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Abstract. We consider N by N deformed Wigner random matrices of the form XN = HN + AN , where HN is a real symmetric
or complex Hermitian Wigner matrix and AN is a deterministic real bounded diagonal matrix. We prove a universal Central Limit
Theorem for the linear eigenvalue statistics of XN for all mesoscopic scales both in the spectral bulk and at regular edges where the
global eigenvalue density vanishes as a square root. The method relies on studying the characteristic function of the linear statistics
(Landon and Sosoe (2018)) by using the cumulant expansion method, along with local laws for the Green function of XN (Ann. Probab.
48 (2020) 963–1001; Probab. Theory Related Fields 169 (2017) 257–352; J. Math. Phys. 54 (2013) 103504) and analytic subordination
properties of the free additive convolution (Dallaporta and Fevrier (2019); Random Matrices Theory Appl. 9 (2020) 2050011). We also
prove the analogous results for high-dimensional sample covariance matrices.

Résumé. Nous considérons des matrices aléatoires de Wigner déformées de taille N de la forme XN = HN + AN , où HN est une
matrice hermitienne de Wigner symétrique ou complexe réelle, et AN est une matrice diagonale déterministe avec des entrées réelles et
bornées. Nous prouvons un théorème de limite centrale universel pour les statistiques linéaires des valeurs propres de XN pour toutes
les échelles mésoscopiques à la fois dans le centre de spectre et aux bords réguliers où la densité globale des valeurs propres disparait
sous forme de racine carrée. La méthode repose sur l’étude de la fonction caractéristique des statistiques linéaires (Landon and Sosoe
(2018)) en utilisant la méthode des cumulants, ainsi que les lois locales pour la fonction de Green de XN (Ann. Probab. 48 (2020)
963–1001; Probab. Theory Related Fields 169 (2017) 257–352; J. Math. Phys. 54 (2013) 103504) et les propriétés de subordination
analytique de la convolution libre additive (Dallaporta and Fevrier (2019); Random Matrices Theory Appl. 9 (2020) 2050011). Nous
prouvons également les résultats analogues pour des matrices de corrélation empirique de haute dimension.
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1. Introduction

1.1. Linear eigenvalue statistics of Wigner matrices

A Wigner matrix HN is an N × N real symmetric or complex Hermitian random matrix with independent entries up to
the constraint HN = H ∗

N . In the case the entries are Gaussian random variables, these matrices belong to the Gaussian
Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble (GUE), respectively. Wigner [70] proved the semicircle law
stating that the empirical eigenvalue distribution of HN converges to the semicircle distribution with density ρsc(x) =

1
2π

√
4 − x21[−2,2]. That is, for any test function f ∈ Cc(R),

1

N

N∑
i=1

f (λi) →
∫
R

f (x)ρsc(x)dx as N → ∞,

in probability, which can be understood as a Law of Large Numbers.
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Johansson [40] obtained the corresponding Central Limit Theorem (CLT) for such linear eigenvalue statistics of the
GUE, i.e.,

N∑
i=1

f (λi) − N

∫
R

f (x)ρsc(x)dx (1.1)

converges in distribution to a centered Gaussian random variable. Strikingly different from the classical CLT, the linear

statistics need not be normalized by N− 1
2 , which is a manifestation of the strong eigenvalue correlations. Bai and Yao [7]

used a martingale method to prove such CLTs for Wigner matrices and analytic test functions. Lytova and Pastur [54], and
Shcherbina [61] improved these results by weakening the regularity conditions on the test functions. More recently, Sosoe
and Wong [65] obtained CLTs for Wigner matrices with H 1+ε test functions using Littlewood–Paley decompositions.

Boutet de Monvel and Khorunzhy initiated the study of mesoscopic linear eigenvalue statistics, i.e., the derivation of
Gaussian fluctuations for the random variable

N∑
i=1

f

(
λi − E0

η0

)
−E

[
N∑

i=1

f

(
λi − E0

η0

)]
, (1.2)

with fixed E0 ∈ (−2,2) on mesoscopic scales N−1 � η0 � 1. In [18,19], they obtained CLTs for the test function

(x − i)−1 on all mesoscopic scales for the GOE, and N− 1
8 � η0 � 1 for symmetric Wigner matrices, respectively. Lodhia

and Simm [53] extended the CLT for complex Wigner matrices and general test functions on scales N−1/3 � η0 � 1. He
and Knowles [36] used moment estimates for Green functions to prove the CLTs for all arbitrary Wigner matrices on the
optimal scales N−1 � η0 � 1. More recently, Landon and Sosoe [44] obtained similar CLT by means of the characteristic
function.

Mesoscopic central limit theorems are important tools in the theory of homogenization of Dyson Brownian motion
(DBM) introduced by Bourgade, Erdős, Yau and Yin [16] to prove fixed energy universality of local eigenvalue statistics of
Wigner matrices. Landon, Sosoe and Yau [45] subsequently derived a mesoscopic CLT to show fixed energy universality
of the DBM. The dynamical approach using Dyson Brownian motion to prove the universality of the eigenvalue statistics
on microscopic scale for all symmetry classes was initiated by Erdős, Schlein and Yau in [30]; we refer to the surveys
[32,33] for further details. Mesoscopic central limit theorems combined with DBM were used by Landon and Sosoe [44]
and by Bourgade and Mody [17] to derive Gaussian fluctuations of single eigenvalues, and in [15,17] to show Gaussian
fluctuations of the determinant of Wigner matrices.

Mesoscopic CLTs can also be studied at the spectral edges, where the mesoscopic scales are N− 2
3 � η0 � 1. For the

GUE, Basor and Widom [9] used asymptotics of the Airy kernel to prove mesoscopic CLTs at the edges. Min and Chen
[56] subsequently considered edge CLTs for the GOE. Recently, Adhikari and Huang [1] obtained the mesoscopic CLT

at the edges down to the optimal scale η0 � N− 2
3 for the DBM.

1.2. Deformed Wigner matrices

In the present paper we are interested in deformed Wigner matrices. A deformed Wigner matrix is an N × N random
matrix of the form

XN = HN + AN, (1.3)

where HN is a real symmetric or complex Hermitian Wigner matrix and AN is a real deterministic diagonal matrix. It is
also known as the Rosenzweig–Porter model in the physics literature. Suppose the empirical eigenvalue distribution of AN

has a deterministic limiting measure, denoted by μα . It was shown by Pastur [60] that the empirical eigenvalue distribution
of XN converges weakly in probability to the free additive convolution of μsc and μα , denoted by μfc = μsc � μα ; see
also [66].

A CLT for the linear eigenvalue statistics with test functions in C2
c (R) was obtained by Ji and Lee [39] under a one-cut

assumption on μfc. They also computed the expectation and variance in terms of μα . Dallaporta and Fevrier [22] obtained
the CLT for general μfc. Their results are summarized in Theorem 2.6 below.

In the present paper, we study the fluctuations of the linear eigenvalue statistics (1.2) in the mesoscopic regime. We
choose μα properly such that the free additive convolution μfc is supported on a single interval and vanishes as a square
root at the end-points. This edge behavior of the limiting eigenvalue distribution is quite common in random matrix theory,
and sometimes referred to as regular edge. Denoting κ0 = κ0(E0) the distance from E0 to the closest edge of the free
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convolution measure, we derive a CLT at energy E0 on scales η0 with N−1 � η0
√

η0 + κ0 ≤ 1; see Theorem 2.8. This
range of η0 covers the global scale as well as all mesoscopic scales up to the spectral edges. For energies E0 in the bulk
and at the edges respectively, we compute the variances and biases explicitly on the mesoscopic scales, where we recover
the formulas for the Gaussian ensembles. This shows the expected universality of the linear eigenvalue fluctuations on
mesoscopic scales. The universality of the eigenvalue statistics on the microscopic scale was derived for the deformed
GUE in the bulk [62] and at the edge [63]. For deformed Wigner matrices, the local bulk universality was obtained in
[59] for a special class of AN using moment matching, under a one cut assumption in [52] and in [31,46] for the general
case using the DBM methods. The edge universality was derived in [49] using a Green function comparison method, and
in [47,52] using DBM. More recently, quantum unique ergodicity for deformed Wigner matrices was derived in [11].

In the proof of the main results, we follow the idea of [44] to compute the characteristic function of (1.2) in combination
with the Helffer–Sjöstrand formula and cumulant expansions; see (3.3) below. Cumulant expansions were used in e.g. [19,
36,44] to study the linear eigenvalue statistics of random matrices. We also rely on local laws for Green functions [3,43,
48] and analytic subordination for the free convolution measure, as used in [22,39,48].

On the global scale, the method used to derive the CLT for deformed Wigner matrices [22] is insensitive to the behavior
of the free convolution measure μfc. An interesting aspect of the free additive convolution and deformed Wigner matrices
is that the densities may show other edge behaviors than square roots. For such setups, one expects mesoscopic CLTs at
the edges with different scalings, variances and biases. This is a main motivation for us to study linear eigenvalue statistics
at spectral edges. The local eigenvalue statistics at such critical edges are only partly understood, see e.g. [41,50] for some
results. At cusp points in the interior of the bulk spectrum the universality of the local eigenvalue fluctuations was recently
proved in [21,28].

1.3. Sample covariance matrix

Sample covariance matrices form another class of archetypal random matrix models, with applications in multivariate
statistical analysis. We consider the separable sample covariance matrices of the form H = 	1/2XX∗	1/2, where X is
a M × N matrix with independent random variables, and 	1/2 is the square root of the M × M diagonal and positive
definite matrix 	. The dimensionality M is chosen to be proportional to the sample size N . Assuming that the eigenvalue
distribution of 	 has a deterministic limit μσ , it was proved by Marchenko and Pastur [55] that the spectral measure of
H approaches a deterministic probability measure. In the null case 	 = I , the limiting measure is called the Marchenko–
Pastur distribution, μMP. For the non-null case 	 
= I , the limiting measure is given by the free multiplicative convolution
of μMP and μσ , denoted by μMP � μσ , see [5,67,69]. A CLT for the fluctuations of the linear eigenvalue statistics was
first studied by Jonsson [42] for Wishart matrices where X has Gaussian entries. CLTs for linear eigenvalue statistics
with analytic test functions for general sample covariance matrices were then studied by Bai and Silverstein in [4]. The
regularity condition on the test functions was weakened by [6,54,61] for the null case and [58] for the non-null case.
In the second part of this paper, we extend the techniques to derive corresponding CLTs for the mesoscopic eigenvalue
statistics of sample covariance matrices; see Theorem 8.7.

1.4. Related models

Deformed Wigner matrices are closely related to Dyson Brownian motion, for which mesoscopic CLTs were obtained
inside the bulk [23,38,45] and at the regular edges [1]. The mesoscopic linear statistics were also studied for random
band matrices [25,26], sparse Wigner matrices [35], mesoscopic eigenvalue density correlations for Wigner matrices
[37], invariant β-ensembles [10] and orthogonal polynomial ensembles [20]. The global fluctuations of the deformed
GOE/GUE can also be studied using the framework of second order freeness [57].

1.5. Structure of this paper

Section 2 contains the precise definitions, assumptions and the main results. The proof the main theorem is carried out
in Section 3–5. In Sections 6 and 7, we compute the variances and the biases in the bulk and at the edges. In Section 8,
we consider sample covariance matrices and obtain the corresponding results. Some auxiliary results are proved in the
Appendices.

1.6. Notation

We denote the upper half-plane by C+ := {z ∈ C : Im z > 0} and the positive real line by R
+ := {x ∈ R : x > 0}. For any

vector v ∈C
N , we use ‖v‖2 to denote the Euclidean norm. For a matrix A ∈ C

N×N , we denote by ‖A‖op its operator norm
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induced by the Euclidean vector norm. We use c, k and C, K to denote strictly positive constants that are independent
of N . Their values may change from line to line. We use standard big O and small o notations. For X,Y ∈ R, we write
X ∼ Y if there exist constants c,C > 0 such that c|Y | ≤ |X| ≤ C|Y |. We write X � Y if there exists a small τ > 0 such
that |X| ≤ N−τ |Y | for large N . We will use the following definition on high-probability estimates from [27].

Definition 1.1. Let X ≡X (N) and Y ≡ Y(N) be two sequences of nonnegative random variables. We say Y stochastically
dominates X if, for all (small) ε > 0 and (large) D > 0,

P
(
X (N) > NεY(N)

)≤ N−D, (1.4)

for sufficiently large N ≥ N0(ε,D), and we write X ≺ Y or X = O≺(Y).

We often use the notation ≺ also for deterministic quantities, then (1.4) holds with probability one. Stochastic domi-
nation has the following properties.

Lemma 1.2 (Proposition 6.5 in [33]).

(1) X ≺ Y and Y ≺ Z imply X ≺ Z;
(2) If X1 ≺ Y1 and X2 ≺ Y2, then X1 + X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2;
(3) If X ≺ Y , EY ≥ N−c1 and |X| ≤ Nc2 almost surely with fixed constants c1 and c2, then we have EX ≺ EY .

2. Model and main results

2.1. Model and assumptions

Let H ≡ HN be an N × N real or complex Wigner matrix satisfying the following assumption.

Assumption 2.1. For a real (β = 1) symmetric Wigner matrix H we assume that:

(1) {Hij |i ≤ j} are independent real-valued centered random variables with Hij = Hji .
(2) For i 
= j , E[(√NHij )

2] = 1; E[(√NHii)
2] = m2 for some constant m2 > 0. In addition, E[(√NHij )

4] = W4 for
some constant W4 > 0.

(3) All entries have uniform sub-exponential decay, that is, there exist C0 > 0 and θ > 1 such that

P
(|√NHij | ≥ x

)≤ C0e
−x

1
θ
, ∀i, j. (2.1)

In particular, we have

E
[|√NHij |p

]≤ C(θp)θp (p ≥ 3). (2.2)

For complex (β = 2) Hermitian Wigner matrix we assume that:

(1) {ReHij , ImHij |i ≤ j} are independent centered real-valued random variables with Hij = Hji .
(2) For i 
= j , E[H 2

ij ] = 0 and E[(√N |Hij |)2] = 1; E[(√N |Hii |)2] = m2 for some constant m2 > 0. In addition,

E[(√N |Hij |)4] = W4 for some constant W4 > 0.
(3) The sub-exponential tail assumption in (2.1) holds.

Let {AN } = Diag(ai) be a sequence of real deterministic diagonal N × N matrices with ‖A‖op uniformly bounded
in N . The empirical spectral measure of AN is defined by μA := 1

N

∑N
i=1 δai

.
For a probability measure ν on R denote by mν its Stieltjes transform, i.e.

mν(z) :=
∫
R

dν(x)

x − z
, z ∈C

+. (2.3)

Note that mν :C+ → C+ is analytic and can be analytically continued to the real line outside the support of ν. Moreover,
mν satisfies limη↗∞ iηmμ(iη) = −1. Conversely, if m : C+ → C

+ is an analytic function with limη↗∞ iηm(iη) = −1,
then m is the Stieltjes transform of a probability measure ν, i.e., m(z) = mν(z), for all z ∈C

+; see e.g., [2].
The following assumption ensures the existence of the weak limiting measure of μA.
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Assumption 2.2. There exists a deterministic and compactly supported probability measure denoted as μα , such that
μA converges weakly to μα . In addition, there exists α0 > 0 such that for any fixed compact set D0 ⊂ C

+ ∪ R with
D0 ∩ supp(μα) =∅,

max
z∈D0

∣∣∣∣∫
R

dμA(x)

x − z
−
∫
R

dμα(x)

x − z

∣∣∣∣= O
(
N−α0

)
, (2.4)

for sufficiently large N .

Define the deformed Wigner matrix as

XN := AN + HN.

The eigenvalues of XN are denoted as λi ∈ R. The empirical spectral measure of XN is defined by μN(x) = 1
N

∑N
i=1 δλi

.
For z ∈C

+, we introduce the Green function, G(z), and its normalized trace as

G(z) := (XN − zI)−1, mN(z) := 1

N
TrG(z) =

∫
R

dμN(λ)

λ − z
,

i.e., m(z) ≡ mN(z) is the Stieltjes transform of μN .
The empirical spectral distribution μN converges as N tends to infinity to the free additive convolution of μα and

the standard semicircle law, denoted by μ̃fc := μα � μsc. The free convolution measure can be described by analytic
subordination [13,68]: Its Stieltjes transform, m̃fc, is the unique solution to the Pastur equation

m̃fc(z) =
∫
R

1

a − z − m̃fc(z)
dμα(a), (2.5)

subject to the constraint Im m̃fc(z) > 0, z ∈ C+.
Since the convergence speed in (2.4) can be very slow, we work with a finite N version of the free convolution measure.

Let μfc := μA �μsc. The Stieltjes transform of μfc, denoted by mfc, is hence the unique solution to

mfc(z) = 1

N

N∑
i=1

1

ai − z − mfc(z)
, (2.6)

such that Immfc(z) > 0, z ∈ C
+. Note that μfc depends on N , but is deterministic.

Biane [12] proved that μ̃fc and μfc are absolutely continuous probability measures whose densities, are analytic wher-
ever positive. We denote the density functions by ρ̃fc and ρfc. In general the measures ρfc and ρ̃fc are supported on several
disjoint intervals and may have irregular edges where the densities do not vanish as a square root or have cusp points
inside the support. The following assumption will rule out such scenarios.

Assumption 2.3. Let I be the smallest interval that contains the support of μα , and assume that

inf
x∈I

∫
R

dμα(a)

(a − x)2
≥ 1 + w,

for some constant w > 0 (the left side may be infinite). Similarly, let Î be the smallest interval that contains the support
of μA, and assume that

inf
x∈Î

∫
R

dμA(a)

(a − x)2
≥ 1 + w,

for sufficiently large N .

The above assumption ensures that the density functions ρfc and ρ̃fc are supported on a single interval (for N suffi-
ciently large) and vanish as square roots at the endpoints of the support.

Lemma 2.4 (Lemma 2.4, 3.2 and 3.5 in [52]). Under Assumption 2.3, there exists L̃− and L̃+ ∈R, such that supp ρ̃fc =
[L̃−, L̃+], and ρ̃fc is strictly positive in (L̃−, L̃+). Moreover, there exists C > 1 such that

C−1
√

κ̃ ≤ ρ̃fc(E) ≤ C
√

κ̃, E ∈ [L̃−, L̃+],



Linear eigenvalue statistics for deformed Wigner matrices 511

where κ̃ := min{|E − L̃−|, |E − L̃+|}. The endpoints L̃± are the two real solutions to the equation∫
R

dμα(a)

(a − L̃± − mfc(L̃±))2
= 1. (2.7)

The same holds true, for sufficiently large N , if we replace μα , ρ̃fc, L̃± and κ̃ by μA, ρfc, L± and κ , respectively. Here
[L−,L+] is the support of ρfc and κ := min{|E − L−|, |E − L+|}.

2.2. Local law for the deformed Wigner matrices

We introduce the spectral domain,

D′ := {
z = E + iη : |E| ≤ M,N−1+c ≤ η ≤ 3

}
, (2.8)

where M > 1 + max{|L̃−|, |L̃+|} and c > 0 is small. Define the deterministic control parameters

�(z) :=
√

Immfc(z)

N |η| + 1

N |η| , �(z) := 1

N |η| , z = E + iη ∈C \R. (2.9)

Using (4.1), (4.2) in Lemma 4.1 below, we have

CN− 1
2 ≤ �(z) � 1, z ∈ D′.

The following local law for the Green function was proved in [48].

Theorem 2.5 (Local law for the deformed Wigner matrix, Theorem 2.10 in [48]). Under Assumptions 2.1–2.3, the
following holds

max
ij

∣∣∣∣Gij (z) − δij

1

ai − z − mfc(z)

∣∣∣∣≺ �(z),
∣∣N−1 TrG(z) − mfc(z)

∣∣≺ �(z), (2.10)

uniformly for z ∈ D′.

The local law gives strong rigidity estimates for the eigenvalues of XN . It also gives an upper bound, up to factors of
Nε , on the size of the fluctuations TrG(z)−ETrG(z). It is hence natural to study the fluctuations of TrG(z)−ETrG(z).
The CLT for the linear eigenvalue statistics for general test functions is proved in [22] and [39] on global scale when Im z

is order one. Via the Helffer–Sjöstrand functional calculus, a CLT for the resolvent can be translated to a CLT for the
linear statistics.

Theorem 2.6 (Theorem 2.15 of [39]). Under Assumptions 2.1–2.3, for any ϕ ∈ Cc(R) which is analytic on a neigh-
borhood of [L̃−, L̃+], the random variable

∑N
i=1 ϕ(λi) − N

∫
R

ϕ(x)ρfc(x)dx converges in distribution to the Gaussian

random variable with mean M(ϕ) = − 1
2π i

∫
�

ϕ(z)b̃(z)dz, and variance V (ϕ) = 1
(2π i)2

∫
�

∫
�

ϕ(z1)ϕ(z2)K̃(z1, z2)dz1 dz2,
where

b̃(z) := m̃′′
fc(z)

2(1 + m̃′
fc(z))

2

(
(m2 − 1) + m̃′

fc(z) + (W4 − 3)
m̃′

fc(z)

1 + m̃′
fc(z)

)
,

and K̃(z1, z2) := (m2 − 2) ∂2 Ĩ
∂z1∂z2

+ (W4 − 3)(Ĩ ∂2 Ĩ
∂z1∂z2

+ ∂Ĩ
∂z1

∂Ĩ
∂z2

) + 2
(1−Ĩ )2 ( ∂Ĩ

∂z1

∂Ĩ
∂z2

+ (1 − Ĩ ) ∂2 Ĩ
∂z1∂z2

), with

Ĩ (z1, z2) :=
∫
R

1

(x − z1 − m̃fc(z1))(x − z2 − m̃fc(z2))
dμα(x).

Here � is a rectangular contour with vertices (a± ± iv0) so that ±(a± − L̃±) > 0 and � lies within the analytic domain
of ϕ.

Using ideas of M. Shcherbina [61], the above result can be extended to C2
c (R) test functions. In [22], the corresponding

result was obtained for the multi-cut regime.
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2.3. Main results

Choose E0 ∈ [−1 + L̃−,1 + L̃+] and N−1 � η0 � 1. Consider a test function g ∈ C2
c (R) and set

fN(x) := g

(
x − E0

η0

)
. (2.11)

We will write fN as f for notational simplicity. Define

κ0 := dist
(
supp(f ), {L+,L−}). (2.12)

Following [44,54], we study the characteristic function

φ(λ) := E
[
e(λ)

]
, where e(λ) := exp

{
iλ
(
Trf (XN) −ETrf (XN)

)}
, λ ∈ R. (2.13)

Let τ > 0 be an arbitrary small constant and define

�0 := {
x + iy ∈C : |y| ≥ N−τ η0

}
. (2.14)

A key observation in [44] is that working on �0 instead of all C, effectively removes the ultra-local scales without
affecting the mesoscopic linear statistics.

Proposition 2.7. Let XN be a deformed Wigner matrix satisfying Assumptions 2.1–2.3. Let η0
√

κ0 + η0 ≥ N−1+c0 for
some c0 > 0. Then there exists a small 0 < τ <

c0
16 , such that the characteristic function (2.13) satisfies

φ′(λ) = −λφ(λ)V (f ) + Ẽ, V (f ) := 1

π2

∫
�0

∫
�0

∂

∂z1
f̃ (z1)

∂

∂z2
f̃ (z2)K(z1, z2)d2z1 d2z2, (2.15)

where f̃ is an almost analytic extension of f given in (3.2) below and β = 1,2 is the symmetry parameter. The kernel K

is given by

K(z1, z2) := ∂2

∂z1∂z2

((
m2 − 2

β

)
I + (W4 − 1 − 2

β
)

2
I 2
)

+ 2

β

∂

∂z1

(
1

1 − I

∂I

∂z2

)
, (2.16)

with

I (z1, z2) :=
∫
R

1

(x − z1 − mfc(z1))(x − z2 − mfc(z2))
dμA(x), (2.17)

and the error Ẽ is bounded by

|Ẽ | = O≺
(|λ| logNN−τ

)+ O≺
(

(1 + |λ|4)N3τ

Nη0
√

κ0 + η0

)
+ O≺

(
(1 + |λ|4)N2τ√
Nη0

√
κ0 + η0

)
,

provided that V (f ) = O(1).

Proposition 2.7 implies the following result.

Theorem 2.8. Under the same assumptions as in Proposition 2.7, if we further assume that there exist c,C > 0 such that
c ≤ V (f ) ≤ C for sufficiently large N , then Trf (XN)−ETrf (XN)√

V (f )
converges in distribution to a standard Gaussian random

variable.

We remark that Theorem 2.8 applies to the global scale as well as the mesoscopic scales. The expectation of Trf (XN)

has the following asymptotic expansion, which matches the result in [22,39] on the global scale.

Proposition 2.9. Under the same assumptions as in Proposition 2.7, the so-called bias is given by

ETrf (XN) − N

∫
R

f (x)ρfc(x)dx = 1

2π

∫
�0

∂

∂z
f̃ (z)b(z)d2z + O

(
N−τ

)+ O≺
(

N2τ√
Nη0

√
κ0 + η0

)
, (2.18)
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where f̃ is given in (3.2) below, and

b(z) :=
(

2

β
− 1

)
1

1 − Is(z)

dIs(z)

dz
+
(

m2 − 2

β

)
dIs(z)

dz
+
(

W4 − 1 − 2

β

)
Is(z)

dIs(z)

dz
, (2.19)

with

Is(z) :=
∫
R

1

(x − z − mfc(z))2
dμA(x). (2.20)

Note that the variance V (f ) in (2.15) and the bias in (2.18) are N-dependent and their formulas depend explicitly on
the free convolution measures. We will compute their limits on the mesoscopic scales as N goes to infinity in order to
obtain the following universal CLTs in the bulk and at the regular edges respectively.

Theorem 2.10 (Mesoscopic CLT in the bulk). Let XN be a deformed Wigner matrix satisfying Assumptions 2.1–2.3.
Let N−1+c ≤ η0 ≤ N−c with some small c > 0, fix E0 ∈ (L̃−, L̃+) such that κ0 > c0, for some c0 > 0 and large N . Then,
for any test function g ∈ C2

c (R), the linear statistics

N∑
i=1

g

(
λi − E0

η0

)
− N

∫
R

g

(
x − E0

η0

)
ρfc(x)dx (2.21)

converges in distribution to a Gaussian random variable with mean zero and variance

1

2βπ2

∫
R

∫
R

(g(x1) − g(x2))
2

(x1 − x2)2
dx1 dx2 = 1

βπ

∫
R

|ξ |∣∣ĝ(ξ)
∣∣2 dξ, (2.22)

where ĝ(ξ) := (2π)−1/2
∫
R

g(x)e−iξx dx. In particular, the bias vanishes in the bulk regime.

Theorem 2.11 (Mesoscopic CLT at the edge). Let XN be a deformed Wigner matrix satisfying Assumptions 2.1–2.3.

Let N− 2
3 +c ≤ η0 ≤ N−c with some small c > 0. For any function g ∈ C2

c (R), the linear statistics (2.21) with E0 = L+
converges in distribution to a Gaussian random variable with mean ( 2

β
− 1)

g(0)
4 and variance

1

4βπ2

∫
R

∫
R

(
g(−x2) − g(−y2)

x − y

)2

dx dy = 1

2βπ

∫
R

|ξ |∣∣ĥ(ξ)
∣∣2 dξ, (2.23)

where h(x) = g(−x2) and ĥ(ξ) := (2π)−1/2
∫
R

h(x)e−iξx dx. At the left edge E0 = L−, we obtain a similar CLT with
h(x) = g(x2).

Remark. The bulk variance (2.22) agrees with the GOE/GUE. For the edges, the bias and variance in (2.23) coincide
with those of the GUE/GOE obtained in [9,56] and the Dyson Brownian motion in [1].

Remark. We remark that our assumption that the fourth moments of the off-diagonal entries are identical can easily be
relaxed in the above theorems. The regularity condition we impose on the test function g is clearly not optimal, and we
expect results can be extended to C1,r,s(R) functions; see [36]. The CLTs also hold true if we consider the resolvent test
function g(x) = 1

x−i .

Finally, for test functions in C2
c (R), we can relax the single support condition for μfc by assuming instead that the cuts

of the support of μfc are separated by order one and the density ρfc has square-root decay near the edges.

3. Proof of Proposition 2.7

In this section, we prove Proposition 2.7 by reducing it to the main technical result Lemma 3.4. Recall the scaled test
function f on scale η0 from (2.11). There are constants such that

‖f ‖1 ≤ Cη0;
∥∥f ′∥∥

1 ≤ C′; ∥∥f ′′∥∥
1 ≤ C′′

η0
. (3.1)

We use the Helffer–Sjöstrand formula to link f (XN) to the Green function of XN .
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Lemma 3.1 (Helffer–Sjöstrand formula). Let f ∈ C2
c (R) and χ(y) be a smooth cutoff function with support in [−2,2],

with χ(y) = 1 for |y| ≤ 1. Define its almost-analytic extension

f̃ (x + iy) := (
f (x) + iyf ′(x)

)
χ(y). (3.2)

Then we have

f (λ) = 1

π

∫
C

∂
∂z

f̃ (z)

λ − z
d2z = 1

2π

∫
R2

iyf ′′(x)χ(y) + i(f (x) + iyf ′(x))χ ′(y)

λ − x − iy
dx dy, (3.3)

where z = x + iy, ∂
∂z

= 1
2 ( ∂

∂x
+ i ∂

∂y
), and d2z is the Lebesgue measure on C.

Therefore, we write

Trf (XN) −ETrf (XN) = 1

π

∫
C

∂

∂z
f̃ (z)

(
Tr
(
G(z)

)−ETrG(z)
)

d2z. (3.4)

Plugging the above equation in e(λ) given by (2.13), we have

e(λ) = exp

{
iλ

π

∫
C

∂

∂z
f̃ (z)

(
Tr
(
G(z)

)−ETrG(z)
)

d2z

}
. (3.5)

Taking the derivative of the characteristic function given in (2.13), and applying (3.5), we get

φ′(λ) = i

π

∫
C

∂

∂z
f̃ (z)E

[
e(λ)

(
Tr
(
G(z)

)−ETrG(z)
)]

d2z. (3.6)

Following [44], we restrict the domain of the spectral parameter to �0, as the very local scales do not contribute to
φ(λ). We write

Trf (XN) −ETrf (XN) = 1

π

(∫
�0

+
∫

�c
0

)
∂f̃ (z)

∂z̄

(
Tr
(
G(z)

)−ETrG(z)
)

d2z. (3.7)

Recall f̃ in (3.2) and the definition of �0 in (2.14). Since χ(y) = 1 for |y| ≤ 1, we can write the second integral in (3.7)
with z = x + iy as

N

π

∫
R

∫ η0
Nτ

0
iyf ′′(x)

(
mN(z) −EmN(z)

)
dx dy = −N

π

∫
R

∫ η0
Nτ

0
yf ′′(x) Im

(
mN(z) −EmN(z)

)
dx dy, (3.8)

where we used the fact that mN(z) = mN(z). We now choose a small τ > 0 such that N−1 � y0 :=
√

η0
N1+τ ≤ N−τ η0. In

the regime y ∈ [y0,N
−τ η0], the integral can be estimated using the local law (2.10), (3.1) and Lemma 1.2, i.e.,∣∣∣∣Nπ

∫
R

∫ N−τ η0

y0

yf ′′(x) Im
(
mN(z) −EmN(z)

)
dx dy

∣∣∣∣≺ ∣∣∣∣∫
R

f ′′(x)dx

∫ N−τ η0

y0

dy

∣∣∣∣= O≺
(
N−τ

)
. (3.9)

In the regime y ∈ [0, y0], the local law is not sharp but instead we use the fact that y → ImmN(x + iy)y is increasing.
That is,∣∣∣∣Nπ

∫
R

∫ y0

0
yf ′′(x) Im

(
mN(z) −EmN(z)

)
dx dy

∣∣∣∣= O≺
(

Ny2
0

η0

)
= O≺

(
N−τ

)
. (3.10)

Therefore, we have from (3.7) that

Trf (XN) −ETrf (XN) = 1

π

∫
�0

∂

∂z
f̃ (z)

(
Tr
(
G(z)

)−ETrG(z)
)

d2z + O≺
(
N−τ

)
. (3.11)

Using the same argument, since |e(λ)| = 1, we have

φ′(λ) = i

π

∫
�0

∂

∂z
f̃ (z)E

[
e(λ)

(
Tr
(
G(z)

)−ETrG(z)
)]

d2z + O≺
(
N−τ

)
. (3.12)
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Similarly, we restrict the integration domain of e(λ) in (3.5) to �0. Let

e0(λ) := exp

{
iλ

π

∫
�0

∂

∂z
f̃ (z)

(
Tr
(
G(z)

)−ETrG(z)
)

d2z

}
. (3.13)

In addition, (3.11) implies that |e(λ) − e0(λ)| = O≺(|λ|N−τ ). We also have |e0(λ)| = 1, using |e(λ)| = 1 and TrG(z) =
TrG(z). If we further replace e(λ) by e0(λ) in (3.12), then we get

φ′(λ) = i

π

∫
�0

∂

∂z
f̃ (z)E

[
(e0(λ)

(
Tr
(
G(z)

)−ETrG(z)
)]

d2z + O≺
(|λ| logNN−τ

)
. (3.14)

The last error term on the right side, and many error terms below, are estimated using the following lemma, which is a
variant of Lemma 4.4 in [44]. The proof is provided in Appendix B.

Lemma 3.2. Suppose h(z) is a holomorphic function on �0 and |h(z)| ≤ K
| Im z|s for some constants s,K ≥ 0, then there

exists some constant C such that∣∣∣∣∫
�0

∂

∂z
f̃ (z)h(z)d2z

∣∣∣∣≤ CKNτsη1−s
0 .

For 1 ≤ s ≤ 2, the bound is sharpened to CK log(N)η1−s
0 .

Thus, in order to study φ′(λ), it is sufficient to estimate E[e0(λ)(Tr(G(z))−ETrG(z))]. The key input is the following
cumulant expansion formula.

Lemma 3.3 (Cumulant expansion formula). Let h be a real-valued random variable with finite moments, and f is
a complex-valued smooth function on R with bounded derivatives. Let ck be the k-th cumulant of h, given by ck(h) :=
(−i)k d

dt
logEeith|t=0. Then for any fixed l ∈N, we have

E
[
hf (h)

]=
l∑

k=0

1

k!ck+1(h)E
[
f (k)(h)

]+ Rl+1,

where the error term satisfies

|Rl+1| ≤ ClE|h|l+2 sup
|x|≤M

∣∣f (l+1)(x)
∣∣+ ClE

[|h|l+21|h|>M

]∥∥f (l+1)
∥∥∞,

and M > 0 is an arbitrary fixed cutoff.

For reference, we refer e.g. to Lemma 3.1 in [36]. We give the proof the following lemma in Section 5.

Lemma 3.4. For any z := E + iη ∈ �0 ∩ D′, see (2.8), and κ := min{|E − L−|, |E − L+|}. we have

E
[
e0(λ)

(
TrG(z) −ETrG(z)

)]= iλ

π
E
[
e0(λ)

] ∫
�0

∂

∂z′ f̃
(
z′)K(z, z′)d2z′ + E(z),

where K is given in (2.16) and E(z) is analytic in �0 and satisfies

E(z) = O≺
(

1 + |λ|4√
κ + η

)(
(κ + η)1/4√

Nη3
+ 1√

Nη2
+ 1√

Nη0η
+ 1

Nη0η
+ 1

Nη2

)
. (3.15)

Admitting Lemma 3.4 and plugging in (3.14), we have

φ′(λ) = −λE
[
e0(λ)

]
V (f ) + O≺

(|λ| logNN−τ
)+ Ẽ,

where

V (f ) = 1

π2

∫
�0

∫
�0

∂

∂z
f̃ (z)

∂

∂z′ f̃
(
z′)K(z, z′) d2z d2z′, Ẽ = i

π

∫
�0

∂

∂z
f̃ (z)E(z) d2z.
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By the definition of κ0 in (2.12), κ ≥ κ0. Moreover |η| ≥ N−τ η0, for z ∈ �0. Using Lemma 3.2, we hence obtain the
estimate

Ẽ = O≺
(

(1 + |λ|4)N3τ

Nη0
√

κ0 + η0

)
+ O≺

(
(1 + |λ|4)N2τ√
Nη0

√
κ0 + η0

)
.

Assuming V (f ) ≺ O(1), we can replace e0(λ) by e(λ) with error O≺(|λ|N−τ ). Thus we have completed the proof of
Proposition 2.7.

4. Properties of the free convolution

4.1. Properties of mfc and m̃fc

In this subsection, we recall some properties of the Stieltjes transforms mfc and m̃fc of the free convolution measures. Let
κ = κ(E) be the distance from E to the closest spectral edge, i.e.,

κ := min
{|E − L−|, |E − L+|}.

Similarly define κ̃ := min{|E − L̃−|, |E − L̃+|}. Define the spectral domain

D := {
z = E + iη : |E| < M,0 < η ≤ 3

}
.

Lemma 4.1 (Lemma 3.5, Lemma A.1 in [52]).

(1) For all z ∈ D, there exists C > 1 such that

C−1
√

κ̃ + η ≤ ∣∣Im m̃fc(z)
∣∣≤ C

√
κ̃ + η, (4.1)

if E ∈ [L̃−, L̃+]. If E ∈ [L̃−, L̃+]c, then

C−1 η√
κ̃ + η

≤ ∣∣Im m̃fc(z)
∣∣≤ C

η√
κ̃ + η

. (4.2)

(2) (Stability bound) There exists C > 1, such that

C−1 ≤ ∣∣a − z − m̃fc(z)
∣∣≤ C, (4.3)

uniformly for z ∈ D and a ∈ supp(μα).
(3) For all z ∈ D, there exist k,K > 0 such that

k
√

κ̃ + η ≤
∣∣∣∣1 −

∫
R

1

(x − z − m̃fc(z))2
dμα(x)

∣∣∣∣≤ K
√

κ̃ + η. (4.4)

(4) There exist C > 0 and c0 > 0 such that for all z ∈ D satisfying κ̃ + η ≤ c0,

C−1 ≤
∣∣∣∣∫

R

1

(x − z − m̃fc(z))3
dμα(x)

∣∣∣∣≤ C; (4.5)

moreover, there exists C > 1 such that for all z ∈ D,∣∣∣∣∫
R

1

(x − z − m̃fc(z))3
dμα(x)

∣∣∣∣≤ C.

The following lemma implies that mfc behaves similarly as m̃fc, for sufficiently large N .

Lemma 4.2 (Lemma 3.6 in [52]). Under Assumptions 2.2 and 2.3, for sufficiently large N , statements 1–4 in Lemma 4.1
hold true with m̃fc, κ̃ , μα and L̃± replaced by mfc, κ , μA and L± respectively. Moreover, the constants in these inequali-
ties can be chosen uniformly in N for sufficiently large N . Furthermore, there exists c > 0 such that

max
z∈D

∣∣m̃fc(z) − mfc(z)
∣∣≤ N− cα0

2 , |L̃± − L±| ≤ N−cα0 , (4.6)

for sufficiently large N .
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Recall the function I (z1, z2) given in (2.17) and Is(z) in (2.20). By direct computation, one proves the following
lemma.

Lemma 4.3. For z1 
= z2, we have

I (z1, z2) = mfc(z1) − mfc(z2)

z1 + mfc(z1) − z2 − mfc(z2)
; Is(z) = m′

fc(z)

1 + m′
fc(z)

. (4.7)

As a result of Lemmas 4.1, 4.2 and 4.3, we have the following lemma.

Lemma 4.4. There exists C > 1 such that∣∣I (z1, z2)
∣∣≤ C; ∣∣Is(z)

∣∣≤ 1; C−1√κ + η ≤ ∣∣1 − Is(z)
∣∣≤ C

√
κ + η;∣∣mfc(z)

∣∣≤ C; ∣∣m′
fc(z)

∣∣≤ C√
κ + η

; ∣∣m′′
fc(z)

∣∣≤ C√
(κ + η)3

,

uniformly for z, z1, z2 ∈ D.

The proof of the above two lemmas can be found in Appendix B.

4.2. Properties of the Green function

As a more general version of the local law in Theorem 2.5, we introduce the anisotropic local law. Recall the control
parameters � and � from (2.9).

Theorem 4.5 (Theorem 12.2, 12.4 in [43]; Theorem 2.1, 2.2 in [29]; Theorem 2.6 in [3]). For any deterministic vector
v,w ∈C

N and matrix B ∈ C
N×N , we have∣∣〈v,G(z)w

〉− 〈
v, Ĝ(z)w

〉∣∣≺ ‖v‖2‖w‖2�(z),
∣∣N−1 Tr

(
B
(
G(z) − Ĝ(z)

))∣∣≺ ‖B‖op�(z),

uniformly in z ∈ {z = E + iη : |E| ≤ ρ−1,N−1+ρ ≤ η ≤ ρ−1}, where ρ is small so that ρ−1 ≥ ‖A‖op, and Ĝ =
Diag( 1

ai−z−mfc(z)
).

5. Proof of Lemma 3.4

For the simplicity of the presentation, we consider only the real symmetric case here. The complex case being similar is
proved in Appendix A. For notational simplicity, let

gi(z) := 1

ai − z − mfc(z)
, z ∈ C \ supp(μfc). (5.1)

Before we proceed the proof of Lemma 3.4, we state a useful lemma.

Lemma 5.1. For any i, j , we have

∂e0(λ)

∂Hij

= − i(2 − δij )λ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

d

dz
Gji d2z; (5.2)

∂2e0(λ)

∂2Hij

= i(2 − δij )λ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

d

dz

(
gi(z)gj (z)

)
d2z + O≺

(
(1 + |λ|)2

√
Nη0

)
. (5.3)

In general, for any integer k ∈N, we have∣∣∣∣∂kGij

∂Hk
ij

∣∣∣∣≺ O(1);
∣∣∣∣∂ke0(λ)

∂kHij

∣∣∣∣≺ O
((

1 + |λ|)k). (5.4)
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The above lemma follows from the relation

∂Gij

∂Hab

= −GiaGbj + GibGaj

1 + δab

. (5.5)

The details are provided in Appendix B. Now we are ready to prove Lemma 3.4.

Proof of Lemma 3.4. By the definition of the resolvent function, we have

(z − ai)Gii = (HG)ii − 1.

Thus we obtain that

(z − ai)E
[
e0(λ)(Gii −EGii)

]=
N∑

j=1

(
E
[
HijGjie0(λ)

]−E[HijGji]E
[
e0(λ)

])
.

Using the cumulant expansion Theorem 3.3, we obtain

(z − ai)E
[
e0(λ)(Gii −EGii)

]= I1 + I2 + I3 + O≺
(
N− 3

2
(
1 + |λ|4)), (5.6)

where

I1 := 1

N

N∑
j=1

c
(2)
ij

(
E

[
∂e0(λ)

∂Hij

Gji

]
+E

[(
∂Gji

∂Hij

−E

[
∂Gji

∂Hij

])
e0(λ)

])
;

I2 := 1

2!N 3
2

N∑
j=1

c
(3)
ij

(
E

[
∂2e0(λ)

∂2Hij

Gji

]
+ 2E

[
∂e0(λ)

∂Hij

∂Gji

∂Hij

]
+E

[
(1 −E)

(
∂2Gji

∂2Hij

)
e0(λ)

])
;

I3 := 1

3!N2

N∑
j=1

c
(4)
ij

(
E

[
∂3e0(λ)

∂3Hij

Gji

]
+ 3E

[
∂2e0(λ)

∂2Hij

∂Gji

∂Hij

]
+ 3E

[
∂e0(λ)

∂Hij

∂2Gji

∂2Hij

]

+E

[(
∂3Gji

∂3Hij

−E

[
∂3Gji

∂3Hij

])
e0(λ)

])
.

Here c
(k)
ij denotes the k-th cumulant of

√
NHij . In particular,

c
(1)
ij = 0; c

(2)
ij = 1 + (m2 − 1)δij ; c

(4)
ij = W4 − 3 (i 
= j).

The last term on the right side of (5.6) is estimated by (5.4), (2.2) and Lemma 1.2. Note that for z ∈ �0 ∩ D′, we have the
deterministic bound |Gij | ≤ ‖G‖op ≤ (Im z)−1 = O(Nc). Combining with |e0(λ)| = 1, we can use the last statement of
Lemma 1.2. We will use this argument throughout the proof. The error terms in this section are all uniform in z ∈ �0 ∩D′.
In the following, we estimate I1, I2 and I3 respectively.

5.1. Estimate on I1

Using (5.5), we have for each i,

I1 = − 1

N
E
[
e0(λ)

((
G2)

ii
−E

(
G2)

ii

)]− 1

N
E
[
e0(λ)(TrGGii −ETrGGii)

]
− m2 − 2

N
E
[
e0(λ)(GiiGii −EGiiGii)

]+ 1

N

N∑
j=1

(
1 + (m2 − 1)δij

)
E

[
∂e0(λ)

∂Hij

Gji

]
=: A1(i) + A2(i) + A3(i) + A4(i).

The first term can be written as

A1(i) = − 1

N
E

[
e0(λ)(1 −E)

d

dz

(
G(z)

)
ii

]
≺ �(z)

N Imz
,
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with �(z) as in (2.9). The last step follows from the local law and the Cauchy integral formula. Similarly using the local
law, the second term A2(i) can be written as

A2(i) = − 1

N
E
[
e0(λ)

(
TrG(Gii −EGii) +EGii(TrG −ETrG) +ETrGEGii −ETrGGii

)]
= −mfc(z)E

[
e0(λ)(Gii −EGii)

]− 1

N
gi(z)E

[
e0(λ)(TrG −ETrG)

]+ O≺
(
�(z)�(z)

)
,

with �(z) as in (2.9) and gi(z) in (5.1). Here the first term of A2 will be moved to the left side of the equation (5.6). In
addition, the local law also implies that A3(i) = O≺(

�(z)
N

).
Note that A4 is a leading term of I1. Using the local law, (5.2) and Lemma 5.4, we write

A4(i) = A41(i) + A42(i) + O≺
((

1 + |λ|)N−1�(z)
)
,

where

A41(i) = 1

N

N∑
j=1

E

[
∂e0(λ)

∂Hij

(1 + δij )Gji

]
, and A42(i) = m2 − 2

N
E

[
∂e0(λ)

∂Hii

gi(z)

]
. (5.7)

We compute these two terms below in Section 5.4.

5.2. Estimate on I2

In this subsection, we will show that I2 is negligible, which can be written as

1

2N
3
2

N∑
j=1

c
(3)
ij

(
E

[
∂2e0(λ)

∂2Hij

Gji

]
+ 2E

[
∂e0(λ)

∂Hij

∂Gji

∂Hij

]
+E

[
e0(λ)

(
∂2Gji

∂2Hij

−E
∂2Gji

∂2Hij

)])
=: B1(i) + B2(i) + B3(i).

First, we study the last term B3(i). Using (5.5) and the local law, we have

B3(i) = − 1

2N
3
2

N∑
j=1

c
(3)
ij E

[
e0(λ)

(
6GiiGjjGij + 2(Gij )

3 − 6E[GiiGjjGij ] − 2E(Gij )
3)]

= − 3

N
3
2

N∑
j=1

E
[
e0(λ)c

(3)
ij gi(z)gj (z)(Gij −EGij )

]+ O≺
(
N− 1

2 �2(z)
)
.

Next, we estimate 1√
N

∑N
j=1 c

(3)
ij gj (z)Gij , using the anisotropic local law Theorem 4.5. Let vj = δij and wj =

1√
N

c
(3)
ij gj (z). And ‖w‖2 is bounded because of the stability bound (4.3) and the moment condition (2.2).

Note that Theorem 4.5 holds for vector entries wj and vj that are deterministic constants. As in our setting wj depend
on z, we use a continuity argument to show that∣∣∣∣∣ 1√

N

N∑
j=1

c
(3)
ij gj (z)Gij (z) − 1√

N
c
(3)
ii

(
gi(z)

)2∣∣∣∣∣≺ �(z), (5.8)

uniformly in z ∈ D′. Indeed, choose a lattice � of the domain D′ in (2.8), with |�| = N100. Then for any z ∈ D′, there
exists some point p ∈ �, such that |z − p| ≤ N−10. The anisotropic local law (4.5) combined with a union bound implies

P

(
∃p ∈ � :

∣∣∣∣∣ 1√
N

N∑
j=1

c
(3)
ij gj (p)Gij (p) − 1√

N
c
(3)
ii

(
gi(p)

)2∣∣∣∣∣≥ Nε�(p)

)
≤ N−D+100. (5.9)

Recall that gj (z) = 1
aj −z−mfc(z)

. Using (4.3), Lemma 4.4 and the fact that |Gij (z)| ≤ 1
η

, the function 1√
N

∑N
j=1 c

(3)
ij gj (z) ×

Gij (z) − 1√
N

c
(3)
ii (gi(z))

2 as well as �(z) are Lipschitz continuous on D′ with Lipschitz constant at most N3. Thus we
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obtain from (5.9) that

P

(
∃z ∈ D′ :

∣∣∣∣∣ 1√
N

N∑
j=1

c
(3)
ij gj (z)Gij (z) − 1√

N
c
(3)
ii

(
gi(z)

)2∣∣∣∣∣≥ 2Nε�(z)

)
≤ N−D+100, (5.10)

which implies (5.8).

Next, using (4.3) and �(z) ≥ CN− 1
2 , we have | 1√

N

∑N
j=1 c

(3)
ij gj (z)Gij (z)| ≺ �(z). Therefore, we obtain the upper

bound

B3(i) = O≺
(
N−1�(z)

)+ O≺
(
N− 1

2 �2(z)
)= O≺

(
N− 1

2 �2(z)
)
.

For the second term, by (5.5), (5.2), and the local law we have

B2(i) = − 1

N
3
2

N∑
j=1

c
(3)
ij E

[
∂e0(λ)

∂Hij

(GjiGji + GiiGjj )

]

= − 1

N
3
2

N∑
j=1

c
(3)
ij E

[
∂e0(λ)

∂Hij

gi(z)gj (z)

]
+ O≺

(
(1 + |λ|)�(z)

N
√

η0

)

= 2iλ

πN
3
2

E

[
e0(λ)

N∑
j=1

c
(3)
ij

∫
�0

∂

∂z′ f̃
(
z′) d

dz′
(
G
(
z′))

ji
d2z′gi(z)gj (z)

]
+ O≺

(
(1 + |λ|)�(z)

N
√

η0

)
.

By the same argument as in (5.8) and the Cauchy integral formula, we have∣∣∣∣∣ d

dz′
1√
N

(
N∑

j=1

c
(3)
ij gj (z)

(
G
(
z′))

ji

)∣∣∣∣∣= O≺
(

�(z′)
| Im z′|

)
.

Using the stability bound (4.3) and Lemma 3.2, we have

∣∣B2(i)
∣∣≺ 1 + |λ|

N
√

Nη0
+ (1 + |λ|)�(z)

N
√

η0
= O≺

(
(1 + |λ|)�(z)

N
√

η0

)
.

Similarly, by plugging (5.3) in the expression of B1, we have

B1(i) = iλ

πN
3
2

N∑
j=1

c
(3)
ij E

[
e0(λ)

(∫
�0

∂

∂z′ f̃
(
z′) d

dz′
(
gi

(
z′)gj

(
z′)) d2z′

)
Gji

]
+ O≺

(
(1 + |λ|2)�(z)

N
√

η0

)
.

Using the anisotropic local law, we have

B1(i) = O≺
((

1 + |λ|2)N−1�(z)
)+ O≺

(
(1 + |λ|2)�(z)

N
√

η0

)
= O≺

(
(1 + |λ|2)�(z)

N
√

η0

)
.

5.3. Estimate on I3

It is not hard to show that the diagonal terms for i = j are negligible. Thus we can replace the fourth cumulants by W4 −3.
There are four terms in I3 and we denote them as D1(i), D2(i), D3(i) and D4(i) respectively.

First, we look at D1. By the local law and (5.4), we have |D1(i)| ≺ (1 + |λ|3)N−1�(z). Similarly, using (5.5), (5.2)
and the local law, we have |D3(i)| ≺ (1+|λ|)�(z)

N
√

Nη0
. For the last term D4, using (5.5) and the local law, we obtain that

D4(i) = 1

6N2

N∑
j=1

E
[
e0(λ)(1 −E)

(
36GiiGjj (Gij )

2 + 6(Gii)
2(Gjj )

2 + 6(Gij )
4)]≺ N−1�(z).
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Finally, we look at the leading term D2(i). Using the local law and (5.4), we have

D2(i) = −W4 − 3

2N2

N∑
j=1

E

[
∂2e0(λ)

∂2Hij

(
(Gji)

2 + GiiGjj

)]

= −W4 − 3

2N2

N∑
j=1

E

[
∂2e0(λ)

∂2Hij

gi(z)gj (z)

]
+ O≺

((
1 + |λ|2)N−1�(z)

)
. (5.11)

5.4. Adding up the contributions to (5.6)

Summing up the contributions from the previous subsections, we write (5.6) as

(z − ai + mfc)E
[
e0(λ)(Gii −EGii)

]= − 1

N
gi(z)E

[
e0(λ)(TrG −ETrG)

]+ A41(i) + A42(i) + D2(i) + ε(i),

where D2 is given in (5.11) and A41, A42 in (5.7), and ε(i) is the error term obtained in the previous subsections. Thanks
to the stability bound (4.3), we can divide both sides by z − ai + mfc to get

E
[
e0(λ)(Gii −EGii)

]= 1

N

(
gi(z)

)2
E
[
e0(λ)(TrG −ETrG)

]− gi(z)
(
A41(i) + A42(i) + D2(i) + ε(i)

)
.

Summing over i and rearranging, we find

(
1 − Is(z)

)
E
[
e0(λ)(TrG −ETrG)

]= −
N∑

i=1

gi(z)
(
A41(i) + A42(i) + D2(i)

)+ E1, (5.12)

where E1 is the linear statistics of ε(i). By the argument in Sections 5.1–5.3, we get

E1 = O≺
((

1 + |λ|4)N�(z)�(z)
)+ O≺

((
1 + |λ|4)√N�2(z)

)+ O≺
(

(1 + |λ|4)�(z)√
η0

)
.

Next, we study the leading terms of the right side of (5.12). Plugging (5.2) in (5.7), we have

N∑
i=1

A41(i)

z − ai + mfc
= 2iλ

πN

N∑
i=1

gi(z)E

[
e0(λ)

∫
�0

∂

∂z′ f̃
(
z′) ∂

∂z′
(
G
(
z′)G(z)

)
ii

d2z′
]
.

By the resolvent identity,

G(z)G
(
z′)= G(z) − G(z′)

z − z′ , z 
= z′, (5.13)

we can write

F
(
z, z′) := 1

N

N∑
i=1

gi(z)
(
G
(
z′)G(z)

)
ii

= 1

N

N∑
i=1

1

z′ − z
gi(z)

(
Gii

(
z′)− Gii(z)

)
.

We separate into two cases:
Case 1: If z and z′ belong to different half-planes, then we have 1

|z−z′| ≤ 1
| Im z| . Thus by the anisotropic local law, we

have ∣∣∣∣∣F (z, z′)− 1

z′ − z

1

N

N∑
i=1

gi(z)
(
gi

(
z′)− gi(z)

)∣∣∣∣∣
= 1

|z′ − z|

∣∣∣∣∣ 1

N

N∑
i=1

gi(z)
(
Gii

(
z′)− gi

(
z′))∣∣∣∣∣+ 1

|z′ − z|

∣∣∣∣∣ 1

N

N∑
i=1

gi(z)
(
Gii(z) − gi(z)

)∣∣∣∣∣
= O≺

(
�(z) + �(z′)

|Im z|
)

.
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Case 2: If z and z′ are in the same half-plane, without loss of generality, we can assume they both belong to the upper
half plane. If | Im z − Im z′| ≥ 1

2 Im z, then we can use the same argument as in Case 1. Thus it is sufficient to study when
| Im z − Im z′| ≤ 1

2 Im z, which means 2
3 Im z′ ≤ Im z ≤ 2 Im z′. Note that∣∣∣∣∣F (z, z′)− 1

z′ − z

1

N

N∑
i=1

gi(z)
(
gi

(
z′)− gi(z)

)∣∣∣∣∣
≤
∣∣∣∣ 1

N

∑N
i=1(gi(z) − gi(z

′))(Gii(z
′) − gi(z

′))
z − z′

∣∣∣∣
+
∣∣∣∣ 1

N

∑N
i=1 gi(z

′)(Gii(z
′) − gi(z

′)) − 1
N

∑N
i=1 gi(z)(Gii(z) − gi(z))

z − z′

∣∣∣∣.
Next, we look at the first term on the right side. By direct computation, we get∣∣∣∣gi(z) − gi(z

′)
z − z′

∣∣∣∣≤ ∣∣gi(z)
∣∣∣∣gi

(
z′)∣∣(1 +

∣∣∣∣mfc(z) − mfc(z
′)

z − z′

∣∣∣∣).

When z, z′ are in the same half plane, mfc is analytic in the neighborhood of the segment connecting z and z′, denoted as
L(z, z′). Thus∣∣∣∣mfc(z) − mfc(z

′)
z − z′

∣∣∣∣≤ sup
ω∈L(z,z′)

∣∣m′
fc(ω)

∣∣≤ C

Im z
.

Combining with (4.3), we have∣∣∣∣gi(z) − gi(z
′)

z − z′

∣∣∣∣≤ C′

Im z
.

Using the second statement of the anisotropic local law by letting B = Diag(
gi (z)−gi (z

′)
z−z′ ) and the continuity argument as

in (5.8), we obtain that the first term is bounded as O≺(
�(z′)
Im z

).

For the second term, we write it as h(z)−h(z′)
z−z′ , where

h(z) := 1

N

N∑
i=1

gi(z)
(
Gii(z) − gi(z)

)
.

Since h is analytic in the neighborhood of L(z, z′), we have∣∣∣∣h(z) − h(z′)
z − z′

∣∣∣∣≤ sup
ω∈L(z,z′)

∣∣∣∣ d

dω
h(ω)

∣∣∣∣.
The anisotropic local law implies that supw∈L(z,z′) |h(w)| ≺ �(z). Using the Cauchy integral formula, the second term is

O≺(
�(z)
Im z

). Then we obtain the same upper bound as in Case 1.
Therefore, in both cases, we have

F
(
z, z′)= 1

z′ − z

(
1

N

N∑
i=1

gi(z)gi

(
z′)− 1

N

N∑
i=1

g2
i (z)

)
+ O≺

(
�(z)

Im z

)
+ O≺

(
�(z′)
Im z

)
.

Taking the derivative and using the Cauchy integral formula, we have

∂

∂z′ F
(
z, z′)= ∂

∂z′

(
1

1 − I (z, z′)
∂I (z, z′)

∂z

)(
1 − Is(z)

)+ O≺
(

�(z)

Im z| Im z′|
)

+ O≺
(

�(z′)
Im z| Im z′|

)
.



Linear eigenvalue statistics for deformed Wigner matrices 523

Then by using Lemma 3.2, we have

N∑
i=1

A41(i)

z − ai + mfc
= 2iλ

π
E
[
e0(λ)

] ∫
�0

∂

∂z′ f̃
(
z′) ∂

∂z′

(
1

1 − I (z, z′)
∂I (z, z′)

∂z

(
1 − Is(z)

))
d2z′

+ O≺
(

�(z)

Im z

)
+ O≺

(
1

Nη0 Im z

)
.

Similarly, plugging (5.2) in (5.7), we have

N∑
i=1

A42(i)

z − ai + mfc
= (m2 − 2)iλ

π
E
[
e0(λ)

] ∫
�0

∂

∂z′ f̃
(
z′) ∂

∂z′

(
∂I (z, z′)

∂z

(
1 − Is(z)

))
d2z′ + O≺

(
1√
Nη0

)
.

Finally, plugging (5.3) in the leading term of (5.11) we have

N∑
i=1

D2(i)

z − ai + mfc

(W4 − 3)iλ

π
E
[
e0(λ)

] ∫
�0

∂

∂z′ f̃
(
z′) ∂

∂z′

(
∂I (z, z′)

∂z

(
1 − Is(z)

)
I
(
z, z′))d2z′ + O≺

(
1 + |λ|2√

Nη0

)
.

Therefore, we have

(
1 − Is(z)

)
E
[
e0(λ)(TrG −ETrG)

]= (
1 − Is(z)

) iλ

π
E
[
e0(λ)

] ·
∫

�0

∂

∂z′ f̃
(
z′)K(z, z′)d2z′ + E2,

where K(z, z′) is given by (2.16) and

E2 = (
1 + |λ|4)[O≺

(
N�(z)�(z)

)+ O≺(
(√

N�2(z)
)+ O≺

(
�(z)√

η0

)
+ O≺

(
�(z)

η0

)
+ O≺

(
�(z)

η

)]
. (5.14)

Dividing both sides by 1 − Is(z), recalling from Lemma 4.4 that | 1
1−Is (z)

| ∼ 1√
κ+η

, and using (4.1), (4.2), we have
completed the proof of Lemma 3.4. �

6. Proof of Theorem 2.10 and Theorem 2.11

In this section, we compute the variances of the mesoscopic CLT in the bulk and at the edges.

6.1. In the bulk

We compute the variance V (f ) defined in (2.15) with f given in (2.11).

Lemma 6.1. Under the assumptions and notations of Theorem 2.8, we have

lim
N→∞V (f ) = 1

2βπ2

∫
R

∫
R

(g(x1) − g(x2))
2

(x1 − x2)2
dx1 dx2.

Assuming that we have proved the above lemma, V (f ) converges to some positive constant since g ∈ C2
c (R). Theo-

rem 2.10 is a direct result of Proposition 2.7 after integrating φ′(λ) and using the Arzelá-Ascoli theorem and the Lévy
continuity theorem.

Proof of Lemma 6.1. Recall that

V (f ) = 1

π2

∫
�0

∫
�0

∂

∂z1
f̃ (z1)

∂

∂z2
f̃ (z2)(K1 + K2 + K3)d2z1 d2z2,
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where

K1 =
(

m2 − 2

β

)
∂2

∂z1∂z2
I ; K2 =

(
W4 − 1 − 2

β

)(
I

∂2

∂z1∂z2
I + ∂

∂z1
I

∂

∂z2
I

)
; (6.1)

K3 = 2

β

∂

∂z1

(
1

1 − I

∂I

∂z2

)
= 2

β

(
1

1 − I (z1, z2)

∂2

∂z1∂z2
I + 1

(1 − I (z1, z2))2

∂

∂z1
I

∂

∂z2
I

)
. (6.2)

Using Lemma 4.4 and the stability bound (4.3), we have

∂

∂z1
I (z1, z2) = 1

N

N∑
i=1

1 + m′
fc(z1)

(ai − z1 − mfc(z1))2(ai − z2 − mfc(z2))
= O

(
1√

κ1 + η1

)
; (6.3)

∂

∂z2
I (z1, z2) = 1

N

N∑
i=1

1 + m′
fc(z2)

(ai − z1 − mfc(z1))(ai − z2 − mfc(z2))2
= O

(
1√

κ2 + η2

)
; (6.4)

∂2

∂z1∂z2
I (z1, z2) = 1

N

N∑
i=1

(1 + m′
fc(z1))(1 + m′

fc(z2))

(ai − z1 − mfc(z1))2(ai − z2 − mfc(z2))2
= O

(
1√

(κ1 + η1)(κ2 + η2)

)
. (6.5)

In addition, recalling (4.7), for z1 
= z2, we have

1

1 − I (z1, z2)
= 1 + mfc(z1) − mfc(z2)

z1 − z2
. (6.6)

If z1 and z2 are in the same half plane, mfc is analytic in a neighborhood of the segment connecting z1 and z2, denoted as
L(z1, z2). By Lemma 4.4, then we have∣∣∣∣ 1

1 − I (z1, z2)

∣∣∣∣≤ 1 +
∣∣∣∣mfc(z1) − mfc(z2)

z1 − z2

∣∣∣∣≤ sup
z∈L(z1,z2)

∣∣m′
fc(z)

∣∣≤ C sup
z∈L(z1,z2)

(
1√

κ + η

)
. (6.7)

If z1, z2 belong to different half planes, using Lemma 4.4, then we have∣∣∣∣ 1

1 − I (z1, z2)

∣∣∣∣≤ 1 +
∣∣∣∣mfc(z1) − mfc(z2)

z1 − z2

∣∣∣∣≤ C

|z1 − z2| ≤ C

|η1| + |η2| . (6.8)

Now, we are ready to compute V (f ). Since ∂
∂z

Ki(z, z
′) = ∂

∂z′ Ki(z, z
′) = 0, (i = 1,2,3), and by Stokes’ formula, we have

V (f ) = − 1

4π2

∫
�1

∫
�2

f̃ (z1)f̃ (z2)(K1 + K2 + K3)dz1 dz2 := V1 + V2 + V3,

where �1 = {x1 + iy1 : |y1| = N−τ η0} and �2 = {x2 + iy2 : |y2| = 1
2N−τ η0}. We choose the orientation of both contours

to be counterclockwise. The parts on the upper half plane are denoted as �+
1 , �+

2 , while the parts on the lower half plane
are �−

1 , �−
2 .

Using (6.3)–(6.5), since κ ≥ κ0 ≥ c0 for some positive constant c0 > 0, we have |K1 + K2| = O(1). Combining with
(3.1), by direct computation, we have |V1 + V2| = O(η2

0). It then suffices to estimate V3. We consider two cases.
Case 1: If z1, z2 are in the same half plane, by (6.7) and (6.3)–(6.5), we have |K3| = O(1). Therefore,(∫

�+
1

∫
�+

2

+
∫

�−
1

∫
�−

2

)
f̃ (z1)f̃ (z2)K3(z1, z2)dz1 dz2 = O

(
η2

0

)
.

Case 2: Consider z1, z2 are in different half planes. For notational simplicity, we define m1 = mfc(z1) and m2 =
mfc(z2). Differentiating I given in (4.7), we have

∂

∂z1
I = (z1 − z2)m

′
1 − m1 + m2

(z1 + m1 − z2 − m2)2
; ∂

∂z2
I = (z2 − z1)m

′
2 + m1 − m2

(z1 + m1 − z2 − m2)2
. (6.9)

Using (6.8) (6.6), (6.3)–(6.5) and Lemma 4.4, we have

K3 = 2

β

1

(z1 − z2)2

((z1 − z2)m
′
1 − m1 + m2)((z2 − z1)m

′
2 + m1 − m2)

(z1 + m1 − z2 − m2)2
+ O

(
η−1

0 Nτ
)
.



Linear eigenvalue statistics for deformed Wigner matrices 525

Note that if z ∈ C
+ and in the bulk, then there exists k,K > 0 such that k ≤ Immfc(z) ≤ K . If z1, z2 are in different half

planes, there exists some constant c > 0 such that |z1 + m1 − z2 − m2| > c. Combining with Lemma 4.4, we have

K3 = − 2

β

(m1 − m2)
2

(z1 − z2)2(z1 + m1 − z2 − m2)2
+ O≺

(
η−1

0 Nτ
)+ O(1) = − 2

β

1

(z1 − z2)2
+ O

(
η−1

0 Nτ
)
.

Therefore, recalling the definition of f̃ in (3.2), by symmetry and (3.1), we have

V3 = 1

βπ2

∫
�+

1

∫
�−

2

f̃ (z1)f̃ (z2)

(z1 − z2)2
dz1 dz2 + O

(
η0N

τ
)
, (6.10)

with opposite integral directions on the contours. Since �+
1 and �−

2 are disjoint and f̃ has compact support, we obtain
from Cauchy’s integral theorem that

1

βπ2

∫
�+

1

∫
�−

2

f̃ (z2)
2

(z1 − z2)2
dz1 dz2 = 1

βπ2

∫
�−

2

f̃ (z2)
2
(∫

�+
1

1

(z1 − z2)2
dz1

)
dz2 = 0.

The integral of f̃ (z1)
2

(z1−z2)
2 vanishes similarly. Thus, we have from (6.10) and (3.2) that

V3 = − 1

2βπ2

∫
�+

1

∫
�−

2

(f̃ (z1) − f̃ (z2)
2

(z1 − z2)2
dz1 dz2 + O

(
η0N

τ
)

= 1

2βπ2

∫
R

∫
R

(f (x1) − f (x2) + iN−τ η0(f
′(x1) − f ′(x2)))

2

(x1 − x2 + 3i
2 N−τ η0)2

dx1 dx2 + O
(
η0N

τ
)
. (6.11)

Changing the variable

x̃1 = x1 − E0

η0
; x̃2 = x2 − E0

η0
, (6.12)

we hence obtain from (6.11) that

V3 = 1

2βπ2

∫
R

∫
R

(g(x̃1) − g(x̃2) + iN−τ (g′(x̃1) − g′(x̃2)))
2

(x̃1 − x̃2 + 3i
2 N−τ )2

dx̃1 dx̃2 + O
(
η0N

τ
)
.

Note that the integrand can be bounded uniformly by∣∣∣∣ (g(x̃1) − g(x̃2) + iN−τ (g′(x̃1) − g′(x̃2)))
2

(x̃1 − x̃2 + 3i
2 N−τ )2

∣∣∣∣≤ (g(x̃1) − g(x̃2))
2

(x̃1 − x̃2)2
+ (g′(x̃1) − g′(x̃2))

2

(x̃1 − x̃2)2
. (6.13)

Since g ∈ C2
c (R), we then conclude the proof using dominated convergence. �

6.2. Near the edge

Theorem 2.11 is a result of the following lemma and Proposition 2.7.

Lemma 6.2. Under the assumptions and notations of Theorem 2.8, we have

lim
N→∞V (f ) = 1

2βπ2

∫
R

∫
R

(
g(−x2) − g(−y2)

x − y

)2

dx dy.

Proof of Lemma 6.2. Similarly as in the bulk, using Stokes’ formula, we have

V (f ) = − 1

4π2

∫
�1

∫
�2

f̃ (z1)f̃ (z2)(K1 + K2 + K3)dz1 dz2 := V1 + V2 + V3,
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where K1, K2, K3 are given by (6.1) and (6.2), and we use the same notations and definitions as in the previous subsection.
Using (6.3)–(6.5) and Lemma 4.4, we have

|K1 + K2| = O

(
1√| Im z1 Im z2|

)
= O

(
Nτη−1

0

)
.

Using (3.1), one can show |V1 + V2| = O(η0N
τ ). Thus it is sufficient to study the integral involving K3. Using (6.9),

(6.6), and

∂2

∂z∂z′ I
(
z, z′)= ∂2

∂z′∂z
I
(
z, z′)= (m′

1 + m′
2 + 2m′

1m
′
2)(z1 − z2) − (m′

1 + m′
2 + 2)(m1 − m2)

(z1 + m1 − z2 − m2)3
,

by direct computation, we have

K3 = 2

β

(
(1 + m′

1)(1 + m′
2)

(z1 + m1 − z2 − m2)2
− 1

(z1 − z2)2

)
.

For the second integrand, using the similar arguments as in the previous subsection, we have

lim
N→∞

∫
�±

1

∫
�±

2

f̃ (z1)f̃ (z2)

(z1 − z2)2
dz1 dz2 = −1

2
lim

N→∞

∫
�±

1

∫
�±

2

(f̃ (z1) − f̃ (z2))
2

(z1 − z2)2
dz1 dz2

= −1

2

∫
R

∫
R

(g(x1) − g(x2))
2

(x1 − x2)2
dx1 dx2. (6.14)

Due to the opposite integral directions, we have

lim
N→∞

∫
�±

1

∫
�∓

2

f̃ (z1)f̃ (z2)

(z1 − z2)2
dz1 dz2 = 1

2

∫
R

∫
R

(g(x1) − g(x2))
2

(x1 − x2)2
dx1 dx2.

The whole integral with respect to the second term of K3 will hence vanish when N → ∞. Thus it is sufficient to study

the integral of the first term
(1+m′

1)(1+m′
2)

(z1+m1−z2−m2)
2 , that is,

V3(f ) = − 1

2βπ2

(∫
�+

1

∫
�+

2

+
∫

�−
1

∫
�−

2

+
∫

�+
1

∫
�−

2

+
∫

�−
1

∫
�+

2

)
f̃ (z1)f̃ (z2)

(1 + m′
1)(1 + m′

2)

(z1 + m1 − z2 − m2)2
dz1 dz2

:= V ++
3 + V −−

3 + V +−
3 + V −+

3 .

Let ζ = z + mfc(z) and ζ± = L± + mfc(L±) ∈ R. Define F(ζ ) := ζ − 1
N

∑N
i=1

1
ai−ζ

so that (2.6) is equivalent to
z = F(ζ ). Assumptions 2.2 and 2.3 imply that there exists some constant c0 independent of N such that

dist
({ζ±, Î})≥ c0,

for all sufficiently large N , where Î is the smallest interval that contains the support of μA; see (4.3). Hence, F(ζ ) is
analytic in a neighborhood of ζ+, where we write

F(ζ ) = F(ζ+) + F ′(ζ+)(ζ − ζ+) + F ′′(ζ+)

2
(ζ − ζ+)2 + O

(|ζ − ζ+|3).
By (2.7), F ′(ζ+) = 1 − 1

N

∑N
i=1

1
(ai−ζ+)2 = 0. Moreover, F ′′(ζ+) = − 2

N

∑N
i=1

1
(ai−ζ+)3 , and by (4.5) it is bounded uni-

formly from below. In general, we have |F (k)(ζ+)| = | k!
N

∑N
i=1

1
(ai−ζ+)(k+1) | = O(1) because of (4.4). Inverting F(ζ ) = z

in the neighborhood of ζ+, we have the expansion

ζ = z + mfc(z) = ζ+ + c+
√

z − L+
(
1 + A+(

√
z − L+)

)
, (6.15)

where A+ is an analytic function depending on N with A+(0) = 0. This has been shown in the proof of Lemma 3.6 and

Lemma A.1 in [52]. Note that c+ = (− 1
N

∑N
i=1

1
(ai−ζ+)3 )− 1

2 is some positive number depending on N but is uniformly
bounded. Furthermore, the coefficients of the expansion of A+ are also uniformly bounded. Thus

z + mfc(z) = ζ+ + c+
√

z − L+ + O
(|z − L+|),
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where the square root is taken in a branch cut such that Im
√

z − L+ > 0 as Im z > 0. Similarly, we have

1 + m′
fc(z) = c+

2
√

z − L+
+ d+ + O

(√|z − L+|),
where d+ is some number which depends on N but is uniformly bounded. Let z = L+ + η0x + iN−τ η0. Then

z + mfc(z) = ζ+ + c+
√

η0
(
x + iN−τ

)+ O(η0); 1 + m′
fc(z) = c+

2
√

η0(x + iN−τ )
+ d+ + O(

√
η0).

Therefore, after changing the variable as in (6.12), we have

V ++
3 = − 1

8βπ2

∫
R

∫
R

g̃(x1)g̃(x2)(
1√

x1+iN−τ
+ O(

√
η0))(

1√
x2+ i

2 N−τ
+ O(

√
η0))

(
√

x1 + iN−τ −
√

x2 + i
2N−τ + O(

√
η0))2

dx1 dx2

= − 1

8βπ2

∫
R

∫
R

g̃(x1)g̃(x2)
√

x1 + iN−τ

√
x2 + i

2N−τ (
√

x1 + iN−τ −
√

x2 + i
2N−τ )2

dx1 dx2 + O
(√

η0N
3τ
)
,

where g̃(x) = g(x) + iN−τ g′(x). The last step follows from the fact that |√x1 + iN−τ −
√

x2 + i
2N−τ | ≥ CN−τ , when

x1, x2 belong to some compact set. Let γ ±
1 := {x1 ± iN−τ : x1 ∈ R} and γ ±

2 := {x2 ± i
2N−τ : x2 ∈R}. Then we obtain

V ++
3 = − 1

8βπ2

∫
γ +

1

∫
γ +

2

g̃(z1)g̃(z2)√
z1

√
z2(

√
z1 − √

z2)2
dz1 dz2 + O

(√
η0N

3τ
)
,

where g̃(x + iy) = g(x) + iyg′(x)χ(y). Since γ +
1 and γ +

2 are disjoint and g̃ has compact support, changing the variable
w = √

z and using Cauchy’s integral theorem, we have∫
γ +

1

∫
γ +

2

g̃(z1)
2

√
z1

√
z2(

√
z1 − √

z2)2
dz1 dz2 = 0 =

∫
γ +

1

∫
γ +

2

g̃(z2)
2

√
z1

√
z2(

√
z1 − √

z2)2
dz1 dz2,

and thus

V ++
3 = 1

16βπ2

∫
γ +

1

∫
γ +

2

(g̃(z1) − g̃(z2))
2

√
z1

√
z2(

√
z1 − √

z2)2
dz1 dz2 + O

(√
η0N

3τ
)
.

Therefore, we get

lim
N→∞V ++

3 = 1

16βπ2
lim

N→∞

∫
R

∫
R

(g(x1) − g(x2) + iN−τ g′(x1) − i
2N−τ g′(x2))

2

√
x1 + iN−τ

√
x2 + i

2N−τ (
√

x1 + iN−τ −
√

x2 + i
2N−τ )2

dx1 dx2.

We denote the integrand as hN(x1, x2). Next, we interchange the limit and the integral. One shows that there exists C > 0
such that∣∣∣∣√x1 + iN−τ −

√
x2 + i

2
N−τ

∣∣∣∣≥ C|√x1 − √
x2|.

Set

h(x1, x2) := C−2 (g(x1) − g(x2))
2 + (g′(x1) − g′(x2))

2

√|x1|√|x2||√x1 − √
x2|2 ,

and observe that |hN(x1, x2)| ≤ h(x1, x2). Next, we will show that h(x1, x2) is integrable.
Suppose supp(g) ⊂ [−M,M] for some M > 0. Then if x1 and x2 are both in [−2M,2M] then we have the following

estimation.
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Case 1: If x1, x2 have the same sign, then

h(x1, x2) = (g(x1) − g(x2))
2 + (g′(x1) − g′(x2))

2

√
x1

√
x2(

√
x1 − √

x2)2

= 1√|x1|√|x2|
((

g(x1) − g(x2)

x1 − x2

)2

+
(

g′(x1) − g′(x2)

x1 − x2

)2)(√|x1| +
√|x2|

)2
≤ 8M√|x1|√|x2|

(∥∥g′∥∥2
∞ + ∥∥g′′∥∥2

∞
)
.

Case 2: If x1 and x2 are of opposite signs, using |x1 − x2| = (
√|x1| − i

√|x2|)(√|x1| + i
√|x2|), we have

h(x1, x2) = (g(x1) − g(x2))
2 + (g′(x1) − g′(x2))

2

√|x1|√|x2||√|x1| − i
√|x2||2

= 1√|x1|√|x2|
((

g(x1) − g(x2)

x1 − x2

)2

+
(

g′(x1) − g′(x2)

x1 − x2

)2)∣∣√|x1| + i
√|x2|

∣∣2
≤ 8M√|x1|√|x2|

(∥∥g′∥∥2
∞ + ∥∥g′′∥∥2

∞
)
.

If x1 /∈ [−2M,2M], then x2 ∈ [−M,M] otherwise h(x1, x2) = 0. So for (x1, x2) ∈ [−2M,2M]c × [−M,M],

h(x1, x2) ≤ 4‖g‖2∞ + 4‖g′‖2∞√|x1|√|x2|(√|x1| − √|x2|)2
≤ 4‖g‖2∞ + 4‖g′‖2∞√|x1|√|x2|(√|x1| − 1√

2

√|x1|)2
= C

|x1|3/2|x2|1/2
.

Therefore, h(x1, x2) is integrable. Thus by dominated convergence,

lim
N→∞V ++

3 = 1

16βπ2

∫
R

∫
R

(g(x1) − g(x2))
2

√
x1 + i0

√
x2 + i0(

√
x1 + i0 − √

x2 + i0)2
dx1 dx2

= 1

4βπ2

∫
ψ(R+i0)

∫
ψ(R+i0)

(g(w2
1) − g(w2

2))
2

(w1 − w2)2
dw1 dw2,

where we change the variable ψ(z) := √
z; with branch cut such that ψ : C+ →C

+.
Similarly, we have

lim
N→∞V −−

3 = 1

4βπ2

∫
ψ(R−i0)

∫
ψ(R−i0)

(g(w2
1) − g(w2

2))
2

(w1 − w2)2
dw1 dw2;

lim
N→∞V +−

3 = 1

4βπ2

∫
ψ(R+i0)

∫
ψ(R−i0)

(g(w2
1) − g(w2

2))
2

(w1 − w2)2
dw1 dw2;

lim
N→∞V −+

3 = 1

4βπ2

∫
ψ(R−i0)

∫
ψ(R+i0)

(g(w2
1) − g(w2

2))
2

(w1 − w2)2
dw1 dw2.

The contours are shown in Figure 1. Note that the horizontal parts of the blue and the red lines of above graph will
cancel because of the opposite integral direction. To sum up, we have

lim
N→∞V3 = 1

4βπ2

∫ i∞

−i∞

∫ i∞

−i∞
(g(w2

1) − g(w2
2))

2

(w1 − w2)2
dw1 dw2 = 1

4βπ2

∫
R

∫
R

(
g(−x2

1) − g(−x2
2)

x1 − x2

)2

dx1 dx2.

This concludes the proof of Theorem 2.11. �

7. Proof of Proposition 2.9 and computation of the bias

In this section, we first prove Proposition 2.9, using the same technique as in Proposition 2.7. After this, we compute the
bias on mesoscopic scales inside the bulk and at the edges.
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Fig. 1. Integration contours in the variance term V3.

Proof of Proposition 2.9. We treat the expectation similarly using the cumulant expansion and (5.5):

(z − ai)EGii = E(HG)ii − 1

= 1

N
E

N∑
j=1

c
(2)
ij

∂Gji

∂Hij

− 1 + 1

2!N 3
2

N∑
j=1

c
(3)
ij E

∂2Gji

∂2Hij

+ 1

3!N2

N∑
j=1

c
(4)
ij E

∂3Gji

∂3Hij

+ O≺
(
N− 3

2
)

= − 1

N

N∑
j=1

EGiiGjj − 1

N
E
(
G2)

ii
− m2 − 2

N
E(Gii)

2 − 1 + 1

2N
3
2

N∑
j=1

c
(3)
ij E

(
6GiiGijGjj + 2G3

ij

)

+ 1

6N2

N∑
j=1

(W4 − 3)E
(−36GiiGjjG

2
ij − 6G2

iiG
2
jj − 6G4

ij

)+ O≺
(
N− 3

2
)
.

Combining with the local law, we have

(z − ai)EGii = − 1

N
EGii TrG − 1

N

d

dz

1

ai − z − mfc
− m2 − 2

N

1

(ai − z − mfc)2
− 1

+ 3

N
3
2

N∑
j=1

c
(3)
ij

(ai − z − mfc)(aj − z − mfc)
Gij − 1

N2

N∑
j=1

(W4 − 3)
1

(ai − z − mfc)2(aj − z − mfc)2

+ O≺
(

�(z)

Nη

)
.

Using the anisotropic local law and the argument as in (5.8), one can show that the second term of the last line of above
equation is O≺(N−1�(z)). Therefore, we have

(z − ai)EGii = − 1

N
E

(
Gii − 1

ai − z − mfc

)
TrG − 1

N

1

ai − z − mfc
ETrG − 1 − 1

N

1 + m′
fc(z)

(ai − z − mfc)2

− m2 − 2

N

1

(ai − z − mfc)2
− 1

N
Is(z)

W4 − 3

(ai − z − mfc)2
+ O≺

(
�(z)

Nη

)
,

and thus

(z − ai + mfc)

(
EGii − 1

ai − z − mfc

)
= − 1

N

1

ai − z − mfc
(ETrG − Nmfc)
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− 1

N

1 + m′
fc(z)

(ai − z − mfc)2
− m2 − 2

N

1

(ai − z − mfc)2

− 1

N
Is(z)

W4 − 3

(ai − z − mfc)2
+ O≺

(
�(z)

Nη

)
.

Dividing both sides by ai − z − mfc ∼ O(1) and summing over i, we obtain

(
1 − Is(z)

)
E(TrG − Nmfc) = 1

N

N∑
i=1

1 + m′
fc(z)

(ai − z − mfc)3
+ m2 − 2

N

N∑
i=1

1

(ai − z − mfc)3

+ W4 − 3

N

N∑
i=1

Is(z)

(ai − z − mfc)3
+ O≺

(
�(z)

η

)
.

Dividing both sides by 1 − Is(z) and using the relation 1 − Is(z) = 1
1+m′

fc(z)
∼ √

κ + η, we obtain

E(TrG − Nmfc) = 1

1 − Is(z)

1

2

dIs(z)

dz
+ m2 − 2

2

dIs(z)

dz
+ W4 − 3

2
Is(z)

dIs(z)

dz
+ O≺

(
1

η
√

Nη
√

κ + η

)
.

Plugging into (3.11) (here we replace EμN by μfc), using Lemma 3.2 and Stokes’ formula, we have

ETrf (XN) − N

∫
R

f (x)ρfc(x)dx = 1

4π i

∫
∂�0

f̃ (z)b(z)dz + O≺
(

N2τ√
Nη0

√
κ0 + η0

)
+ O≺

(
N−τ

)
,

where b(z) is given by (2.19). Using the relation Is = m′
fc

1+m′
fc

, it coincides with the expectation that obtained in the global

CLT given in Theorem 2.6. Thus we conclude the proof of Proposition 2.9. �

Next, we explicitly compute the bias in the bulk and at the edges, for the scaled test function in (2.11).

7.1. Bias in the mesoscopic bulk

Note that

dIs

dz
= 2

N

N∑
i=1

1 + m′
fc

(ai − z − mfc)3
= O

(
1√

κ + η

)
; 1 − Is(z) ∼ 1√

κ + η
; ∣∣Is(z)

∣∣= O(1). (7.1)

If κ ≥ κ0 > c > 0, then |b(z)| = O(1). In combination with (3.1), we have

ETrf (XN) − N

∫
R

f (x)ρfc(x)dx = O≺
(

η0 + N2τ√
Nη0

√
κ0 + η0

+ N−τ

)
,

hence we see that the bias vanishes as N goes to infinity.

7.2. Bias at the mesoscopic edge

Similarly, using (7.1) and (3.1), the last two terms of b(z) will contribute O≺(
√

Nτη0). We have

ETrf (XN) − N

∫
R

f (x)ρfc(x)dx = 1

4π i

∫
∂�0

f̃ (z)
m′′

fc

1 + m′
fc

dz + O≺
(

N−τ + N2τ√
Nη0

√
κ0 + η0

+√
Nτη0

)
.

Using (6.15), we obtain the following expansions:

1 + m′
fc(z) = c+

2
√

z − L+
+ O(1), m′′

fc(z) = − c+
4(

√
z − L+)3

+ O

(
1√|z − L+|

)
,
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and then

m′′
fc

1 + m′
fc

= − 1

2(z − L+)
+ O

(
1√|z − L+|

)
.

Changing variables and using (3.1), we have

ETrf (XN) − N

∫
R

f (x)ρfc(x)dx

= − 1

8π i

∫
R

(
g(x) + iN−τ g′(x)

) 1

x + iN−τ
dx

+ 1

8π i

∫
R

(
g(x) − iN−τ g′(x)

) 1

x − iN−τ
dx + O≺

(
N−τ + N2τ√

Nη0
√

κ0 + η0
+√

Nτη0

)

= − 1

8π i

∫
R

g(x)

x + iN−τ
dx + 1

8π i

∫
R

g(x)

x − iN−τ
dx + O≺

(
N−τ + N2τ√

Nη0
√

κ0 + η0
+√

Nτη0

)
.

Using the Sokhotski–Plemelj lemma, we have

ETrf (XN) − N

∫
R

f (x)ρfc(x)dx = g(0)

4
+ O≺

(
N−τ + N2τ√

Nη0
√

κ0 + η0
+√

Nτη0

)
,

where we used the regularity g ∈ C2
c (R). This finishes the computation of mesoscopic bias.

8. Sample covariance matrix

In this section, we use the previous arguments to derive the mesoscopic eigenvalue statistics of sample covariance matrix
and prove similar CLTs in the bulk and at the regular edges. We start by introducing the model in detail.

8.1. Setup, assumptions and main results

Let XN = (Xij ) be an M × N matrix satisfying the following assumption.

Assumption 8.1.

(1) {Xij |1 ≤ i ≤ M,1 ≤ j ≤ N} are independent real-valued centered random variables.
(2) For all i, j , we have E|√NXij |2 = 1. In addition,

√
NXij has uniformly bounded moments, that is, there exists

Cp > 0 independent of N such that for all i, j ,

E|√NXij |p ≤ Cp. (8.1)

(3) To simplify the statement, we also assume that there exists a constant K4 such that

K4 := 1

N

N∑
j=1

c
(4)
ij , where c

(4)
ij is the fourth cumulant of

√
NXij . (8.2)

Note that M depends on N and set

γ ≡ γN := M

N
→ γ0, 0 < γ0 < ∞. (8.3)

We study the M × M sample covariance matrices

HM := YNY ∗
N, YN := 	1/2XN, 	 := Diag(σi), (8.4)

where 	 is an M × M positive definite, deterministic and diagonal matrix with

∞ > σ1 ≥ σ2 ≥ · · · ≥ σM > 0, lim sup
N→∞

σ1 < ∞, lim inf
N→∞ σM > 0. (8.5)
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We denote by μ	 the empirical eigenvalue distribution of 	, i.e. μ	 := 1
M

∑M
j=1 δσj

. The following assumption ensures
that the limit of μ	 exists.

Assumption 8.2. Together with (8.5), μ	 converges weakly to a deterministic measure μσ as N → ∞ such that μσ is
compactly supported in (0,∞).

The eigenvalues of H ≡ HM are denoted as λi ∈ R, 1 ≤ i ≤ M . The empirical spectral measure of HM is defined by
μM = 1

M

∑M
i=1 δλi

. The Stieltjes transform of μM is then given by

mM(z) := M−1 TrG(z), where G(z) := (HM − zI)−1, z ∈C
+. (8.6)

We further introduce the N × N matrices

HN := Y ∗
NYN, G := (H− z)−1, mN(z) := N−1 TrG, z ∈C

+. (8.7)

The eigenvalues of H ≡ HN are denoted by {μi}Ni=1. It is straightforward that {λi}Mi=1 differs from {μi}Ni=1 by |N − M|
zeros, hence we have the relation

mN(z) = γmM + γ − 1

z
. (8.8)

In the null case 	 = I , the Marchenko–Pastur law states that the empirical eigenvalue distribution of H = XX∗
converges weakly to the Marchenko–Pastur distribution with aspect ratio γ0, whose density is given by dμMP,γ0 :=

1
2πγ0

√ [(x−γ−)(γ+−x)]+
x2 dx + (1 − γ −1

0 )+δ0 with γ± = (1 ± √
γ0)

2. Its Stieltjes transform mMP,γ0 , or denoted by mγ0 for
short, is characterized as the unique solution of

1 + (z − 1 + γ0)m(z) + γ0zm
2(z) = 0, or equivalently, m(z) = 1

1 − γ0 − γ0zm(z) − z
, (8.9)

such that Imm(z) > 0, z ∈ C
+. Because of (8.8), the Stieltjes transform of the limiting spectral measure of H = X∗X,

denoted by m
γ −1

0
, is then given by

m
γ −1

0
(z) = γ0mγ0(z) + γ0 − 1

z
. (8.10)

In the non-null case 	 
= I , under Assumption 8.2, the limiting spectral measure of H = 	1/2XX∗	1/2 exists, hence-
forth referred to as the deformed Marchenko–Pastur law. Its Stieltjes transform, denoted by mfc,γ0 , or mfc for short, is the
unique solution of

m(z) =
∫
R

1

t (1 − γ0 − γ0zm(z)) − z
dμσ (t), (8.11)

such that Imm(z) > 0, z ∈ C
+. The corresponding limiting measure, denoted by μfc,γ0 or μfc for short, is the free

multiplicative convolution of μσ and the standard Marchenko–Pastur law with ratio γ0, i.e., μfc,γ0 = μσ � μMP,γ0 ; see
[67,69]. It was proved in [64] that the free multiplicative convolution measure is absolutely continuous and its density
function is analytic whenever positive in (0,∞).

According to (8.10), the Stieltjes transform of the limiting spectral measure of H = X∗	X is the unique solution to

m(z) = 1

−z + γ0
∫
R

t
tm(z)+1 dμσ (t)

, or equivalently, γ0 − 1 − zm(z) =
∫
R

γ0

1 + tm(z)
dμσ (t), (8.12)

such that Imm(z) > 0, z ∈C
+.

For general 	, μfc could be supported on several disjoint intervals; we refer to [34,43,64] for discussions on the
support of the density. The following assumption ensures that the free multiplicative convolution measure is supported on
a single interval and the edges behave like square roots. It also rules out the possibilities of outliers.
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Assumption 8.3. Let [σ−, σ+] ⊂ R
+ be the smallest interval that contains the support of μσ and set I := [σ−1+ , σ−1− ].

Assume that

inf
x∈I

∫
R

(
tx

1 − tx

)2

dμσ (t) ≥ γ −1
0 + w,

for some constant w > 0 (the left side may be infinite). Similarly, set Î := [σ−1
1 , σ−1

M ]. Assume that

inf
x∈Î

∫
R

(
tx

1 − tx

)2

dμ	(t) ≥ γ −1 + w,

for sufficiently large N .

Let ξ = −m(z) so that (8.12) is equivalent to

z = F(ξ), F (ξ) := 1

ξ
+ γ0

∫
R

t

1 − tξ
dμσ (t).

As an analogue of (2.7), it was argued in [64] that the edges of the support of μfc, denoted as E±, are given by E± =
F(ξ±), where ξ± ∈ R are the solutions to

H(ξ) :=
∫
R

(
tξ

1 − tξ

)2

dμσ (t) = γ −1
0 . (8.13)

Under Assumption 8.3, we have at most two solutions of (8.13), since H(ξ) is monotone outside [σ−1+ , σ−1− ]. Let ξ+ be
the unique solution of (8.13) in (0, σ−1+ ). The right boundary of the spectrum is given by E+ = F(ξ+). As for the left
edge, we split into three cases. If 0 < γ0 < 1, there is a unique solution of (8.13) in the interval (σ−1− ,∞), denoted by
ξ−, and the corresponding left edge is given by E− = F(ξ−). If γ0 > 1, similarly, there is a unique solution of (8.13) in
the interval (−∞,0). These edges are referred to as soft edges. For γ0 = 1, the solution does not exist (or say ξ− = ∞),
corresponding to E− = 0. This scenario is referred to as the hard edge and the density there goes to infinity at rate of
κ−1/2. In this paper, we only consider the right edge for all 0 < γ0 < ∞. Same discussion easily extends to the soft left
edge when γ0 
= 1.

In addition, Assumption 8.3 implies that

dist
({

σ−1+ , σ−1−
}
, ξ±

)≥ c0 > 0, (8.14)

provided that ξ− is finite (γ0 
= 1). The above condition is crucial for the density of the limiting measure to have the square
root behavior at the soft edges. It will be proved later in Lemma 8.5. Similar assumptions also appeared in [8,24,51] for
the rightmost edge and [34,43] for all edges in multi-cuts.

Since the convergence rate of μ	 and γ could be very slow, from now on, we work with the finite-N version μfc =
μMP,γ � μ	 . The corresponding Stieltjes transforms are given by (8.11) and (8.12) replacing the limiting measure μσ

by μ	 and γ0 by γ . The following notations, e.g., mfc, m, E±, ξ± and κ are corresponding to μMP,γ � μ	 and are
N -dependent. To be consistent with the previous sections, we will use the tilde sign to denote the ones with respect to
μMP,γ0 � μσ . The second condition of Assumption 8.3 ensures the same properties for the support of μMP,γ0 � μ	 . In
particular, for sufficiently large N we have

min
i

{|1 − ξ±σi |
}≥ c0 > 0, (8.15)

if γ0 
= 1. If γ0 = 1, it only holds true with respect to ξ+.
Next, we state the local law for the Green function of sample covariance matrix, which is an essential tool in our proof.

Let m ≡m(z) be the unique solution of finite-N version of (8.12), i.e.,

γ − 1 − zm(z) = 1

M

M∑
i=1

γ

1 + σim(z)
, (8.16)

such that Imm(z) > 0, z ∈ C
+. Define the deterministic control parameters

�(z) :=
√

Imm(z)

N |η| + 1

N |η| , �(z) := 1

N |η| , z = E + iη ∈ C \R. (8.17)
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We also introduce the spectral domain, for some small c > 0,

S′ := {
z = E + iη : |E| ≤ c−1,N−1+c ≤ η ≤ c−1, |z| ≥ c

}
. (8.18)

We further introduce the N + M by N + M matrices

R :=
(−	−1 X

X∗ −z

)−1

; � :=
(−	(1 +m	)−1 0

0 m(z)

)
; 	′ :=

(
	 0
0 I

)
, z ∈C

+.

Using the Schur decomposition/Feshbach formula, we see that

R =
(

z	1/2G	1/2 	XG
GX∗	 G

)
=
(

z	1/2G	1/2 	1/2GY

Y ∗G	1/2 G

)
.

We are ready to state the (anisotropic) local law for such random matrix.

Theorem 8.4 (Theorem 2.4 in [14], Theorem 3.6 in [43]). For any deterministic unit vector v,w ∈ C
N , we have∣∣〈v,	′−1(R(z) − �(z)

)
	′−1w

〉∣∣≺ �(z),

uniformly in z ∈ S′. It also implies that

∣∣(G(z)
)
ij

−m(z)δij

∣∣≺ �(z);
∣∣∣∣(G(z)

)
ij

+ 1

z(1 +mσi)
δij

∣∣∣∣≺ �(z).

In addition, we have the averaged result

∣∣N−1 TrG(z) −m(z)
∣∣≺ �(z),

∣∣∣∣M−1 TrG(z) +
∫
R

1

z(1 +mt)
dμ	(t)

∣∣∣∣≺ �(z).

In the following, we state some properties of the Stieltjes transform m in (8.12), whose proofs are given in Appendix B.
Define the spectral domain, for some small c > 0,

S := {
z = E + iη : |E| ≤ c−1,0 < η ≤ c−1, |z| ≥ c

}
.

And set κ ≡ κ(E) := min{|E+ − E|, |E− − E|}.

Lemma 8.5.

(1) For z ∈ S and sufficiently large N , we have∣∣m(z)
∣∣∼ 1; min

i

∣∣1 + σim(z)
∣∣> c0. (8.19)

(2) For z ∈ S and sufficiently large N , we have

∣∣Imm(z)
∣∣∼ {√

κ + η, if E ∈ [E−,E+],
η√
κ+η

, if otherwise.
(8.20)

(3) For z ∈ S with E− − c < E < E+ + c and η ≤ c for some small c > 0, we have

1 − 1

M

M∑
i=1

γ σi

z(1 +m(z)σi)2
= − m(z)

zm′(z)
∼ √

κ + η. (8.21)

(4) Under the same condition as in (3), we have

m′(z) = − m(z)

z − 1
M

∑M
i=1

γ σi

(1+m(z)σi )
2

∼ 1√
κ + η

. (8.22)

We are now prepared to state our main results for the sample covariance matrix.
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Proposition 8.6. Consider a sample covariance matrix satisfying Assumptions 8.1, 8.2 and 8.3 and E0 is chosen to be
away from zero, then Propositions 2.7 and 2.9 hold true with

K(z1, z2) = 2

(
m′

1m
′
2

(m1 −m2)2
− 1

(z1 − z2)2

)
+ K4γ

∂2

∂z1∂z2

(
1

M

M∑
i=1

1

(1 +m1σi)(1 +m2σi)

)
, (8.23)

where we use m1 and m2 to denote m(z1) and m(z2), and

b(z) =
(

(m′(z))2

m(z)
+ K4m(z)m′(z)

)
1

M

M∑
i=1

γ σ 2
i

(1 +m(z)σi)3
. (8.24)

Proposition 8.6 implies that Theorems 2.10 and 2.11 hold true for sample covariance matrix. More specifically, we
have the following theorem.

Theorem 8.7. Let HN be a sample covariance matrix of the form (8.4) satisfying Assumptions 8.1–8.3. Let N−1+c1 ≤
η0 ≤ N−c1 with some c1 > 0 and fix E0 ∈ (E−,E+), such that κ0 := dist(supp(fN), {E±}) > c0, for some c0 > 0 and
sufficiently large N . Then, for any function g ∈ C2

c (R), the linear eigenvalue statistics (2.21) converges in distribution to
the Gaussian random variable N (0, 1

π

∫
R

|ξ ||ĝ(ξ)|2 dξ), where ĝ(ξ) := (2π)−1/2
∫
R

g(x)e−iξx dx.

In addition, the linear statistics (2.21) with E0 = E+ and N− 2
3 +c2 ≤ η0 ≤ N−c2 for some c2 > 0, converges

in distribution to a Gaussian random variable N (
g(0)

4 , 1
2π

∫
R

|ξ ||ĥ(ξ)|2 dξ), where h(x) = g(−x2) and ĥ(ξ) :=
(2π)−1/2

∫
R

h(x)e−iξx dx. Furthermore, if γ0 
= 1, a similar CLT for E0 = E− can be obtained with h(x) = g(x2).

Remark. We remark that (8.2) in Assumption 8.1 can be removed. In addition, we can relax the single support condition
for μfc by assuming instead that the cuts of the support of μfc are separated by order one and the density has square root
behaviors at the edges away from zero.

8.2. Proof of the CLT and variance computation

From the definition of the Green function and (8.4), we get

zGii = (HG)ii − 1 = (
	1/2XX∗	1/2G

)
ii

− 1 = √
σi

N∑
j=1

Xij (GY)ij − 1. (8.25)

Similarly as (5.6), by the cumulant expansion formula, we have

zE
[
e0(λ)(Gii −EGii)

]= I1 + I2 + I3 + O≺
(
N− 3

2
(
1 + |λ|4)), (8.26)

where

I1 :=
√

σi

N

N∑
j=1

c
(2)
ij

(
E

[
∂e0(λ)

∂Xij

(GY)ij

]
+E

[(
∂(GY)ij

∂Xij

−E

[
∂(GY)ij

∂Xij

])
e0(λ)

])
,

I2 :=
√

σi

2!N 3
2

N∑
j=1

c
(3)
ij

(
E

[
∂2e0(λ)

∂2Xij

(GY)ij

]
+ 2E

[
∂e0(λ)

∂Xij

∂(GY)ij

∂Xij

]
+E

[(
∂2(GY)ij

∂2Xij

−E

[
∂2(GY)ij

∂2Xij

])
e0(λ)

])
,

I3 :=
√

σi

3!N2

N∑
j=1

c
(4)
ij

(
E

[
∂3e0(λ)

∂3Xij

(GY)ij

]
+ 3E

[
∂2e0(λ)

∂2Xij

∂(GY)ij

∂Xij

]
+ 3E

[
∂e0(λ)

∂Xij

∂2(GY)ij

∂2Xij

]

+E

[
(1 −E)

(
∂3(GY)ij

∂3Xij

)
e0(λ)

])
.

The last term on the right side of (8.26) is estimated by (8.32), (8.1) and Lemma 1.2. The argument is similar as in (5.6).
The only things to check are the deterministic bounds of (Y ∗GY)ii and (GY)ij . Note that from (8.4) and (8.7), YG = GY
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and |Gij | = O(Nc), for z ∈ �0 ∩ S′, thus we have(
Y ∗GY

)
ii

= (
Y ∗YG

)
ii

= (HG)ii = (1 + zG)ii = O
(
Nc1

); (8.27)

∣∣(GY)ij
∣∣≤ √

N
(
GYY ∗G∗)1/2

ii
= √

N
(
z
(
GG∗)

ii
+ G∗

ii

)1/2 = √
N

(
z

2 Im z

(
Gii − G∗

ii

)+ G∗
ii

)1/2

= O
(
Nc2

)
, (8.28)

where we use Cauchy–Schwarz inequality and the resolvent identity (5.13).
Using the formulas,

∂Gab

∂Yjk

= −Gaj

(
Y ∗G

)
kb

− (GY)akGjb,
∂Gab

∂Xjk

= ∂Gab

∂Yjk

√
σj , (8.29)

we obtain the analogue of Lemma 5.1:

Lemma 8.8. For any i, j , we have

∂e0(λ)

∂Xij

= − i2
√

σiλ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

d

dz
(GY)ij d2z; (8.30)

∂2e0(λ)

∂2Xij

= − i2σiλ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

d

dz

(
m

1 +mσi

)
d2z + O≺

(
(1 + |λ|)2

√
Nη0

)
. (8.31)

In general, for any integer k ∈ N, we have∣∣∣∣∂k(GY)ij

∂Xk
ij

∣∣∣∣≺ O(1);
∣∣∣∣∂ke0(λ)

∂kXij

∣∣∣∣≺ O
((

1 + |λ|)k). (8.32)

We first look at I1. Using (8.29) and (8.30), we have

I1 = σi

N

N∑
j=1

E
[
e0(λ)(1 −E)(Gii)

]− σi

N

N∑
j=1

E
[
e0(λ)(1 −E)

((
Y ∗GY

)
jj

Gii

)]

− σi

N

N∑
j=1

E
[
e0(λ)(1 −E)

(
(GY)ji(GY)ji

)]+
√

σi

N

N∑
j=1

E

[
∂e0(λ)

∂Xji

(GY)ji

]
=: A1 + A2 + A3 + A4.

Note that

A1 = σiE
[
e0(λ)(1 −E)Gii

]= σiE
[
e0(λ)(1 −E)Gii

]
.

In addition, using the definition of the resolvent and the local law in Theorem 8.4, we have

A2 = −σi

N
E
[
e0(λ)(1 −E)

(
Tr(GH)Gii

)]= −γ σiE
[
e0(λ)(1 −E)

(
zM−1 TrGGii

)]− γ σiE
[
e0(λ)(1 −E)(Gii)

]
= (−γ σizmfc − γ σi)E

[
e0(λ)(1 −E)(Gii)

]+ γ σi

1 +mσi

E
[
e0(λ)(1 −E)

(
M−1 TrG

)]+ O≺
(
�(z)�(z)

)
.

Next, we use the local law to estimate the third term,

A3 = − 1

N
E
[
e0(λ)(1 −E)

(
Y ∗G2Y

)
ii

]= − 1

N
E

[
e0(λ)(1 −E)

d

dz

(
Y ∗GY

)
ii

]
= O≺

(
�(z)

Nη

)
.

Finally, we study the last term A4 using (8.30), which can be written as

A4 = − i2σiλ

πN
E

[
e0(λ)

∫
�0

∂

∂z2
f̃ (z2)

∂

∂z2

(
G(z2)HG(z1)

)
ii

d2z2

]
= − i2σiλ

πN
E

[
e0(λ)

∫
�0

∂

∂z2
f̃ (z2)

∂

∂z2

(
z2G(z2)G(z1)

)
ii

d2z2

]
.
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Using the resolvent identity (5.13), the local law Theorem 8.4 and Lemma 3.2, we obtain that

A4 = − i2λ

πN
E

[
e0(λ)

∫
�0

∂

∂z2
f̃ (z2)

∂

∂z2

(
σiz2(gi (z1) − gi (z2))

z1 − z2

)
d2z2

]
+ e(i), (8.33)

where gi (z) := − 1
z(1+mσi )

for simplicity, and e(i) is the error term. If we consider the linear statistics of the error term
e(i), using the same argument as for deformed Wigner matrix in Section 5.4, we have∣∣∣∣∣

N∑
i=1

gi (z)ei(z)

∣∣∣∣∣= O≺
(

1

Nη2
1

)
+ O≺

(
1

Nη0η1

)
.

As for the second cumulant expansion term I2, we apply the same argument as in (5.8) and the anisotropic law
Theorem 8.4 to find that

I2 = O≺
(

(1 + |λ|2)�(z)

N
√

η0

)
+ O≺

(
�2(z)√

N

)
.

We compute the third cumulant expansion term I3 similarly using (8.29), the local law Theorem 8.4 and (8.32). The
leading term comes from the second term of I3, denoted by D2, i.e.,

I3 = σi

2N2

N∑
j=1

E

[
∂2e0(λ)

∂2Xij

c
(4)
ij

(
Gii − (

Y ∗GY
)
jj

Gii − (GY)ij (GY)ij
)]+ O≺

((
1 + |λ|3)N−1�(z)

)
.

Using (8.27) and (8.31), D2 can be written as

D2 = σi

2N2

N∑
j=1

E

[
∂2e0(λ)

∂2Xij

c
(4)
ij

m

1 +mσi

]
+ O≺

((
1 + |λ|2)N−1�(z)

)
= − iK4σ

2
i λ

πN
E

[
e0(λ)

∫
�0

∂

∂z′ f̃
(
z′) ∂

∂z′

(
m(z)

1 +m(z)σi

m(z′)
1 +m(z′)σi

)
d2z′

]

+ O≺
(

1 + |λ|2
N

√
Nη0

)
+ O≺

((
1 + |λ|2)N−1�(z)

)
, (8.34)

where K4 is given in (8.2) and is independent of the index i.
Summing up and rearranging terms in (8.26), the coefficient in front of E[e0(λ)(1 −E)Gii] is given by

(z − σi + γ σi + γ σizmfc) = z
(
1 +m(z)σi

)
,

which is away from zero for z ∈ S′. Dividing both sides of (8.26) by this coefficient, we have

E
[
e0(λ)(Gii −EGii)

]= γ σi

Mz(1 +m(z)σi)2
E
[
e0(λ)(1 −E)(TrG)

]+ A4(i)

z(1 +m(z)σi)
+ D2(i)

z(1 +m(z)σi)
+ E(i),

where A4 and D2 are given in (8.33) and (8.34), and the error terms E(i) is analytic in �0 and estimated as before.
Summing over i and rearranging, we have(

1 − 1

M

M∑
i=1

γ σi

z(1 +m(z)σi)2

)
E
[
e0(λ)(1 −E)TrG

]=
M∑
i=1

A4(i)

z(1 +m(z)σi)
+

M∑
i=1

D2(i)

z(1 +m(z)σi)
+ E, (8.35)

where the error term E has an upper bound as in (5.14). Dividing by the coefficient 1− 1
M

∑M
i=1

γ σi

z(1+m(z)σi )
2 and recalling

(8.21), the first two terms on the right side of (8.35) are denoted as A and D respectively, and the error term is bounded
by (3.15). Using (8.33) and (8.21), we have

A = −z1m
′
1

m1

i2λγ

π
E

[
e0(λ)

∫
�0

∂

∂z2
f̃ (z2)

∂

∂z2

(
z2

z1 − z2

1

M

M∑
i=1

σigi (z1)
(
gi (z1) − gi (z2)

))
d2z2

]

= i2λ

π
E

[
e0(λ)

∫
�0

∂

∂z2
f̃ (z2)

(
m′

1m
′
2

(m1 −m2)2
− 1

(z1 − z2)2

)
d2z2

]
,
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where we set m1 := m(z1) and m2 := m(z2) for short. This follows from

z1z2
1

M

M∑
i=1

σigi (z1)gi (z2) = 1

M

N∑
i=1

σi

(1 +m1σi)(1 +m2σi)
= z1m1 − z2m2

γ (m1 −m2)
;

z2
1

1

M

M∑
i=1

σig
2
i (z1) = 1

M

N∑
i=1

σi

(1 +m1σi)2
= (z1m1)

′

γm′
1

.

Similarly, recalling (5.11), we obtain that

D = −z1m
′
1

m1

N∑
i=1

D2(i)

z(1 +m(z)σi)
= iK4γ λ

π
E

[
e0(λ)

∫
�0

∂

∂z2
f̃ (z2)

1

M

M∑
i=1

(
σ 2

i

m′
1

(1 +m1σi)2

∂

∂z2

m2

1 +m2σi

)
d2z2

]

= iK4γ λ

π
E

[
e0(λ)

∫
�0

∂

∂z2
f̃ (z2)

(
∂2

∂z1∂z2

[
1

M

M∑
i=1

1

(1 +m1σi)(1 +m2σi)

])
d2z2

]
.

Therefore, we obtain an analogue of Lemma 3.4, where the kernel is given instead by (8.23).
Next, we compute the explicit formula for the variance V (f ) given by (2.15) with K in (8.23) and test function f

in (2.11). Both in the bulk and at the edge, the second term of (8.23) will only contribute O(η0N
τ ), because of (8.22),

(8.19) and (3.1). It is sufficient to look at the first term. In the bulk, the main contribution of V (f ) comes from the term
− 2

(z1−z2)
2 with z1, z2 in different half planes. Hence by similar arguments as in Lemma 6.1, we obtain that

lim
N→∞V (f ) = 1

2π2

∫
R

∫
R

(g(x1) − g(x2))
2

(x1 − x2)2
dx1 dx2.

At the edge, we recall the expansion of m(z) near z = E+ from (B.3),

m(z) =m(E+) + c+
√

z − E+
(
1 + A+(

√
z − E+)

)= ξ+ + c+
√

z − E+ + O
(|z − E+|),

where the square root is taken in a branch cut such that Imm > 0 when Im z > 0, and c+ > c0 > 0 for sufficiently large N .
Differentiating it, we have

m′(z) = c+
2
√

z − E+
+ d+ + O

(√|z − E+|).
Therefore, repeating the arguments in the proof of Lemma 6.2, we get the variance at the edge

lim
N→∞V (f ) = 1

4π2

∫
R

∫
R

(
g(−x2

1) − g(−x2
2)

x1 − x2

)2

dx1 dx2.

8.3. Expectation and bias computation

Starting from (8.25), using the cumulant expansion and (8.29), we obtain that

zEGii = √
σi

N∑
j=1

EXij (GY)ij − 1 =
√

σi

N
E

N∑
j=1

c
(2)
ij

∂(GY)ij

∂Xij

− 1

+
√

σi

2!N 3
2

N∑
j=1

c
(3)
ij E

∂2(GY)ij

∂2Xij

+
√

σi

3!N2

N∑
j=1

c
(4)
ij E

∂3(GY)ij

∂3Xij

+ O≺
(
N− 3

2
)

= σi

N

N∑
j=1

EGii − σi

N

N∑
j=1

E
(
Y ∗GY

)
jj

Gii − σi

N

N∑
j=1

E
(
(GY)ij

)2 − 1 (8.36)
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+ σ
3/2
i

2N
3
2

N∑
j=1

c
(3)
ij E

(−6Gii(GY)ij + 6Gii(GY)ij
(
Y ∗GY

)
jj

+ 2
(
(GY)ij

)3)
(8.37)

+ σ 2
i

6N2

N∑
j=1

c
(4)
ij E

(−6(Gii)
2 + 12(Gii)

2(Y ∗GY
)
jj

− 6(Gii)
2((Y ∗GY

)
jj

)2)+ O≺
(
N− 3

2
)
. (8.38)

The first line (8.36) can be written as

σiEGii − σi

N
E
[
Tr
(
Y ∗GY

)
Gii

]− σi

N
E(GHG)ii − 1

= σi(1 − γ )EGii − zσiγE
[
M−1 TrGGii

]+ σi

N

(
1

1 + σim

)′
− 1 + O≺

(
N−3/2)

= σi(1 − γ )EGii − zσiγmfcE

(
Gii + 1

z(1 +mσi)

)
+ σiγ

M(1 +mσi)
ETrG − σ 2

i

N

m′

(1 + σim)2

− 1 + O≺
(
(Nη)−

3
2
)
.

Using the anisotropic local law and the same arguments as in (5.8), one shows that the second line (8.37) is O≺(N−1�(z)).
The local law implies that the last line (8.38) becomes

σ 2
i

N2

N∑
j=1

c
(4)
ij E

(−(Gii)
2 + 2(Gii)

2(Y ∗GY
)
jj

− (Gii)
2((Y ∗GY

)
jj

)2)+ O≺
(
N− 3

2
)

= − σ 2
i

N2

N∑
j=1

c
(4)
ij

(
m2

(1 +mσi)2

)
+ O≺

(
N− 3

2
)= −K4

σ 2
i

N

(
m2

(1 +mσi)2

)
+ O≺

(
N− 3

2
)
.

Therefore, we have

z(1 +mσi)

(
EGii + 1

z(1 +mσi)

)
= σiγ

1 +mσi

E
[
M−1 TrG − mfc

]− 1

M

γσ 2
i m

′

(1 + σim)2

− K4
1

M

γσ 2
i m

2

(1 +mσi)2
+ O≺

(
(Nη)−

3
2
)
.

Dividing both sides by z(1 +mσi) ∼ O(1) from (8.19) and summing over i, we obtain(
1 − 1

M

M∑
i=1

γ σi

z(1 +m(z)σi)2

)
E(TrG − Mmfc)

= − 1

M

M∑
i=1

γ σ 2
i m

′

z(1 +mσi)3
− K4

1

M

M∑
i=1

γ σ 2
i m

2

z(1 +mσi)3
+ O≺

(
1√
Nη3

)
.

Dividing both sides by the coefficient of E(TrG − Mmfc) and using (8.21), the error becomes O≺( 1
η
√

Nη
√

κ+η
) and the

leading term on the right side becomes (8.24). Therefore, we obtained an analogue of Proposition 2.9 with the integral
kernel b(z) given instead by (8.24).

Finally, we compute the explicit formula for the bias. Using (8.22), (8.19) and (3.1), the second term of b(z) will
contribute O(

√
η0Nτ ) both in the bulk and at the edge. In addition, (8.16) implies that the first term of b(z) can be

written as

(m′)2

m

1

M

M∑
i=1

γ σ 2
i

(1 + σim)3
= m′′

2m′ − m′

m
.
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The second term on the right side contributes O(
√

η0Nτ ). The first term vanishes if κ0 > c > 0 and thus the bias in the
bulk vanishes. At the edge, we use the expansion of m(z) around E+ from (B.3),

m′(z) = c+
2
√

z − E+
+ d+ + O

(√|z − E+|), m′′(z) = − c+
4(

√
z − E+)3

+ O

(
1√|z − E+|

)
.

Hence we have

m′′

2m′ = − 1

4(z − E+)
+ O

(
1√|z − E+|

)
,

and using the Sokhotski–Plemelj lemma, the bias at the edge becomes g(0)
4 .

Appendix A: Complex case

In this appendix, we extend previous results from real symmetric to complex Hermitian matrices. We will use the complex
analogue of Lemma 3.3.

Lemma A.1 (Complex cumulant expansion). Let h be a complex-valued random variable with finite moments, and f is
a complex-valued smooth function on R with bounded derivatives. Let cp,q be the (p, q) cumulant of h, which is defined
as

cp,q := (−i)p+q

(
∂p+q

∂sp∂tq
logEeish+ith

)∣∣∣∣
s,t=0

.

Then for any fixed l ∈ N, we have

E
[
h̄f (h, h̄)

]=
l∑

p+q=0

1

p!q!cp,q+1(h)E
[
f (p,q)(h)

]+ Rl+1,

where the error term satisfies

|Rl+1| ≤ ClE|h|l+2 max
p+q=l+1

{
sup

|x|≤M

∣∣f (p,q)(z, z̄)
∣∣}+ ClE

[|h|l+21|h|>M

]
max

p+q=l+1

∥∥f (p,q)(z, z̄)
∥∥∞,

and M > 0 is an arbitrary fixed cutoff.

Instead of (5.5), we have

∂Gij

∂Hab

= −GiaGbj , (A.1)

from which we obtain the analogue of Lemma 5.1.
The assumption EH 2

ij = 0 implies that c
(1,1)
ij = 1, c

(2,2)
ij = W4 − 2 for i 
= j . Using the anisotropic law and (A.1), one

shows similarly that the expansion terms corresponding to p + q = 3 are negligible. Using (A.1) and the analogue of
Lemma 5.1, we obtain that

(z − ai)E
[
e0(λ)(Gii −EGii)

]
= 1

N

N∑
j=1

c
(1,1)
ij E

[
∂

∂Hji

(
e0(λ)(Gji −EGji)

)]

+ 1

2!N2

N∑
j=1

c
(2,2)
ij E

[
∂3

∂2Hji∂Hij

(
e0(λ)(Gji −EGji)

)]+ · · ·
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= 1

N
E

[
e0(λ)

(
∂Gji

∂Hji

−E
∂Gji

∂Hji

)]
+ 1

N

N∑
j=1

E

[
∂e0(λ)

∂Hji

Gji

]
+ m2 − 1

N
E

[
∂e0(λ)

∂Hii

Gii

]

+ 1

N2

N∑
j=1

(W4 − 2)E

[
∂e0(λ)

∂Hji∂Hij

∂Gji

∂Hji

]
+ · · · .

Thus Proposition 2.7 holds with modified variance, i.e. m2 − 2 be replaced by m2 − 1, W4 − 3 be replaced by W4 − 2,
and the coefficient of the remaining term be 1 instead of 2. Similarly, as for the expectation,

(z − ai)EGii = E(HG)ii − 1 = 1

N

N∑
j=1

c
(1,1)
ij E

∂Gji

∂Hji

− 1 + 1

2!N2

N∑
j=1

c
(2,2)
ij E

∂3Gji

∂2Hji∂Hij

+ · · · .

Thus the first term of b(z) given in (2.19) vanishes, m2 − 2 is replaced by m2 − 1 and W4 − 3 is replaced by W4 − 2.

Appendix B: Proofs of auxiliary lemmas

Proof of Lemma 3.2. For 1 ≤ s ≤ 2, the proof is given in Lemma 4.4 in [44]. Since h(z) is holomorphic on �0,
∂
∂z

f̃ (z)h(z) = ∂
∂z

(f̃ (z)h(z)). Using Stokes’ formula, we have∫
�0

∂

∂z
f̃ (z)h(z)d2z = − i

2

∫
∂�0

f̃ (z)h(z)dz.

Since g is compactly support, f̃ (z) = 0 on ∂�0 except

�0 := {
x + iy : x ∈ supp(f ), |y| = N−τ η0

}
.

Using (3.1) we have∣∣∣∣∫
�0

∂

∂z
f̃ (z)h(z)d2z

∣∣∣∣≤ CK

∫
�0

(|y|−s
∣∣f (x)

∣∣+ |y|1−s
∣∣f ′(x)

∣∣)dz ≤ C′KNτsη1−s
0 . �

Proof of Lemma 4.3. Using the self-consistent equation of mfc in (2.6), we have

mfc(z1) − mfc(z2) = 1

N

N∑
i=1

(
1

ai − z1 − mfc(z1)
− 1

ai − z2 − mfc(z2)

)

= 1

N

N∑
i=1

(
z1 + mfc(z1) − z2 − mfc(z2)

(ai − z1 − mfc(z1))(ai − z2 − mfc(z2))

)
.

Dividing z1 + mfc(z1) − z2 − mfc(z2) on both sides and we get the first identity. Taking the derivative of (2.6), we have

1

N

N∑
i=1

1 + m′
fc(z)

(ai − z − mfc)2
= m′

fc(z). (B.1)

We treat Ĩ and Ĩs similarly. Thus we complete the proof. �

Proof of Lemma 4.4. Note that

∣∣Is(z)
∣∣≤ 1

N

N∑
i=1

1

|ai − z − mfc(z)|2 = Immfc(z)

Immfc(z) + η
< 1.

By (B.1), we have
m′

fc
1+m′

fc
= Is(z) and thus m′

fc(z) = Is (z)
1−Is (z)

. Using Lemma 4.1, we have

∣∣m′
fc(z)

∣∣≤ 1

|1 − Is(z)| ∼ 1√
κ + η

. (B.2)



542 Y. Li, K. Schnelli and Y. Xu

Differentiating (B.1) again, we obtain that

m′′
fc

(1 + m′
fc)

3
= 2

N

N∑
i=1

1

(ai − z − mfc)3
.

Combining (4.3) and (B.2), we get the upper bound of m′′
fc. The rest inequalities follow directly from Lemma 4.1. �

Proof of Lemma 5.1. Using (5.5), we have

∂e0(λ)

∂Hij

= iλ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

(
N∑

l=1

∂Gll

∂Hij

)
d2z = − i(2 − δij )λ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

(
G2)

ji
d2z.

Note that (G2)ji = d
dz

Gji(z). Since Gij is analytic in D′, using the Cauchy integral formula and the local law, we have

that for i 
= j , (G2)ji ≺ �(z)
Im z

. Combining with Lemma 3.2, we obtain that, for i 
= j ,∣∣∣∣∂e0(λ)

∂Hij

∣∣∣∣= O≺
(

1 + |λ|√
Nη0

)
.

Similarly, if i = j , we have

∂e0(λ)

∂Hii

= − iλ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

∂

∂z

1

ai − z − mfc(z)
d2z + O≺

(
1 + |λ|√

Nη0

)
.

Furthermore, we compute that

∂2e0(λ)

∂2Hij

= −λ2(2 − δij )
2

π2
e0(λ)

(∫
�0

∂

∂z
f̃ (z)

(
G2)

ji
d2z

)2

+ i(2 − δij )λ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

(
2
(
G2)

ji
Gij + (1 − δij )

(
G2)

ii
Gjj + (1 − δij )

(
G2)

jj
Gii

)
d2z.

For i 
= j , combining the local law and Lemma 3.2, we have

∂2e0(λ)

∂2Hij

= i2λ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

d

dz
(GjiGij + GiiGjj )d2z + O≺

(
(1 + |λ|)2

Nη0

)

= i2λ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

∂

∂z

1

(ai − z − mfc)(aj − z − mfc)
d2z + O≺

(
(1 + |λ|)2

√
Nη0

)
.

Similarly, for i = j , we have

∂2e0(λ)

∂2Hii

= iλ

π
e0(λ)

∫
�0

∂

∂z
f̃ (z)

∂

∂z

1

(ai − z − mfc)2
d2z + O≺

(
(1 + |λ|)2

√
Nη0

)
.

In general, using the local law, (5.5) and Lemma 3.2, we complete the proof of (5.4). �

Proof of Lemma 8.5. We start by proving the first two statements, using which we will show (8.21). The last statement
then follows directly from (8.21). Note that the first equation in (8.12) implies the first inequality in (8.19). To prove
the rest, we divide the spectral domain S into three regimes, corresponding to the bulk, the edge and the outside. First,
we consider z near the edge E+, i.e., z ∈ Se := {z = E + iη ∈ S : E ∈ [E+ − τ ′,E+ + τ ′]} for some small τ ′ > 0. Let
ξ = −m(z) so that (8.16) is equivalent to

z = F(ξ), F (ξ) := 1

ξ
+ γ

∫
R

t

1 − tξ
dμ	(t).

Due to (8.15), F(ξ) is analytic around ξ+, and we have

F(ξ) = F(ξ+) + F ′(ξ+)(ξ − ξ+) + 1

2!F
′′(ξ+)(ξ − ξ+)2 + O

(|ξ − ξ+|3),
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where the linear term vanishes because of (8.13). It also yields

F ′′(ξ+) = 2

ξ3+
+ 2γ

∫
t3

(1 − tξ+)3
dμ	(t) = 2γ

∫
t2

ξ+(1 − tξ+)3
dμ	(t) ≥ c > 0.

The last step follows from the fact that ξ+ ≥ c > 0 and 1 − tξ+ ≥ c > 0 for sufficiently large N . Thus we have the
expansion of m near the edge z = E+,

m(z) =m(E+) + c+
√

z − E+
(
1 + A+(

√
z − E+)

)= ξ+ + c+
√

z − E+ + O
(|z − E+|), (B.3)

where c+ > c0 > 0 for sufficiently large N , A+ is an analytic function with A+(0) = 0, and the square root is taken with
the branch cut such that Imm(z) > 0 when Im z > 0. Hence the corresponding density has the square root behavior at
the right edge. The left edge can be treated similarly when γ0 
= 1. Using the definition of Stieltjes transform, one shows
(8.20). Similar arguments can be found in Lemma A.5 in [48].

If E is inside the bulk, i.e., z ∈ Sb := {z ∈ S : E ∈ [E− + τ ′,E+ − τ ′]}, then Imm ≥ c > 0. Thus (8.19) and (8.20)
follows. Finally, for the outside spectral domain, if z ∈ So := {z ∈ S : dist(E, [E−,E+]) ≥ τ ′}, it follows from Imm ∼ η

and (8.15). Similar arguments can be found in Appendix A in [43].
Next, we will prove (8.21). We first prove the upper bound. Taking the real and imaginary part of (8.16), we have

E Imm+ η Rem = γ

M

M∑
i=1

σi Imm

|1 +mσi |2 ; E Rem− η Imm= − γ

M

M∑
i=1

1 + σi Rem

|1 +mσi |2 + γ − 1, (B.4)

with m ≡m(z). Then we have∣∣∣∣∣z − γ

M

M∑
i=1

σi

|1 +m(z)σi |2
∣∣∣∣∣=

∣∣∣∣iη − Rem

Imm
η

∣∣∣∣= |m|η
Imm

.

Using |m(z)| ∼ 1 and (8.20). we obtain an upper bound of the right side as C
√

κ + η. In addition,∣∣∣∣∣ 1

M

M∑
i=1

σi

|1 +m(z)σi |2 − 1

M

M∑
i=1

σi

(1 +m(z)σi)2

∣∣∣∣∣
= 2

∣∣∣∣∣ 1

M

M∑
i=1

σi(Im(1 +m(z)σi))
2 + iσi Re(1 +m(z)σi) Im(1 +m(z)σi)

|1 +m(z)σi |4
∣∣∣∣∣≤ C

√
κ + η,

hence we obtain an upper bound for the left side of (8.21). Next, it is sufficient to show the lower bound. If z ∈ Se, (8.15)
implies that Re(1 + σim) > c if we choose τ ′ sufficiently small. We split into two cases. If E ∈ [E−,E+], we have∣∣∣∣∣z − 1

M

M∑
i=1

γ σi

(1 +m(z)σi)2

∣∣∣∣∣≥
∣∣∣∣∣Im

(
z − 1

M

M∑
i=1

γ σi

(1 +m(z)σi)2

)∣∣∣∣∣≥
∣∣∣∣∣η + 2γ

M

M∑
i=1

σ 2
i ImmRe(1 + σim)

|(1 +m(z)σi)|4
∣∣∣∣∣

≥ 2γ

M

M∑
i=1

σi ImmRe(1 + σim)

|(1 +m(z)σi)|4 ≥ C
√

κ + η. (B.5)

Otherwise, E ∈ [E−,E+]c , we have∣∣∣∣∣z − γ

M

M∑
i=1

σi

(1 +m(z)σi)2

∣∣∣∣∣≥
∣∣∣∣∣|z| − γ

M

M∑
i=1

σi

|1 +m(z)σi |2
∣∣∣∣∣=

∣∣∣∣√E2 + η2 − E − Rem

Imm
η

∣∣∣∣
≥ |Rem|

Imm
η − η ≥ C

√
κ + η − η ≥ C′√κ + η,

if we choose τ ′ sufficiently small. The last second step follows from the fact that near the edge, |Rem| ≥ C > 0, because
of the second equation of (B.4). Next, if z ∈ Sb , then we have Imm > c. We also split into two cases. If Rem > 0, we
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repeat (B.5) to get (8.21). If Rem≤ 0, from (B.4) we have

γ

M

M∑
i=1

σi

|1 +mσi |2 = E + η
Rem

Imm
≤ E.

In addition, we have

Re
1

M

M∑
i=1

γ σi

(1 +m(z)σi)2
= γ

M

M∑
i=1

σi[Re(1 +m(z)σi)
2 − Im(1 +m(z)σi)]2]

|1 +m(z)σi |4 ≤ E − C.

Therefore, we have∣∣∣∣∣z − 1

M

M∑
i=1

γ σi

(1 +m(z)σi)2

∣∣∣∣∣≥ E − Re

(
γ

M

M∑
i=1

σi

(1 +m(z)σi)2

)
≥ C ≥ C

√
κ + η.

Finally, taking the derivative of (8.16), we obtain that

(zm)′ =m+ zm′ = 1

M

M∑
i=1

γ σim
′

(1 + σim)2
.

Hence, we finish the proof of (8.21), which directly implies (8.22). �

References

[1] A. Adhikari and J. Huang Dyson Brownian motion for general β and potential at the edge. Preprint, 2018. Available at arXiv:1810.08308.
[2] N. I. Akhiezer. The Classical Moment Problem: And Some Related Questions in Analysis. Hafner Publishing Co., New York, 1965. MR0184042
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