] to the discrete time setting and the case � = 1. Let I be the set of
u ∈ [0,�− 1] such that σ experiences a fragmentation at time s + u which splits a cycle and at least one of the resulting
cycles has length less than .

From Lemma 4.1 and point (i) of Lemma 4.5 we obtain that at any time u the (conditional) probability of a fragmen-
tation in which one piece is smaller than  is at most

4�2

kn
c1 log2 n+ 1{Ik({u})c}.

Hence we see that

E
[|I |||X|]≤ 4�2�

kn
c2

1 log2 n+�P
(
Ik

({s, . . . , s +�})c||X|). (60)

Let u ∈ [1,�] and consider any cycle γ of σs+u such that γ ⊂ Gs,u()\Cs+u(), that is, γ is contained in a component
of Gs

u of size at least  and |γ |< . Then it follows that there must have been a vertex v ∈ γ such that the cycle containing
v must have fragmented at some time in {s, . . . , s + u} producing a cycle of size smaller than .

For t ∈ {s, . . . , s + u}, let γ
(v)
t be the cycle of σt containing v. Let t ′ ∈ {s, . . . , s + u− 1} be the maximal time such

that the size of γ
(v)

t ′ jumps downwards, that is, the cycle containing v experiences a fragmentation. Then at this time t ′,
σ experiences a fragmentation which splits a cycle into two and at least one of the resulting cycles has length less than .
Note that the cycle thus obtained is a part of γ . It follows that t ′ ∈ I and consequently |Gs,u()\Cs+u()| ≤ 2|I |. Taking
suprema and using (60) we obtain the desired result. �

The second lemma quantifies how quickly big clusters emerge in the random graph process Gs
u.

Lemma 5.6. For any δ ∈ (0,1/8) there exists a sequence {an}n∈N such that the following holds: an ↗ 1 and for any
s, u, ,h ∈N satisfying log2 n≤ ≤ n2 and u≥ (n2/

√
) logn, s + u≤ h and P(|Gs,0()| ≥ δn2, |X| = h) > 0, we have

P
(∣∣Gs,u

(
δn2/8

)∣∣≥ δn2/8|∣∣Gs,0()
∣∣≥ δn2, |X| = h

)≥ an.

As the proof is an adaptation of [25, Lemma 4.3] and is of graph-theoretical nature, it is moved to Appendix C.
In the two subsequent lemmas we show that in the supercritical phase the random graph process has macroscopic

clusters for times close to |X|.
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Lemma 5.7. Let β > �/2. There exists δ > 0 such that

lim
n→+∞P

(|X| ≥ 2
⌈
n2/ logn

⌉
and

∣∣G0,|X|−2�n2/ logn�
(
δn2)∣∣≥ δn2)= 1.

Proof. Let I = [0, a), for a < 1, be an interval such that β ′ = β|I |�−1 > 1/2. We also set J := [0,1) \ I . Recall the
notation used in Lemma B.1. By the monotonicity of the graph process it is enough to show that for some c > 0

lim
n→+∞P

(∣∣G0,|XE×I |
(
cn2)∣∣≥ cn2)= 1, lim

n→+∞P
(|XE×J | ≥ 2

⌈
n2/logn

⌉)= 1. (61)

For X ∈X we set X̂ := {e : ∃t∈[0,1) (e, t) ∈X}. We intend to compare X̂E×I and X̂E×J with the Bernoulli percolation on
E. To this end we use the Holley theorem [16, Theorem 4.6] with L = 1 and S = {0,1}, where 1 indicates that e is an
open edge (i.e., belongs to a given set). For any e ∈E by the first part of Lemma B.1 we get

P(e ∈ X̂{e}×I |X̂(E\{e})×I )= E
(
P
(|X{e}×I | ≥ 1|X(E×[0,1))\({e}×I )

)|X̂(E\{e})×I

)
≥ 1− e−

β|I |�−1

n−1 = 1− e−
β′

n−1 ≥ β ′

n− 1
− o(1/n)=: pn.

This yields that X̂{e}×I is stochastically bounded from below by the Bernoulli percolation process with the probability of
opening pn. As β ′ > 1/2, for n large enough this process is in the supercritical phase. As a consequence, to get the first
convergence in (61) we can apply known results on the emergence of the giant component in supercritical percolation
(see Theorem 1.1 in [31] and the discussion therein; we note that the results of [31] are formulated only for pn in the
critical window, but the proof techniques carry over to the strictly supercritical case, see e.g., discussion in Section 3 of
the cited paper).

Similarly, X̂E×J is bounded by a percolation process with the probability of opening ≥ 1− e−
β|J |�−1

n−1 ≥ β|J |�−1

2(n−1)
. From

this bound and the fact that |E| = O(n3) we infer that |XE×J | ≥ |X̂E×J | ≥ 2�n2/ logn� with probability converging
to 1. �

Lemma 5.8. Let β > �/2. There exist δ > 0, sets Kn ⊂ In := {�n2/ logn�, . . . , �n2 logn�} and a sequence {an}n≥1 such
that the following holds: limn→+∞ P(|X| ∈Kn)= 1, an ↗ 1 and

P
(∣∣G0,k−�n2/ logn�

(
δn2)∣∣≥ δn2||X| = k

)≥ an1{k∈Kn}. (62)

Proof. Denote An := {|G0,|X|−2�n2/ logn�(δn)| ≥ δn2}, with δ as in Lemma 5.7, and set Ln := {k ∈ N : P(An||X| = k)≤
cn}, for cn ∈ (0,1) to be fixed later. As P(An)≤ P(|X| ∈ Ln)cn + P(|X| /∈ Ln), by a simple calculation we get

1− P(An)

1− cn

≥ P
(|X| ∈ Ln

)
.

By Lemma 5.7 we have P(An) → 1, so we can find cn, δ such that cn ↗ 1 and the left-hand side converges to 0.
Consequently, we have P(|X| ∈ K ′

n) → 1 for K ′
n := N \ Ln. We set Kn := K ′

n ∩ In. Using Lemma B.2 we see that
P(|X| /∈ In) → 0 as n →∞. Thus we get limn→+∞ P(|X| ∈ Kn) = 1 and P(|G0,k−2�n2/ logn�(δn)| ≥ δn2||X| = k) ≥
cn1{k∈Kn} as desired. �

The proof of Proposition 5.4 follows by making comparisons of the random graph process and the generalized inter-
change process on appropriate time intervals, as made possible by Lemma 5.5. Below we make only two such compar-
isons. It is possible to iterate Lemma 5.5 more times on shorter and shorter time intervals, thus getting a tighter control
on the difference Gs,u()\Cs+u(). This method was used in [25] to prove the existence of cycles of size n2−ε for any
ε > 0. To the best of our knowledge this method alone cannot be pushed to obtain macroscopic cycles. Instead, in the next
section we use modified Schramm’s argument presented in Lemma 5.1, together with Proposition 5.4 as a prerequisite.

Proof of Proposition 5.4. Let δ1, K1
n , a1

n be δ, Kn, an asserted by Lemma 5.8. We first apply Lemma 5.5 with k1 =
c1 log2 n/2, 1 = n1/3 logn, s1 = 0 and �1 = h≤ n2 logn, conditionally on |X| = h. Clearly, Ik1(I )=� for any interval
I . Thus for h ∈K1

n using Markov’s inequality we get for some C > 0

P

[
max

t∈{0,...,h}
∣∣G0,t (1)\Ct (1)

∣∣≥ δ1n
2/2||X| = h

]
≤ C(n1/3 logn)2n2 logn

(log2 n/2)n(δ1n2/2)
log2 n= 4C

δ1
n−1/3 log3 n→ 0.
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Combining this with Lemma 5.8 we get

lim
n→+∞ inf

h∈K1
n

P

(
min

t∈{h−2�n11/6�,...,h}
∣∣Ct (1)

∣∣≥ δ1n
2/2||X| = h

)
= 1. (63)

Using this result we will be able to repeat the argument above on a short time interval contained in the supercritical phase.
Crucially, on this interval we can use Lemma 4.4, which will let us obtain a much better estimate in Lemma 5.5.

Fix τ ∈ {h− �n11/6�, . . . , h}, conditionally on |X| = h, and set �2 := �n11/6�. Let s2 := τ −�2. Starting from (63)

we first apply Lemma 5.6 with 1 = n1/3 logn (note that �2 ≥ n2√
l1

logn), getting

lim
n→+∞ inf

h∈K1
n

P
(∣∣Gs2,�2

(
δ2n

2)∣∣≥ δ2n
2||X| = h

)= 1, (64)

for some δ2 > 0. Fix 2 = k2 = n log2 n. Let K2
n =K1

n ∩Kn, where Kn is given by Lemma 4.4. Let h ∈K2
n , using Lemma

5.5 we estimate

sup
h∈K2

n

E
[∣∣Gs2,�2(2)\Cτ (2)

∣∣||X| = h
]≤ C1(n log2 n)2n11/6

(n log2 n)n
log2 n+ 2

(
n log2 n

)
n11/6e−c log2 n

= C2n
11/6 log4 n.

for some C1,C2, c > 0. Markov’s inequality implies

sup
h∈K2

n

P
[∣∣Gs2,�2(2)\Cτ (2)

∣∣≥ n11/6 log6 n||X| = h
]≤ C2/ log2 n.

This combined with (64) yields the statement of the proposition. �

5.3. Macroscopic cycles in the supercritical phase β > �/2. Proof of Theorem 1.1

Now we are ready to show our main result. Recall the general transposition process {σt } introduced in Section 4 and,
importantly, that σ|X| = σ(X), where σ(X) defined in (1) is the main object of our study.

Proposition 5.9. Let β > �/2. There exist sets Kn ⊂N such that limn→∞ P(|X| ∈Kn)= 1 and

lim
ε→0

lim inf
n→∞ inf

k∈Kn

P
(
there exists a cycle of σ(X) of length at least εn2||X| = k

)= 1.

Proof. Let δ and K1
n be respectively δ and Kn asserted by Proposition 5.4. This proposition shows that cycles of size

at least n log2 n are common. We will use this information to show the existence of macroscopic cycles. The key role
in this proof is played by Schramm’s argument, encapsulated in Lemma 5.1, and isoperimetric properties of cycles. The
latter imply that the split-merge process behaves similarly to the mean-field (the complete graph) case, which is stated
conveniently in Proposition 4.2. We denote sets Kn from that proposition by K2

n .
In the proof we work conditionally on |X| = k, where k ∈K1

n ∩K2
n . Fix ε ∈ (0,1/8) and consider the largest j ∈ N

such that 2j ≤ n log2 n. Employing the notation from Lemma 5.1, we set t0 = k −�t , where �t is given by (53). With
this choice we have t1 = k. Observe that for j as above we have �t = o(n), in particular t0 ≥ k − �n11/6�. Let τ be the
stopping time from Proposition 4.2. One easily checks that conditions (i) and (ii) of Lemma 5.1 are fulfilled by assertions
(iii) and (iv) of Proposition 4.2. Consequently we get

E
(∣∣Ct0

(
2j
) \ Ck

(
εδn2)∣∣|Ft0 , |X| = k

)
1{|Ct0 (2j )|≥δn2} ≤ cδ−1ε

∣∣log2(εδ)
∣∣n2 + cδ−1n2P

(
τ ≤ k|Ft0, |X| = k

)
,

for some c > 0. Using Markov’s inequality we get

P
(∣∣Ct0

(
2j
) \ Ck

(
εδn2)∣∣≥ δn2/2|Ft0 , |X| = k

)
1{|Ct0 (2j )|≥δn2} ≤ 2cδ−2(ε∣∣log2(εδ)

∣∣+ P
(
τ ≤ k|Ft0 , |X| = k

))
.

Consequently,

P
(∣∣Ck

(
εδn2)∣∣≥ δn2/2||X| = k

)
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≥ E
(
P
(∣∣Ct0

(
2j
) \ Ck

(
εδn2)∣∣< δn2/2|Ft0, |X| = k

)
1{|Ct0 (2j )|≥δn2}||X| = k

)
≥ E

(
1{|Ct0 (2j )|≥δn2}

(
1− 2cδ−2(ε∣∣log2(εδ)

∣∣+ P
(
τ ≤ k|Ft0 , |X| = k

))))
≥ P

(∣∣Ct0

(
2j
)∣∣≥ δn2||X| = k

)(
1− 2cδ−2ε

∣∣log2(εδ)
∣∣)− 2cδ−2P

(
τ ≤ k||X| = k

)
.

By Proposition 5.4, with our choice of j and t0 the first probability on the right hand side approaches 1 as n →∞
uniformly over k ∈ K1

n ∩K2
n . The second probability goes to 0 uniformly over k ∈ K1

n ∩K2
n by (ii) of Proposition 4.2.

Noticing that limn→+∞ P(|X| ∈Kn)= 1 and taking the limit ε→ 0 we obtain our result. �

Proof of Theorem 1.1. Let Kn be the sets claimed in Proposition 5.10. We write

P
(

there exists a cycle of σ(X) of length at least εn2)
≥
∑
k∈Kn

P
(

there exists a cycle of σ(X) of length at least εn2||X| = k
)
P
(|X| = k

)
≥ P

(|X| ∈Kn

)
inf

k∈Kn

P
(
there exists a cycle of σ(X) of length at least εn2||X| = k

)
.

Since P(|X| ∈Kn)→ 1 as n→∞, by taking lim inf over n→∞ and then the limit ε → 0 using Proposition 5.10 we
obtain the statement of the theorem. �

5.4. Microscopic cycles in the subcritical phase β < �−1/2. Proof of Theorem 1.2

We will now sketch a proof of the statement about the behavior of cycle lengths in subcritical phase. This is a much easier
task than in the supercritical phase. Our main result follows directly from the following

Proposition 5.10. Let β < �−1/2. There exist C > 0 and sets Kn ⊂N such that limn→∞ P(|X| ∈Kn)= 1 and

lim
n→∞ inf

k∈Kn

P
(∣∣Ck(C logn)

∣∣= 0||X| = k
)= 1.

Proof. Let C > 0 and recall that Ct (C logn)⊂ G0,t (C logn). For X ∈ X we consider X̄ := {e : (e, t) ∈ X}. Similarly as
in Lemma 5.8 we can prove that X̄ is stochastically bounded from above by the Bernoulli percolation process with the
probability of opening an edge being β ′

n−1 for some β ′ < 1/2. Now the result follows by a rather standard argument using
coupling with branching processes or a random walk (see e.g., [15, Theorem 2.3.1]). �

Appendix A: Concentration of point processes

The proofs of our auxiliary lemmas concerning counting processes will be all based on the following well known result
(see e.g., [23] or [13, Chapter II.6]).

Theorem A.1. Let Y be a counting process with intensity λ. Let �t =
∫ t

0 λsds be the compensator of Y . Then (on an
enlarged probability space) there exists a Poisson process N with intensity one such that almost surely for all t ≥ 0,
Xt =N�t .

Proof of Lemma 3.4. Let A ∈Fσ be any event of nonzero probability. The process Ỹt = Yσ+t −Yσ is a counting process
with intensity λ̃t = λσ+t with respect to the filtration F̃t =Fσ+t and the conditional probability P̃= P(·|A).

Set �̃t =
∫ t

0 λ̃sds and note that τ − σ is a stopping time with respect to the filtration F̃t . Let N be the Poisson process
of intensity one, given for Ỹ by Theorem A.1. We have

P̃
({Yτ − Yσ ≥ r} ∩ {�τ −�σ ≤ })= P̃

({Ỹτ−σ ≥ r} ∩ {�̃τ−σ ≤ })≤ P̃(N ≥ r).

If r ≥ , by using the form of the Laplace transform for the Poisson distribution we get

P̃(N ≥ r)≤ inf
u≥0

exp
(

(
eu − 1

)− ur
)≤ exp

(
−r log

(
r

e

)
− 

)
.
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Going back to the original probability measure, we conclude that for any A ∈Fσ ,

P
({Yτ − Yσ ≥ r} ∩ {�τ −�σ ≤ } ∩A

)≤ P(A)P(X ≥ r),

and for r ≥ 

P(X ≥ r)≤ exp

(
−r log

(
r

e

)
− 

)
,

which implies the lemma. �

Proof of Lemma 3.5. Again, consider any A ∈ Fσ with positive probability and the process Ỹt = Yσ+t − Yσ , which
is a counting process with intensity λ̃t = λσ+t with respect to the filtration F̃t = Fσ+t . Let P̃ = P(·|A). We have �̃t =∫ t

0 λ̃sds =�σ+t −�σ . In particular if N is the Poisson process given for Ỹ by Theorem A.1, we get

P̃
({

Yτ − Yσ ≤ (1− δ)
}∩ {�τ −�σ ≥ })= P̃

({
Ỹτ−σ ≤ (1− δ)

}∩ {�̃τ−σ ≥ })
≤ P̃

(
N ≤ (1− δ)

)
.

Using the form of the Laplace transform of N and Chebyshev’s inequality we obtain

P̃
(
N ≤ (1− δ)

)≤ inf
a≥0

exp
((

e−a − 1
)
+ a(1− δ)

)
≤ inf

a≥0
exp

(
1

2
a2− aδ

)
= exp

(
−1

2
δ2

)
,

where in the second step we have used the elementary inequality e−a − 1+ a ≤ 1
2a2 valid for a ≥ 0. Thus we get

P
({

Yτ − Yσ ≤ (1− δ)
}∩ {�τ −�σ ≥ }|A)≤ P

(
X ≤ (1− δ)

)≤ exp

(
−1

2
δ2

)
,

for arbitrary A ∈Fσ of positive probability, which implies the lemma. �

Lemma A.2. Let Y be a counting process with bounded intensity λ. Consider two bounded stopping times σ , τ . Then for
any β > 1, with probability one

P
({∃u∈[0,τ−σ ]Yσ+u − Yσ < u− 1} ∩ {∀u∈[0,τ−σ ]λσ+u ≥ β}|Fσ

)≤ 1− q,

for some q > 0 depending only on β .

Proof. Fixing A ∈Fσ with P(A) > 0 and using notation from the proof of Lemma 3.4, we have

P̃
({∃u∈[0,τ−σ ]Yσ+u − Yσ < u− 1} ∩ {∀u∈[0,τ−σ ]λσ+u ≥ β})
= P̃

({∃u∈[0,τ−σ ]N�̃u
< u− 1} ∩ {∀u∈[0,τ−σ ]λσ+u ≥ β})

≤ P̃(∃u≥0Nβu < u− 1).

The law of large numbers and the Markov property for the Poisson process implies that for β > 1 the last probability
is bounded by 1 − q for some q > 0 depending only on β . Since A in the above argument is arbitrary, we obtain the
lemma. �

Lemma A.3. Let Y be a counting process with bounded intensity λ. Consider two bounded stopping times σ , τ . Then for
any β > 1, s ≥ 0, with probability one,

P
({∃u∈[s,τ−σ ]Yσ+u − Yσ ≤ u+ as} ∩ {∀u∈[0,τ−σ ]λσ+u ≥ β}|Fσ

)≤ e−cs,

where a = β−1
2 > 0 and c= 1

2 (1− 1+a
β

)2β .
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Proof. Denote the event in question by E and fix A ∈Fσ with positive probability. Using the notation from the proof of
Lemma 3.4 and arguments from the proof of Lemma A.2 we get

P̃(E)≤ P(∃u≥sNβu ≤ u+ as)≤ P

(
∃u≥βs

Nu

u
≤ 1− ρ

)
,

where N is a Poisson process with intensity one and ρ = 1− 1+a
β
∈ (0,1). Let Gu be the σ -field generated by {Nt : t ≥ u}

and note that for any 0 < u < t we have E(Nu/u|Gt ) = Nt/t . Thus for any a ∈ R the process (exp(aNu/u))u>0 is a
reversed submartingale. Using Doob’s maximal inequality for reversed submartingales we get

P

(
∃u≥βs

Nu

u
≤ (1− ρ)β

)
= inf

b>0
P

(
sup
u≥βs

exp(−bNu/u)≥ exp
(−b(1− ρ)

))
≤ inf

b>0
E exp

(
−b

Nβs

βs
+ b(1− ρ)

)
= inf

b>0
exp

(
βs
(
e−b/(βs) − 1

)+ b(1− ρ)
)

= inf
b>0

exp
(
sβ
(
e−b − 1

)+ bβs(1− ρ)
)≤ exp

(
−1

2
ρ2βs

)
.

As in previous lemmas, since A is arbitrary, this implies the assertion. �

Appendix B: Estimates on the number of bridges

Here we collect useful estimates enabling us to compare the distribution of bridges for general θ > 0 with the i.i.d. case,
i.e., θ = 1.

In the first lemma we show that for θ not necessarily equal to 1 the number of bridges using any subset of edges can
still be approximated by a Poisson distribution (with parameter depending on θ ).

For any measurable A⊂E × [0,1) and a configuration X ∈X we denote XA := {x ∈X : x ∈A}.

Lemma B.1. Let λn := β�−1

n−1 , λ̄n := β�
n−1 . Then for any measurable A⊂E × [0,1) we have

P
(|XA| ≥ 1|XE×[0,1)\A

) ∈ [1− e−|A|λn,1− e−|A|λ̄n
]
, (B.1)

and

P
(|XA| ≥ k|XE×[0,1)\A

)≤ e|A|(λ̄n−λn)P(Y ≥ k), (B.2)

where Y has Poisson distribution with parameter λ̄n|A|.

Proof. For X ∈X and A⊂E × [0,1) let U=0
A = {X ∈X : |XA| = 0} and U

≥k
A = {X ∈X : |XA| ≥ k}. Furthermore, let V

be any event measurable with respect to XE×[0,1)\A such that B(V ) > 0. We have

P(U
≥k
A |V )

P(U=0
A |V )

= μβ,θ,C(U
≥k
A ∩ V )

μβ,θ,C(U=0
A ∩ V )

=
∫
X

1
U
≥k
A

(XA)1V θC(XA∪XE×[0,1)\A)B(dX)∫
X

1U=0
A

(XA)1V θC(XE×[0,1)\A)B(dX)
.

By the Lipschitz property of C we have |C(XA∪XE×[0,1)\A)−C(XE×[0,1)\A)| ≤ |XA|. Furthermore, using independence
of XA and XE×[0,1)\A under B we get

P(U
≥k
A |V )

P(U=0
A |V )

≤
∫
X

1
U
≥k
A

(XA)�|XA|B(dX)∫
X

1U=0
A

(XA)B(dX)
=

∞∑
=k

(λ̄n|A|)
! , (B.3)

where in the last equality we used the fact that under B the random variable |XA| is Poisson with parameter β|A|/(n−1).
As P(U

≥1
A |V )+ P(U=0

A |V )= 1, by elementary calculations we get

P
(
U
≥1
A |V )≤ 1− e−|A|λ̄n .
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Thus we obtain the upper bound in (B.1). The lower bound can be proven analogously. Now from (B.1) and (B.3) we
infer (B.2). �

The second lemma gives tail bounds on the number of bridges in terms of tails of Poisson variables with parameters
depending on θ and β .

Lemma B.2. Let X ∈ X be distributed according to μβ,θ,C . For any k ∈ N, t ∈ [0,1) and s ∈ (0,1] such that t + s ≤ 1
we have

P
(∣∣X ∩ (E × [t, t + s])∣∣≥ k

)≤ esβ(�− 1
�

)n2
P(Y ≥ k),

P
(∣∣X ∩ (E × [t, t + s])∣∣≤ k

)≤ esβ(�− 1
�

)n2
P(Y ≤ k),

where Y is a Poisson variable with parameter s�βn2.
In particular for kn = o(n2) we have for sufficiently large n

P
(∣∣X ∩ (E × [t, t + s])∣∣≤ kn

)≤ Ce−cn2

for some C,c > 0 depending on β , θ and s.

Proof. Let Xt,t+s =X ∩ (E × [t, t + s]). Observe that by the Lipschitz condition (2) we have

θC(X\Xt,t+s )�−|Xt,t+s | ≤ θC(X) ≤ θC(X\Xt,t+s )�|Xt,t+s |. (B.4)

To prove the first estimate we write

P
(|Xt,t+s | ≥ k

)= ∫
X

1{|Xt,t+s |≥k}θC(X)B(dX)∫
X

θC(X)B(dX)
.

By employing (B.4) we can bound the right hand side from above by∫
X

1{|Xt,t+s |≥k}θC(X\Xt,t+s )�|Xt,t+s |B(dX)∫
X

θC(X\Xt,t+s )�−|Xt,t+s |B(dX)
=
∫
X

1{|Xt,t+s |≥k}�|Xt,t+s |B(dX)∫
X

�−|Xt,t+s |B(dX)
,

where in the equality we used the fact that the integrals factorize due to the independence property of the Poisson point
process B for disjoint time intervals.

To estimate the integrals, we observe that under B the variable |Xt,t+s | has Poisson distribution with parameter λ =
sβn2. Thus we can write∫

X

�−|Xt,t+s |B(dX)= E�−|Xt,t+s | = eλ( 1
�
−1).

and ∫
X

1{|Xt,t+s |≥k}�|Xt,t+s |B(dX)=
∞∑
i=k

e−λ (�λ)i

i! = eλ(�−1)P(Y ≥ k). (B.5)

where Y is a Poisson variable with parameter �λ= s�βn2. Thus we obtain

P
(|Xt,t+s | ≥ k

)≤ eλ( 1
�
−1)eλ(�−1)P(Y ≥ k)= eβ(�− 1

�
)sn2

P(Y ≥ k).

The proof of the second estimate is analogous.
For the case of kn = o(n2) we use Bennett’s inequality – if Y is a Poisson variable with parameter λ, then for any

0≤ x ≤ λ we have

P(X ≤ λ− x)≤ exp

{
−x2

2λ
ψ

(
−x

λ

)}
,
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where

ψ(t)= (1+ t) log(1+ t)− t

t2/2

for t ≥−1.
Writing kn = εnλ, with λ= sβ�n2 and εn → 0 as n→∞, we have

P(Y ≤ εnλ)≤ e−λ(εn log εn+1−εn)

and thus

P
(∣∣X ∩ (E × [t, t + s])∣∣≤ kn

)≤ e
λ− λ

�2 e−λ(εn log εn+1−εn) = e
−λ( 1

�2−εn+εn log εn)
.

Since εn − εn log εn → 0 as n→∞, the right hand side is at most Ce−cn2
for some C,c > 0. �

The following lemma will be useful in the proof of Lemma 3.6.

Lemma B.3. As in the previous lemma, let Xt,t+h =X ∩ (E × [t, t + h]). For any k ∈N and t ∈ [0,1) we have∫
X

1{|Xt,t+h|≥k}|Xt,t+h|�|Xt,t+h|B(dX)=O
(
hk
)
,

where the implicit constant may depend on �, β , n and k.

Proof. As under B the variable |Xt,t+h| has Poisson distribution with parameter hβn2, we have for small enough h > 0∫
X

1{|Xt,t+h|≥k}|Xt,t+h|�|Xt,t+h|B(dX)=
∞∑
i=k

e−hβn2
i
(�hβn2)i

i! ≤ hke−hβn2
∞∑
i=k

(�βn2)i

(i − 1)! =O
(
hk
)

�

Appendix C: Proof of Lemma 3.6

Proof of Lemma 3.6. Recall from the introduction the definition of the canonical probability space (X,S,B). Fix A ∈Fs

and define for t > s

f (t)= EJt1A.

Note that by Lebesgue’s dominated convergence theorem and the fact that with probability one there are no jumps at a
prescribed deterministic moment in time, f is a continuous function.

In what follows we will denote t ′ = t mod 1. Consider any t1, t2 such that t1 < t2 < �t1�. Note that f (t2)− f (t1) is
bounded from above by the mean number of bridges in E× (t ′1, t ′2]. Using (2) and independence properties of the Poisson
process we thus get

∣∣f (t2)− f (t1)
∣∣≤ 1

Zβ,θ,C

∫
X

∣∣X ∩ (E × (
t ′1, t ′2]

)∣∣θC(X)B(dX)

≤ 1

Zβ,θ,C

∫
X

∣∣X ∩ (E × (
t ′1, t ′2]

)∣∣�|X∩(E×(t ′1,t ′2])|�C(∅)+|X∩(E×(t ′1,t ′2]c)|B(dX)

= 1

Zβ,θ,C

∫
X

�C(∅)+|X∩(E×(t ′1,t ′2]c)|B(dX)

∫
X

|X ∩ (E × (
t ′1, t ′2]

)
�|X∩(E×(t ′1,t ′2])|B(dX)

≤K

∫
X

∣∣X ∩ (E × (
t ′1, t ′2]

)∣∣�|X∩(E×(t ′1,t ′2])|B(dX)

=K�βn2|t2 − t1|e(�−1)βn2|t2−t1|,
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where K is some constant (depending on n and the parameters of the process but not on ti ). Thus f is locally Lipschitz
which implies that f ′ exists almost everywhere and f satisfies the fundamental theorem of calculus.

Consider any differentiability point t > s of f and small h > 0, in particular small enough so that t ′ + h < 1. As with
probability one there is no jump at time t , by using Lemma B.3 and exploiting the properties of the process Q (specifically
the fact that it may jump only when X jumps and that it is càdlàg) we can write for h↘ 0

f (t + h)− f (t)= E(Jt+h − Jt )1A = E1A1{Jt+h−Jt=1}1{|X∩(E×(t ′,t ′+h])|=1} + o(h)

=
∑

v,w∈V

P
(
A∩ {Xt = v} ∩Bv,w,h ∩ {w ∈Qt }

)+ o(h),

where

Bv,w,h =
{
there is a unique bridge in E × (t ′, t ′ + h], it is unexplored at time t and joins v with w

}
.

Consider an additional event

Cv,w,h =
{{v,w} × [

t ′, t ′ + h
]

has not been visited by X before time t
}
.

Note that Bv,w,h∩{Xt = v}∩Cc
v,w,h =∅. Moreover Bv,w,h∩{Xt = v} ⊂ {w ∈At } (recall that At is the set of vertices

which at time t are available to the CRW by a fresh jump). Thus, we have

E(Jt+h − Jt )1A =
∑

v,w∈V

E1{Xt=v,w∈At∩Qt }1A∩Bv,w,h∩Cv,w,h
+ o(h)

=Z−1
β,θ,C

∑
v,w∈V

∫
X

1{Xt=v,w∈At∩Qt }1A∩Bv,w,h∩Cv,w,h
θC(X)B(dX)+ o(h).

Denote a summand above by Iv,w,h. Since for a while we will be working with fixed v, w denote for simplicity e= {v,w}.
Note that for any U ∈ Ft , the event Cv,w,h ∩U is measurable with respect to the restricted process X′

h :=X \ ({e} ×
(t ′, t ′ + h]).

Denote also

Dv,w,h =
{
X ∩ (

(
E \ {e})× (

t ′, t ′ + h])=∅
}
.

Recall that conditionally on having just one point of a Poisson process in an interval, its position is distributed uni-
formly. Combining this with the independence properties of Poisson processes we get

Iv,w,h =
∫
X

1{Xt=v,w∈At∩Qt }1A∩Dv,w,h∩Cv,w,h
κe−κh

∫ t ′+h

t ′
θC(X′

h∪{(e,u)}) duB(dX),

where κ = β
n−1 . Note that on Dv,w,h ∩ {X∩ (E×{t ′})=∅}, the function [t ′, t ′ +h] � u 	→ C((X′

h ∪ {(e, u)}) is constant,
so using the fact that almost surely there are no bridges at height t ′ we can further write

Iv,w,h =
∫
X

1{Xt=v,w∈At∩Qt }1A∩Dv,w,h∩Cv,w,h
κe−κhhθC(X′

h∪{(e,t ′)})B(dX).

By Lemma B.3 we also have∫
X

1Dc
v,w,h

θC(X′
h∪{(e,t ′)})B(dX)≤

∫
X

1Dc
v,w,h

�C(∅)+|X|+1B(dX)=O(h),

so we get

Iv,w,h =
∫
X

1{Xt=v,w∈At∩Qt }1A∩Cv,w,h
κe−κhhθC(X′

h∪{(e,t ′)})B(dX)+ o(h).

Similarly, up to an error of order o(h) we can restrict the integration to the set {X′
h = X}, replace θC(X′

h∪{(e,t ′)}) by
θC(X∪{(e,t ′)}) and then again return to integration over the whole space X, obtaining

Iv,w,h =
∫
X

1{Xt=v,w∈At∩Qt }1A∩Cv,w,h
κe−κhhθC(X∪{(e,t ′)})B(dX)+ o(h).
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Note also that on the event {w ∈ At } ∩ {Xt = v} neither (v, t ′) nor (w, t ′) could have been visited by X before
time t . Since with probability one there are only finitely many bridges, this implies that up to a set of probability zero
{w ∈At } ∩ {Xt = v} ∩Cv,w,h ↗ {w ∈At } ∩ {Xt = v} as h↘ 0. Thus we get

lim
h→0+

Iv,w,h

h
= κ

∫
X

1{Xt=v,w∈At∩Qt }1AθC(X∪{(e,t ′)})B(dX),

which implies that

f ′(t)= E1Aκ
∑

w∈At∩Qt

Yw
t = E1Aκ

∑
w∈At∩Qt

E
(
Yw

t |Ft

)
,

where Yw
t = 1{{Xt ,w}∈E}θC(X∪{({Xt ,w},t ′)})−C(X).

Now for fixed w we have that Yw
t : [0,∞)×X→R is measurable with respect to Bor([0,∞))⊗S , so by Corollary 2

in [26] we obtain that there is a choice of E(Yw
t |Ft ) which as a stochastic process is Ft -progressively measurable. Set St =

κ
∑

w∈At∩Qt
E(Yw

t |Ft ) and define the progressively measurable process λt = (κ|At ∩Qt |�−1)∨ (St ∧ (κ|At ∩Qt |�)).
Note that by the Lipschitz condition (2) on C, for every t we have St = λt almost surely.

Thus, by Fubini’s theorem, we have for t > s,

E(Jt − Js)1A =
∫ t

s

f ′(u)du=
∫ t

s

E1ASudu= E1A

∫ t

0
λudu−E1A

∫ s

0
λudu,

which proves that Jt −
∫ t

0 λudu is indeed a martingale with respect to (Ft )t≥0. �

Appendix D: Proof of Lemma 5.6

Proof of Lemma 5.6. By Lemma 4.1 pu,e, the conditional probability of an edge e being added to the graph process
in the transition from u to u+ 1 belongs to [�−2/|E|,�2/|E|]. Let {Uu,e}u∈N,e∈E be i.i.d. random variables uniformly
distributed on [0,1] which are also independent of Gs . We define a coupled random graph process G̃s . First, we set
G̃s

0 :=Gs
0, then in the transition from u to u+ 1 an edge e is added to the edge set of G̃s

u if and only if it is added to Gs
u

and Uu,e ≤ (�2|E|pu,e)
−1. Note that in the new process at each step there is probability 1−�−2 of no new edge being

added, and if a new edge is added, each one is chosen with probability 1/|E|, independently of the previous steps.
Clearly, for any s, u,  we have G̃s,u()⊂ Gs,u(). As the process G̃s is monotonic it is enough to prove the statement

for the process G̃s and u= (n2/
√

) logn.
The proof is an implementation of the classical sprinkling argument, introduced in [1]. We will work conditionally

on G̃s
0. To shorten the notation we denote Q(·)= P(·|G̃s

0, |Gs,0()| ≥ δn2, |X| = h). Also, for any two sets A,B ⊂ V by
E(A,B) we will denote the number of edges {v,w} ∈E such that v ∈A, w ∈ B .

The event {|G̃s,u(δn
2/8)|< δn2/8} (i.e., there is no component of size at least δn2/8 in G̃s

u) implies that G̃s,0() can be
partitioned into two sets A and B such that each of them has size at least δn2/4, each of them is a union of some connected
components of G̃s

0, and there are no paths joining A and B in G̃s
u. We will show that such a partition is unlikely to exist

in G̃s,0().
Fix two sets A and B which partition G̃s,0() as above, each of size at least δn2/4, and let CA,B(G) be the event that

no path in a graph G⊂Hn has one endpoint in A and the other endpoint in B . We write simply CA,B for CA,B(G̃s
u). Let

DA,B :=
{
v ∈ V : E

({v},A)≥ δ2n/64 and E
({v},B)≥ δ2n/64

}
be the set of vertices that in the Hamming graph Hn have at least δ2n/64 neighbors both in A and in B . Let D1 := {v ∈
DA,B : v ∈A∪B} and D2 :=DA,B \D1.

First we bound the size of DA,B . Note that there are at least δ2n4/16 paths of length 2 in Hn between A and B , since
in Hn all vertices are connected by a path of length at most 2 and we assumed |A|, |B| ≥ δn2/4. On the other hand, for
every v /∈DA,B , there are at most δ2n/64 ·2(n−1)≤ δ2n2/32 paths of length 2 between A and B with v as the midpoint.
Every v ∈DA,B can be a midpoint in at most 4n2 paths of length 2 between A and B .
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Hence the total number of paths of length 2 between A and B is bounded from above by (δ2n2/32)|Dc
A,B |+4n2|DA,B |.

Combining this with the lower bound we get that

δ2n2

32

(
n2 − |DA,B |

)+ 4n2|DA,B | ≥ δ2n4

16

and thus there exists a constant ρ > 0 (depending only on δ) such that |DA,B | ≥ ρn2.
Throughout the rest of the proof it will be convenient to work with a random graph which has edges chosen indepen-

dently. Since in the graph process G̃s at each step with probability �−2 a uniformly random edge is added, the graph G̃s
u

is obtained by adding k uniformly random edges (with multiple edges allowed) to G̃s
0, where k has binomial distribution

corresponding to u trials with success probability �−2. Now let Ḡs,u be a random graph obtained by adding each edge

e ∈E to G̃s
0 independently with probability p = u�−2

2|E| .

Let Q̄(P ) denote the probability that the graph Ḡs,u satisfies property P . By using the second moment method one can

see that with high probability after removing multiple edges from G̃s
u we will still have (for n large enough) at least u�−2

2
edges in the graph, distributed uniformly. Indeed, as u is small compared to |E|, the expected number of edges chosen
at least once in G̃s

u is at least, say, 3
4u�−2. As the edges present in G̃s

u are negatively correlated, the variance can be

bounded from above by u�−2, which implies that with high probability we have at least u�−2

2 distinct edges. Therefore
by the equivalence of G(n,p) and G(n,M) random graph models with respect to monotone properties (see e.g., [21,
Section 1.4]) Q̄(P )→ 0 as n→∞ will imply Q(P )→ 0 for any decreasing graph property P .

From now on we will work with the graph Ḡs,u. Let Ḡs,u(k) denote the set of vertices of Ḡs,u contained in connected
components of size at least k. Let

E1 =
{{v,w} ∈E : v ∈D1, {v,w} ∈E(A,B)

}
and let C(E1) denote the event that none of the edges from E1 are in Ḡs,u. Let C(D2) denote the event that none of the
vertices in D2 have neighbors both in A and in B in Ḡs,u. Clearly we have

Q̄
(
CA,B(Ḡs,u)

)≤ Q̄
(
C(E1)∩ C(D2)

)= Q̄
(
C(E1)

)
Q̄
(
C(D2)

)
. (D.1)

We first estimate Q̄(C(E1)). Because of independence of the edges in Ḡs,u we have

Q̄
(
C(E1)

)≤ (1− p)|E1|.

Since |E({v},B)| ≥ δ2n/64 for each v ∈D1 ∩A and likewise |E({v},A)| ≥ δ2n/64 for each v ∈D1 ∩ B , we easily get
|E1| ≥ 1

2 |D1|δ2n/64, so

Q̄
(
C(E1)

)≤ (1− p)|D1|δ2n/128 ≤ e−
p|D1|δ2n

128 .

For the upper bound on Q̄(C(D2)), we note that by independence of the edges in Ḡs,u

Q̄
(
C(D2)

)= ∏
v∈D2

(
1− Q̄(v has neighbors both in A and B)

)
= (

1− Q̄(v has a neighbor in A)Q̄(v has a neighbor in B)
)|D2|.

Since |E({v},A)| ≥ δ2n/64 for v ∈D2, we have

Q̄(v has a neighbor in A)≥ 1− (1− p)δ
2n/64 ≥ 1− e−

pδ2n
64 .

An analogous estimate holds for B , which gives

Q̄
(
C(D2)

)≤ (
1− (

1− e−
pδ2n

64
)2)|D2|.

Recall that p = u

2�2|E| and |E| = n2(n− 1). Since |DA,B | ≥ ρn2, we have |D1| ≥ ρ
2 n2 or |D2| ≥ ρ

2 n2. In the first case
we get

Q̄
(
C(E1)

)≤ e
− δ2

128
u

2�2|E|
ρn2

2 n ≤ e−cu
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for some c > 0 depending on δ and �. In the second case we have (exploiting u≤ n2)

Q̄
(
C(D2)

)≤ (
1− (

1− e
− δ2

64 n u

2�2|E|
)2) ρ

2 n2 ≤ Ce
−c′ u2

n2

for some C,c′ > 0 depending on δ and �.
As u= (n2/

√
) logn and logn≤√, we have u2/n2 = (n2/) log2 n≤ u. Coming back to (D.1), we obtain for some

C,c > 0

Q̄
(
CA,B(Ḡs,u)

)≤ Ce−c n2


log2 n.

Let C(G) denote the event that CA,B(G) holds for some partition A, B of the set Gs,0(). Notice that there are at most

2n2/ such partitions, so by performing a union bound we obtain

Q̄
(
C(Ḡs,u)

)≤ 2
n2
 ·Ce−c n2


log2 n.

Recalling that {|Ḡs,u(δn
2/8)|< δn2/8} ⊂ C(Ḡs,u), we have that there exist constants C1, c1 > 0 (depending only on δ, �

and u) such that

Q̄
(∣∣Ḡs,u

(
δn2/8

)∣∣< δn2/8
)≤ C1 exp

{
n2


log 2− c1

n2 log2 n



}
.

As ≤ n2 and n→∞, we have that the probability above converges to zero. Since the property of having a component
of size at least δn2/8 is increasing, the same holds with Q̄(·) and Ḡs,u replaced by Q(·) and G̃s,u. Thus we have

Q
(∣∣Gs,u

(
δn2/8

)∣∣< δn2/8
)= P

(∣∣Gs,u

(
δn2/8

)∣∣< δn2/8|Gs
0,
∣∣Gs,0()

∣∣≥ δn2, |X| = h
)≤ 1− an

for some an ↗ 1. By integrating this bound over all Gs
0 satisfying |Gs,0()| ≥ δn2 we obtain the statement of the

lemma. �
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