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Abstract. Let Mn be a class of symmetric sparse random matrices, with independent entries Mij = δij ξij for i ≤ j . δij are i.i.d.

Bernoulli random variables taking the value 1 with probability p ≥ n−1+δ for any constant δ > 0 and ξij are i.i.d. centered, subgaussian
random variables. We show that with high probability this class of random matrices has simple spectrum (i.e. the eigenvalues appear
with multiplicity one). We can slightly modify our proof to show that the adjacency matrix of a sparse Erdős–Rényi graph has simple
spectrum for n−1+δ ≤ p ≤ 1−n−1+δ . These results are optimal in the exponent. The result for graphs has connections to the notorious
graph isomorphism problem.

Résumé. On définit une classe Mn de matrices symétriques clairsemées, à coefficients indépendants, en posant Mij = δij ξij pour

i ≤ j , où les δij sont des variables aléatoires de Bernoulli i.i.d. prenant la valeur 1 avec probabilité p ≥ n−1+δ pour une constante
δ > 0 arbitraire, et les ξij sont des variables aléatoires sous-gaussiennes i.i.d. centrées. Nous montrons qu’avec une grande probabilité,
cette classe de matrices aléatoires a un spectre simple, c’est-à-dire que les valeurs propres sont de multiplicité 1. Une légère modification
de la démonstration de ce résultat permet de montrer montrer que la matrice d’adjacence d’un graphe d’Erdős–Rényi clairsemé a un
spectre simple pour n−1+δ ≤ p ≤ 1 − n−1+δ . Ces résultats sont optimaux en les exposants. Le résultat pour les graphes a des liens
avec le célèbre problème de l’isomorphisme de graphe.
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1. Introduction

The gaps between eigenvalues are natural objects to study in random matrix theory and are of central importance in
the field. Since the introduction of the notion of a random matrix, there have been numerous inquiries into the spacings
of consecutive eigenvalues of symmetric random matrices. For a matrix with eigenvalues λi , we denote the gaps by
δi = λi+1 − λi . The limiting global gap distribution for Gaussian matrices (GOE and GUE) has been well understood for
some time and can be deduced from Wigner’s surmise [14, Chapter 6,7]. Recent progress on universality has extended
these results to large classes of random variables [10,22]. At finer levels, meaning under proper normalization and for a
particular gap, the limiting distribution for the GUE was only calculated in 2013 by Tao [19]. The four moment condition
establishes that this distribution is universal for any random variable that matches the gaussian up to the first four moments.
Using advanced dynamical techniques, Erdős and Yau removed this condition [9].

Although these results describe the behavior of a single gap, δi , bounds on the smallest gap, δmin = mini δi , for general
matrices were still out of reach. Bourgade and Ben-Arous [5] showed that δmin is on the order of n−5/6 for the GUE
ensemble. Yet, currently, this issue does not fall into the scope of the four moment theorem. Although tail bounds for
individual δi were known for more general matrices [21,22], they were too weak to survive the union bound over all i to
conclude anything about δmin. Under severe restrictions on the smootheness and decay of the entries, Erdős, Schlein and

1K. Luh is supported by the National Science Foundation under Award No. 1702533.
2V. Vu is supported by NSF grant DMS 1307797 and AFORS grant FA9550-12-1-0083.

https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/
https://doi.org/10.1214/19-AIHP1032
mailto:kyle.luh@colorado.edu
mailto:van.vu@yale.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2308 K. Luh and V. Vu

Yau [8] proved that

P

(
En1/2 − ε

n1/2
≤ λi ≤ λk ≤ En1/2 + ε

n1/2
for some i

)
= o

(
εk2)

for any fixed k ≥ 1, any ε > 0 and any bounded E ∈R. Applying a union bound to this result yields

P
(
δmin ≤ δn−1/2) = o

(
nδ3) + exp(−cn)

for any δ > 0. Despite the strong bound, this result applies only to a small set of smooth random variables. Outside of
this set, even whether δmin could equal zero could not be settled by these previous results and was only resolved in 2014.
Phrased differently, the fact that a random matrix typically has simple spectrum (i.e. all eigenvalues have multiplicity
one) is a recent result due to Tao and Vu [23]. They show that the probability that a random matrix has simple spectrum
is bounded below by 1 − n−A for any constant A. In [16], this qualitative statement was refined to quantitative tail
bounds on the gaps between the eigenvalues and probability that a random matrix has simple spectrum was improved to
1 − exp(−nc) for a small unspecified constant c.

In the realm of graphs, whether or not a graph has simple spectrum (i.e. its adjancecy matrix has simple spectrum)
has practical complexity implications. Although great strides have been made recently on the notorious graph isomor-
phism problem [1], the best running time guarantees are still quasipolynomial. However, Babai, Grigoryev and Mount [2]
demonstrated ealier that the graph isomorphism problem restricted to the graphs with simple spectrum is in complexity
class P . A corollary of the random matrix result in [23] is that dense Erdős–Rényi random graphs have simple spectrum
which answered a question of Babai’s that had been open since the ’80’s.

In the past few years, there has been renewed interest in sparse random matrices due to their applications in data
science, where they require less storage space and fewer operations to manipulate [6,7,15]. In other settings, sparse
random matrices reflect the intuition that in many natural problems, each data point is dependent on only a few of the
many parameters [11–13,25]. For random graphs, the more interesting behavior occurs for sparse graphs. Many real-world
networks are sparse and applications often prefer graphs with fewer edges that maintain the necessary properties.

In this work, we establish that sparse random matrices have simple spectrum. Our result is nearly optimal in terms
of the range of sparsity. In the dense range, our work improves the probability bound in [16] to 1 − exp(−n1/128). The
particular value of the constant (1/128) is not meaningful and has not been optimized.

2. Main results

Let Mn be an n × n symmetric random matrix with entries mij = δij ξij for all i ≤ j , where δij is a Bernoulli random
variable that takes the value 1 with probability p = p(n) and ξij are iid random variables with mean zero, variance one,
and subgaussian moment bounded by B . We remind the reader that the subgaussian moment of ξij is the smallest t such
that E exp(ξ2

ij /t2) ≤ 2. Our main result is the following.

Theorem 2.1. For 0 < δ ≤ 1 a constant and p ≥ n−1+δ , then with probability at least 1 − exp(−(np)1/128), Mn has
simple spectrum.

Denote by G(n,p), the random variable that takes values in the labeled graphs on [n] vertices and distributed such
that each edge appears independently with probability p.

Theorem 2.2. Let An be the adjacency matrix of G(n,p) and 0 < δ ≤ 1 a constant. For n−1+δ ≤ p ≤ 1 − n−1+δ , with
probability at least 1 − exp((np)−1/128), An has simple spectrum.

Remark 2.3. Observe that for p = o(logn/n), there is likely to be at least two row of zeros in Mn and An. This yields
a zero eigenvalue with multiplicity at least 2. Thus, our bound on p is near optimal. We record here that the upperbound
on p does not appear in Theorem 2.1 as even with p = 1, there is additional randomness from the ξij . However, for the
adjacency matrix, for p = 1, we are left with the deterministic matrix Jn − In which has eigenvalue −1 with multiplicity
n − 1. By symmetry, the upperbound is also near optimal. In fact, we believe the true sparsity threshold is on the order of
p ≥ logn/n, but our current method needs a technical refinement to achieve this bound and we postpone this matter for
another occassion.
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The remainder of the paper is organized as follows. In Section 3 we give a birds-eye view of the proof, avoiding any
technical statements. In Section 4 we state several notational conveniences. In Sections 5 and 6 we develop the necessary
tools to control the deviation of Mn acting on two different sets of vectors (compressible and incompressible respectively).
Finally, in Section 7, we combine the results of the previous sections to obtain a short proof of Theorem 2.1. In the final
section, we discuss the necessary modifications to handle adjacency matrices of sparse random graphs.

3. Proof strategy

The overall approach is analogous to that used in [23] and [16]. For Mn as in Theorem 2.1, we write

Mn =
(

Mn−1 X

XT mnn

)
, (1)

where X = (x1, . . . , xn−1) ∈ R
n−1. For a matrix X, let λn(X) ≤ · · · ≤ λ1(X) be the eigenvalues of Mn. Let v = (x, a)

(where x ∈R
n−1 and a ∈ R) be the unit eigenvector associated to λi(Mn). By definition we have(

Mn−1 X

XT mnn

)(
x

a

)
= λi(Mn)

(
x

a

)
.

Restricting our attention to the top n − 1 coordinates gives(
Mn−1 − λi(Mn)

)
x + aX = 0.

Let w be the eigenvector of Mn−1 corresponding to λi(Mn−1). After multiplying on the right by wT , we deduce that∣∣awT X
∣∣ = ∣∣wT

(
Mn−1 − λi(Mn)

)
x
∣∣ = ∣∣λi(Mn−1) − λi(Mn)

∣∣∣∣wT x
∣∣.

By the Cauchy interlacing law, we must have λi(Mn) ≤ λi(Mn−1) ≤ λi−1(Mn). Therefore, if we let Ei be the event that
λi(Mn) = λi+1(Mn), then assuming a �= 0, on the event Ei , this implies that wT X = 0. A simple union bound over all
choices of a in w removes our assumption that a �= 0. Finally, if P(Ei ) = o(n−1) for all i, then a union bound yields the
result.

Our task thus reduces to showing that an eigenvector w of Mn−1 has the property that P(wT X = 0) is small. Note that
X and w are independent. By now, this is a well-studied phenomenon [17,18,20]. This small-ball probability is intimately
related to the arithmetic structure of the vector w. The goal then is to prove that with high probability, an eigenvector of
the submatrix Mn−1 will not have much structure. For this intermediate objective, we make the simple observation that
for v, a unit eigenvector of Mn, with eigenvalue λ,

(Mn − λ)v = 0.

For x close to v, (Mn − λ)x ≈ 0. This is reminiscent of the least singular problem for a random matrix and the details
of our argument draws heavily from the techniques of [3,18,24]. Choosing an appropriate net of the highly structured
vectors in Sn−1 and a net of potential eigenvalues, we show that these vectors are unlikely to be eigenvectors.

This aerial view of the argument obscures the technical obstacles that must be overcome when the matrices we deal
with are sparse. As the random variables are zero with large probability, the small-ball probabilities that appear tend to be
too large for direct union bounds to work. Delicate nets and careful balancing of probabilities is required to implement
our overall strategy.

4. Notation

For a vector v ∈ R
n and an index set I ⊂ [n], let vI ∈ R

|I | be the restriction of v onto that index set and PI (v) ∈ R
n be

the vector v with all coordinates in I c zeroed out.
We will also need finer control over index sets I ⊂ [n]. We let ord(I ) be the vector in N

|I | populated by elements of I

in increasing order. Then, we define I [k] := ord(I )k and I [k : k′] := ord(I )[k:k′], where [k : k′] := {i : k ≤ i ≤ k′}.
To avoid repition, we impose the assumption that, unless explicitly stated, any constants (usually numbered) in the

statement of the Lemmas, Propositions and Theorems depend only on δ and the subgaussian moment B . Additionally,
standard asymptotic notation (e.g. o, O) is stated with the assumption of n tending to infinity.
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5. Compressible vectors

5.1. Preliminaries

We divide the unit sphere into two classes. The compressible vectors are those that are close to sparse vectors and the
remaining vectors are called incompressible.

Definition 5.1. For M ∈N, a vector x is in Sparse(M) if |Supp(x)| ≤ M . For a δ ∈ (0,1), we denote

Comp(M, δ) := {
x ∈ Sn−1 : ∃y ∈ Sparse(M) such that ‖x − y‖2 ≤ δ

}
.

The incompressible vectors are defined to be

Incomp(M, δ) := {
x ∈ Sn−1 : x /∈ Comp(M, δ)

}
.

We will often make use of the following bound on the operator norm of Mn.

Proposition 5.2. There exist constants K,c > 0 such that

P
(‖Mn‖ ≥ K

√
pn

) ≤ exp(−cpn).

Proof. The proof of Theorem 1.7 in [3] can easily be modified to handle symmetric random matrices. The details can be
found in the proof of Theorem 1.14 [4]. �

5.2. Compressible vectors

Proposition 5.3. There exist constants C, C̄, c, c′ > 0 depending only on B , such that for

p ≥ C logn

n
, �0 :=

⌈
log 1/(8p)

log
√

pn

⌉
and λ ∈ [−C

√
pn,C

√
pn]

we have

P
(∃x ∈ Dom

(
M,(K + C)−4) ∪ Comp(M,ρ) s.t.

∥∥(Mn − λ)x
∥∥

2 ≤ Cρ
√

pn
) ≤ exp

(−c′pn
)
,

where ρ := C̄−�0−6 and p−1 ≤ M ≤ cn.

Remark 5.4. To gain some understanding of these parameters, observe that for p = n−1+δ for some constant δ > 0, then
�0 = O(1). Near the threshold, when p = logn

n
, �0 = �(logn/ log logn) so ρ = exp(−O(logn/ log logn)).

Although this result is highly non-trivial, the proof follows from a straightforward adaptation of Proposition 3.1 in [3].
We include the proof with the necessary modifications in Appendix A.1.

From this result, we obtain a bound on the probability that an eigenvector is compressible.

Corollary 5.5. For p−1 ≤ M ≤ cn, where c is the constant from Proposition 5.3, there exists a constant c′ > 0 such that

P
(∃ a unit eigenvector ∈ Comp(M,ρ)

) ≤ exp
(−c′pn

)
,

where ρ := C̄−�0−6.

Proof. By Lemma 5.2, all eigenvalues of Mn are in the interval I = [−K
√

pn,K
√

pn]. Consider an n−1-net of I

which can be constructed to be of size at most 2Kn
√

pn. For λ ∈ I that is an eigenvalue of Mn with eigenvector x ∈
Comp(M,ρ), there exists an element of the net, λ0, such that∥∥(Mn − λ0)x

∥∥
2 = ∥∥(λ − λ0)x

∥∥
2 ≤ n−1.

However, by Proposition 5.3,

P
(∃x ∈ Comp(M,ρ) s.t.

∥∥(Mn − λ0)x
∥∥

2 ≤ n−1) ≤ exp
(−c′pn

)
.

Taking a union bound over the λ0 and increasing C from Proposition 5.3 if necessary, yields the result. �
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6. Incompressible vectors

For these vectors, we develop small-ball probability bounds that are dependent on a measure of arithmetic strucutre (Least
Common Denominator) [18,24]. First, we introduce the following partition of the indices for v ∈ Incomp(M,ρ). Recall
that ρ := C̄−�0−6 with C̄ from Proposition 5.3. Let

σ(v) :=
{
k : ρ√

2n
≤ |vk| ≤ 1√

M

}
.

Due to the incompressibility of v, the cardinality of this set is large.

Lemma 6.1. For v ∈ Incomp(M,ρ) where ρ := C̄−�0−6,

∣∣σ(v)
∣∣ ≥ Mρ2

2
.

Proof. Define σ1(v) := {k : |vk| ≤ 1√
M

}. Since v is a unit vector, |σ c
1 | ≤ M . As y = Pσc

1
v is a sparse vector with support

at most M , the definition of incompressible vectors implies ‖v − y‖2 > ρ or ‖Pσ1(v)‖2
2 ≥ ρ2. Define the following set to

capture the lower bound.

σ2(v) :=
{
k : |vk| ≥ ρ√

2n

}
.

Clearly, ‖Pσ2(v)‖2
2 ≤ ρ2/2. Therefore,∥∥Pσ (v)

∥∥2
2 ≥ ∥∥Pσ1(v)

∥∥2
2 − ∥∥Pσc

2
(v)

∥∥2
2 ≥ ρ2/2.

By the upperbound on the coordinates in σ ,

ρ2

2
≤ ∥∥Pσ (v)

∥∥2
2 ≤ |σ |

M
.

Rearranging this inequality finishes the proof. �

For every v ∈ Incomp(M,ρ), we fix a set σ(v) of size exactly 
Mρ2/2�. Let τ ′(v) be the index set of the M coordinates
with largest magnitude. If this set is not uniquely defined, choose one arbitrarily. Let τ(v) := τ ′(v) \ σ(v) and σ̄ :=
[n] \ (τ ∪ σ). Now we divide [n] \ τ into disjoint sets I1, I2, . . . , Ik0 and J , with |Ik| = 
αn� ≤ M for 1 ≤ k ≤ k0 and
|J | ≤ 
αn� where α = o(1) is a parameter to be chosen later. For 1 ≤ k ≤ k0, we let

Ik := σ(v)[(k−1)
 Mρ2
2k0

�+1:k
 Mρ2
2k0

�] ∪ σ̄ (v)[(k−1)
|σ̄ |/k0�+1:k
|σ̄ |/k0�].

Finally, let I0 := J ∪ τ so |I0| ≤ 2M by our assumption on 
αn�. In words, I0 is the index set of the large coordinates and
the leftover smaller coordinates. Additionally, we have

1

2α
≤ n − |τ |


αn� − 1 ≤ k0 ≤ n − |τ |

αn� ≤ 1

α
.

The purpose of this construction is to have substantial control over the �2 norm and the �∞ norm of each vIk
for

1 ≤ k ≤ k0. In particular, we have

‖vIk
‖2 ≥

√
Mρ2α

8

ρ2

2n
= ρ2

4

√
Mα

n
:= ρ′. (2)

Furthermore,

‖vIk
‖∞ ≤ 1√

M
and ‖vIk

‖2 ≤ 2

√
αn

M
.

The Ik’s are filled by drawing sequentially from σ and σ̄ so that the entire partition is determined by τ ′ and σ . Thus,
there are at most

( n
M

)( n

Mρ2/2

)
partitions for all the vectors in Incomp(M,ρ).
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6.1. Small-ball probability

Recall from the proof strategy in Section 3 that we have reduced the problem to bounding the probability that an eigen-
vector of a random matrix is orthogonal to a random vector. As we will use various epsilon-net approximations, we need
a more quantitative version of orthogonality. In particular, we need to bound the probability that the dot product of the
eigenvector and the random vector are small. This leads naturally to the notion of small-ball probability.

Definition 6.2. The Lévy concentration of a random vector Z ∈R
n is defined to be

L(Z, ε) = sup
u∈Rn

P
(‖Z − u‖2 ≤ ε

)
.

Intuitively, the structure of a vector, v, will highly affect the Lévy concentration of the random variable v · X where
X is a random vector. To formalize this concept, we begin with a measure for the arithmetic structure of an entire unit
vector.

Definition 6.3. We define the least common denominator (LCD) of x ∈ Sn−1 as

D(x) = inf
{
θ > 0 : dist

(
θx,Zn

)
< (δ0p)−1/2

√
log+(

√
δ0pθ)

}
,

where δ0 is an appropriate constant (see Remark 6.4 below). This particular form of the LCD was first used in [24].

Remark 6.4. There exists constants δ0, ε̄0 ∈ (0,1) such that for any ε ≤ ε̄0, L(δξ, ε) ≤ 1 − δ0p where P(δ = 1) = p and
ξ is a subgaussian random variable with unit variance. We fix such a δ0 in Definition 6.3.

The quantitative relationship between the arithmetic structure of a vector and small ball probability is captured in the
following proposition.

Proposition 6.5 (Proposition 4.2, [3]). Let X ∈ R
n be a random vector with i.i.d. coordinates of the form ξj δj , where

P(δj = 1) = p and ξj ’s are random variables with unit variance and finite fourth moment. Then for any v ∈ Sn−1,

L(X · v,
√

pε) ≤ C

(
ε + 1√

pD(v)

)
,

where C depends only on the fourth moment of ξ .

Following [24], we introduce a tool that can reveal the arithmetic structure in small segments of the vector x.

Definition 6.6 (Regularized LCD). Let α ∈ (0,1). We define the regularized LCD of a vector v ∈ Incomp(M,ρ) as

D̂(v,α) = max
1≤j≤k0

D
(
xIj

/‖xIj
‖2

)
.

Recall that the α dependence stems from the constraint that |Ij | = 
αn�.

Combining Proposition 6.5 with the by now standard tensorization argument (see [18]), yields a bound on the Lévy
concentration of Mnx.

Proposition 6.7 (Small ball probabilities of Mnx via regularized LCD). There exists a constant C such that for all
ε ≥ 0, and I is an index set of size 
αn�,

L
(
Mnx, ε‖vI‖2

√
pm

) ≤ Cn−
αn�
(

ε + 1√
pD(vI /‖vI‖2)

)n−
αn�
.

Therefore, by the bounds in (2) and the above proposition, we have

L
(
Mnx, ερ′√pn

) ≤
(

Cε + C
√

pD̂(v,α)

)n−αn

.

We also have the following simple lower bound for the LCD.
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Proposition 6.8 (Lemma 6.2, [24]). Let x ∈ Sn−1. Then

D(x) ≥ 1

2‖x‖∞
.

We can deduce from this proposition and our bounds in (2), that

D̂(v,α) ≥ 1

2
ρ′√M. (3)

For the remainder of this section, we fix several parameters. For the readers’ convenience, we have aggregated and
highlighted several important variables below. Although we repeat these definitions, we urge the reader to refer to this
section when verifying calculations later.

M = n

(np)1/16
, α = (np)−1/16, ρ′ = ρ2

4

√
Mα

n

Remark 6.9. Recall that ρ := C̄−�0−6 with C̄ from Proposition 5.3. As observed in Remark 5.4, due to the assumption
that p ≥ n−1+δ , we have that

cδ ≤ ρ ≤ c′
δ

for two constants cδ , c′
δ only depending on δ. We will often implicitly make use of the fact that np → ∞.

6.2. Vectors with mid-range and small LCD

In this section, we show that matrices of the form Mn − λ are unlikely to have vectors in their nullspace with mid-range
or small LCD.

6.2.1. Mid-range LCD: 1
c̄

n1/2

(pn)1/32 ≤ D̂ ≤ exp((np)1/32)

One of the main technical contributions of this article is the following proposition.

Proposition 6.10 (Mid-range LCD). For δ > 0, p ≥ n−1+δ and λ ∈ [−K
√

pn,K
√

pn]. There exist constants

c, c′′, c̃ > 0

such that for M = n

(np)1/16 ,

P
(∃v ∈ ŜD s.t.

∥∥(Mn − λ)v
∥∥

2 ≤ c̃ε0(pn)7/16) ≤ exp
(−c′′n

)
,

where 1
c̄

n1/2

(pn)1/32 ≤ D ≤ exp((np)1/32), ε0 = c n1/2

(np)1/32D
and

ŜD := {
v ∈ Incomp(M,ρ) : D ≤ D̂(v) ≤ 2D

}
.

Recall that ρ := C̄−�0−6, �0 := 
 log 1/(8p)

log
√

pn
� where C̄ is the constant from Proposition 5.3.

6.2.2. Level sets for the usual LCD
We remind the reader of some key terminology. Working in some metric space, a β-net of a set S is a subset S′ ⊂ S such
that for every s ∈ S, there exists a s′ ∈ S′ such that ‖s − s′‖ ≤ β . We first construct level nets of the LCD (not regularized)
for vectors of length 
αn�. We drop the ceiling function when such precision is not crucial. We keep the n dependence in
this section as various parameters, e.g. p(n), more conveniently depend on n rather than αn.

Lemma 6.11. For p ≥ n−1+δ ,

β = 2
√

log(2
√

δ0pD0)

D0
√

δ0p
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and D0 > 0, the set {v ∈ Sαn−1 : D(v) ∈ (D0,2D0]} has a β-net, N , such that

|N | ≤
(

2 + c̄D0√
αn

)αn

for a universal constant c̄.

Proof. For a v with D(v) ∈ (D0,2D0], by the definition of LCD, there exists a θ ∈ (D0,2D0] and z ∈ Z such that

‖θv − z‖2 <

√
log(

√
δ0pθ)√

δ0p

which implies that∥∥∥∥v − z

θ

∥∥∥∥
2
<

√
log(2

√
δ0pD0)

D0
√

δ0p
.

We also have∥∥∥∥∥∥∥∥ z

‖z‖2

∥∥∥∥
2
− ‖z‖2

θ

∥∥∥∥
2
=

∥∥∥∥‖v‖2 − ‖z‖2

θ

∥∥∥∥
2
<

∥∥∥∥v − z

θ

∥∥∥∥
2
.

Combining the above estimates gives∥∥∥∥v − z

‖z‖2

∥∥∥∥
2
≤

∥∥∥∥v − z

θ

∥∥∥∥
2
+

∥∥∥∥ z

θ
− z

‖z‖2

∥∥∥∥
2

≤
∥∥∥∥v − z

θ

∥∥∥∥
2
+

∥∥∥∥∥∥∥∥ z

‖z‖2

∥∥∥∥
2
− ‖z‖2

θ

∥∥∥∥
2

≤ 2
√

log(
√

δ0pθ)

D0
√

δ0p
.

Note that

‖z‖2 ≤ ‖z − θv‖2 + ‖θv‖2 ≤
√

log(
√

δ0pθ)√
δ0p

+ 2D0 ≤ 4D0.

The last inequality follows from recalling that D0 ≥ ρ′√M ≥ c2
δ

√
n

4(np)5/32 so D0
√

p ≥ c2
δ

4 (np)11/32 ≥ √
log(

√
δ0pθ). Let

Z := {
z ∈ Z

m : supp(z) ∈ I and 0 < ‖z‖2 ≤ 4D0
}
.

Define N := {z/‖z‖2 : z ∈ Z}. By the standard volumetric calculation,

|N | ≤
(

2 + c̄D0√
m

)m

for some universal constant c̄. N serves as an appropriate net. �

The above lemma can be modified so that β is a function of D rather than D0.

Lemma 6.12. For

β = 2
√

log(2
√

δ0pD)

D
√

δ0p

and D0 > 0, the set {v ∈ Sαn−1 : D(v) ∈ (D0,2D0]} has a β-net, N , such that

|N | ≤
(

12 + c̄D√
αn

)αn

for a universal constant c̄.
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Proof. By Lemma 6.11, the set is covered by at most (2 + c̄D√
αn

)αn balls of radius β0 = 2
√

log(2
√

δ0pD0)

D0
√

δ0p
. If β ≥ β0 then

the result follows immediately. Assume β < β0. A β/2 net of size (4β0/β)αn ≤ (3D/D0)
αn. Therefore, the number of

small balls is at most(
2 + c̄D0√

αn

)αn(3D

D0

)αn

≤
(

12 + c̄D0√
αn

)αn

. �

Now we extend the net to cover all vectors with LCD less than 2D0.

Lemma 6.13. For D > f (n) = ω(1), then the set{
v ∈ Sαn−1 : f (n) ≤ D(v) ≤ D

}
has a β-net of size at most(

12 + c̄D0√
αn

)αn

log(D).

Proof. Decompose the set{
x ∈ Sm−1 : D(v) ≤ D

} =
⋃
k

{
v ∈ Sm−1 : D(x) ∈ (

2−kD,2−k+1D
]}

,

where the union is over all k such that (2−kD,2−k+1D] has non-zero intersection with [f (n),D]. Each of these intervals
has a β-net by Lemma 6.11. There are at most logD such k. �

6.2.3. Nets for the level sets of the regularized LCD
Let

S
D̂

:= {
v ∈ Incomp(M,ρ) : D < D̂(v) ≤ 2D

}
and set

M = n

(np)1/16
, α = (np)−1/16 and ε0 = c

√
αn

D
,

where c is the constant from Proposition 6.10. We record several useful bounds which are consequences of our choice of
parameters,

c2
δ

4
(np)−1/16 ≤ ρ′ ≤ c′

δ
2

4
(np)−1/16.

One can check that p−1 ≤ M since np → ∞ so that M is in the range of Corollary 5.5.
Let c∗ be a constant less than 1/2C with C the constant from Proposition 6.7. We first create an c∗ρ′ε0/10K-net for

the coordinates in I0. For this set, we use a trivial-net N0 of size at most(
10K

c∗ε0ρ′

)2M

.

Recall that ‖vIk
‖∞ ≤ 1√

M
, so by Porposition 6.8, D̂(v) ≥ ρ′√M for any v ∈ Incomp(M,ρ). For each Ik with 1 ≤ k ≤ k0,

by Lemma 6.13 and the fact that LCD(vIk
/‖vIk

‖2) ≤ 2D, we can create a β = 2
√

log(2
√

δ0pD)

D
√

δ0p
-net of size at most

(
12 + c̄D0√

αn

)αn

log(D).

Let N̄I be an c∗ρ′ε0
10Kk0

-net of [ρ′,1] of size at most 30Kk0
c∗ε0ρ

′ .
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Define

M :=
{
x +

∑
k

tkyk : x ∈N0, y ∈ Nk, t ∈ N̄k

}
.

We note that

|M| ≤
(

10K

c∗ε0ρ′

)2M ∏
k

(
12 + c̄D0√

λn

)λn

log(D)

(
30Kk0

c∗ε0ρ′

)
.

For any v ∈ SD , there exists a m = x + ∑
k tkyk ∈M such that

‖x − vI0‖2 ≤ c∗ρ′ε0

10K
,

∥∥∥∥yk − vIk

‖vIk
‖2

∥∥∥∥
2
≤ β, and

∣∣tk − ‖vIk
‖2

∣∣ ≤ c∗ρ′ε0

10Kk0
.

Therefore,

‖v − m‖2 ≤ c∗ρ′ε0

10K
+

∑
k

(∥∥vIk
− ‖vIk

‖2yk

∥∥
2 + ∥∥‖vIk

‖2yk − tkyk

∥∥
2

)
≤ c∗ρ′ε0

10K
+

∑
k

(∥∥∥∥ vIk

‖vIk
‖2

− yk

∥∥∥∥
2
‖vIk

‖2 + ∥∥‖vIk
‖2yk − tkyk

∥∥
2

)

≤ c∗ρ′ε0

10K
+ k0

(
2β + cρ′ε0

10Kk0

)

≤ c∗ρ′ε0

5K
+ 1

α

2
√

log(2
√

δ0pD)

D
√

δ0p

= c∗ρ′ε0

5K
+ 4√

Mρ2

1

α

2
√

log(2
√

δ0pD)

c
√

δ0p
ρ′ε0.

Using the upper bound on D ≤ exp((np)1/32) ≤ exp(
c2Mρ4α2p

K2 ) where c is the constant from Proposition 6.10, we deduce
that

‖v − m‖2 ≤ c∗ρ′ε0

5K
+ o

(
ρ′ε0

) ≤ ρ′ε0

4K
.

At this point, there is no guarantee that the elements of M lie in ŜD . We rectify this issue by slightly adjusting M. For
every m ∈ M, if there exists a v ∈ ŜD such that ‖v −m‖2 ≤ c∗ρ′ε0

4K
then replace m by v. Otherwise, simply discard m. We

call this new set M′ and note that |M′| ≤ |M|. By the triangle inequality, M′ is a c∗ρ′ε0
2K

-net of ŜD .

6.2.4. Proof of Proposition 6.10

Proof. Fix a λ ∈ [−K,K]. In the last section, we showed that for all the vectors with the same σ , τ , M′ is an cρ′ε0/2K-
net of ŜD . Let EM′ be the event that there exists a m ∈M′ such that ‖(Mn −λ)m‖2 > c∗ρ′ε0

√
pn. As we fixed c < 1/2C

with C from Proposition 6.7, one can verify that

ε0 ≥ 1√
pD

,

by Lemma 6.7,

P(EM) ≤ |M|εn−
αn�
0 .

By our lower bound on D, we have that c̄D/
√

αn ≥ 1.

P(EM′) ≤
(

n

2M

)(
n

Mρ2

)(
10K

c∗ε0ρ′

)2M(
2c̄D√

αn

)n

logα−1
(2D)

(
30Kk0

c∗ε0ρ′

)α−1

ε
n−
αn�
0
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≤
(

n

2M

)(
n

Mρ2

)(
10K

c∗ρ′

)2M(
2c̄D√

αn

)n

logα−1
(2D)

(
30Kk0

c∗ρ′

)α−1(
c
√

αn

D

)n−
αn�−2M−α−1

≤ exp

(
−n

(
−2M

n
logn − c′2

δM

n
logn − 2M

3n
log(pn) + n − αn − 2M − α−1

n
log(1/c)

− log(2c̄) − α−1

10n
log(pn) − α−1

n
log

(
120Kk0

c∗c2
δ

(pn)1/32
)

− αn + 2M + α−1

n
log(D/

√
αn)

))

≤ exp

(
−n

(
− log(2c̄) + 1

2
log

(
1

c

)
− αn + 2M + α−1

n
(np)1/32 + o(1)

))
≤ exp

(
−n

(
− log(2c̄) + 1

2
log

(
1

c

)
+ o(1)

))
≤ exp

(−c′′n
)

for small enough c from Proposition 6.10. On the event EM′ , for any v ∈ ŜD , we can find a m ∈M′ such that ‖v −m‖2 ≤
ρ′ε0/2K . Therefore,

∥∥(Mn − λ)v
∥∥

2 ≥ ∥∥(Mn − λ)m
∥∥

2 − ‖Mn − λ‖‖v − m‖2 ≥ cρ′ε0
√

pn

2
.

The proof is complete upon setting c̃ = c∗c2
δ c. �

Remark 6.14. Note that a trivial ε0 net of the unit sphere is of size (3D/c
√

αn)n which is of the same order as our more
involved construction. However, the key gain of our design is that it is c̄ that appears in the dominant term of our net size
and c from Proposition 6.10 can be defined independently.

6.2.5. Small LCD
For this range of regularized LCD, a nearly identical argument as Proposition 6.10 applies. As the choice of parameters
is different, we show the necessary computations below.

Proposition 6.15 (Small LCD). For δ > 0, p ≥ n−1+δ and λ ∈ [−K
√

pn,K
√

pn]. There exist constants

c′′, c̃ > 0

such that for M = n

(np)1/8

P
(∃v ∈ ŜD s.t.

∥∥(Mn − λ)v
∥∥

2 ≤ c̃ε0(pn)7/16) ≤ exp
(−c′′n

)
,

where ρ′√M ≤ D ≤ 1
c̄

√
αn, ε′

0 = (ρ′√pM)−1/2 and

ŜD := {
v ∈ Incomp(M,ρ) : D ≤ D̂(v) ≤ 2D

}
.

Recall that ρ := C̄−�0−6, �0 := log 1/(8p)

log
√

pn
.

Using this new ε′
0, we have

‖v − m‖2 ≤ cρ′ε0

10K
+

∑
k

(∥∥vIk
− ‖vIk

‖2yk

∥∥
2 + ∥∥‖vIk

‖2yk − tkyk

∥∥
2

)
≤ cρ′ε′

0

10K
+

∑
k

(∥∥∥∥ vIk

‖vIk
‖2

− yk

∥∥∥∥
2
‖vIk

‖2 + ∥∥‖vIk
‖2yk − tkyk

∥∥
2

)

≤ cρ′ε′
0

10K
+ k0

(
β + cρ′ε′

0

10Kk0

)
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≤ cρ′ε′
0

5K
+ k0

2
√

log(2
√

δ0pρ′√M)

ρ′√M
√

δ0p

≤ cρ′ε′
0

5K
+ k0

2
√

log(2
√

δ0pρ′√M)

(ρ′)ρ′1/2(Mp)1/4
√

δ0
ρ′ε′

0

≤ cρ′ε′
0

10K
.

The third to last inequality follows from the observation that the function x →
√

log(c1x)

c2x
is a decreasing function

for large values of x,
√

δ0pρ′√M ≥ (np)3/8 and np → ∞. The last inequality follows from the simple calculation
ρ′ρ′1/2(Mp)1/4 → ∞.

Again, it is easy to check that ε0 ≥ 1√
pD

, so by Lemma 6.7,

P(EM) ≤ |M|εn−
αn�
0 .

As, c̄D/
√

αn < 1,

P(EM) ≤
(

n

2M

)(
n

Mρ2

)(
10K

cε0ρ′

)2M

(13)n logα−1
(2D)

(
30Kk0

cε0ρ′

)α−1

ε
n−
αn�
0

≤
(

n

2M

)(
n

Mρ2

)(
10K

cρ′

)2M

(13)n logα−1
(2D)

(
30Kk0

cρ′

)α−1(
1√

ρ′(pM)1/4

)n−
αn�−2M−α−1

≤ exp(−n).

We extend this to all the vectors in ŜD by the same approximation argument.

7. Proof of Theorem 2.1

Proof. By Corollary 5.5, with probability 1 − exp(−cn) with c from Corollary 5.5, the eigenvectors of Mn−1 are not
compressible. We now show that the eigenvectors of Mn−1 do not have mid-range or small regularized LCD. We begin

with the mid-range vectors. Let 1
c̄

n1/2

(pn)1/32 ≤ D ≤ exp((np)1/32). We demonstrate that an eigenvector is unlikely to be in

ŜD . Let P be a c̃ε0(pn)7/16-net of [−K
√

pn,K
√

pn] with c̃ from Proposition 6.10 and

|P| ≤ 2K
√

pn

c̃ε0(pn)7/16
≤ exp

(
(np)1/16).

If v ∈ ŜD and is an eigenvector with eigenvalue λ, then there is a λ0 ∈P with |λ − λ0| ≤ c̃ε0(pn)7/16. Therefore,∥∥(Mn − λ0)v
∥∥

2 ≤ |λ − λ0| ≤ c̃ε0(pn)7/16.

Thus, by Proposition 6.10 and a union bound, with probability greater than 1 − exp(−c′′n/2), an eigenvector of Mn−1
will not lie in ŜD . Consider the following decomposition.{

v ∈ Incomp(M,ρ) : 1

c̄

n1/2

(pn)1/32
≤ D̂(v) ≤ exp

(
(np)1/32)}

=
⋃
k

{
v ∈ Incomp(M,ρ) : D(v) ∈ (

2−k exp
(
(np)1/32),2−k+1 exp

(
(np)1/32)]},

where k takes values such that (2−k exp((np)1/32),2−k+1 exp((np)1/32)] has a non-zero intersection with [ 1
c̄

n1/2

(pn)1/32 ,

exp((np)1/32]. There are at most (np)1/16 such k, so by a simple union bound, we can guarantee that the event, Emid,

that Mn−1 does not have eigenvectors with regularized LCD in [ 1
c̄

n1/2

(pn)1/32 , exp((np)1/32] occurs with probability at least
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1 − exp(−c′′/3). By an identical argument, replacing Proposition 6.10 with Proposition 6.15, we have that the event,

Esmall, that the eigenvectors of Mn−1 have regularized LCD that lie outside of the interval [ρ′√M, 1
c̄

n1/2

(pn)1/32 ] occurs with
probability at least 1 − exp(−cn/3) with c from Proposition 6.15. On the event Emid ∩ Esmall, by Proposition 6.5,

P(Ei |Emid ∩ Esmall) ≤ P(X · v = 0|Emid ∩ Esmall) ≤ C√
p exp((np)1/32)

≤ exp
(−(np)1/64),

where X is from the decomposition of Mn in (1). Taking a union bound over all i, we conclude that Mn has simple
spectrum with probability at least 1 − exp(−(np)1/64/2). �

8. Erdős–Rényi random graphs

Let Gn be a random variable that takes values in the simple graphs on n vertices with vertex set [n]. Gn is distributed
such that an edge appears between two vertices independently with probability p. Let An denote the adjacency matrix
of Gn. Note that the entries of An have mean p. Thus, Theorem 2.1 does not immediately apply. However, the expected
adjancecy matrix is p(J − I ) where J is the n × n all ones matrix. However, J is a rank one matrix and we can exploit
this fact to adjust our proof to handle this case. As the proof is only slightly modified, we do not repeat the argument and
only highlight the necessary changes. These adjustments follow those in [3, Section 7].

In preparation for the proof of Theorem 2.2, we need analogues of Proposition 5.3, Proposition 6.10 and Proposi-
tion 6.15. The necessary changes for Proposition 5.3 are discussed in Appendix B. For Propositions 6.10 and Proposi-
tion 6.15, the first step was to obtain estimates on the Lévy concentration. As this function is insensitive to shifts in the
mean, the first part of the proof holds without change. For the net arguments to hold, we simply make the observation that
An − p(Jn − In) is a mean zero random matrix so the standard arguments (e.g. those in Proposition 5.2) yield

P
(∥∥An − p(Jn − In)

∥∥
2 ≥ K ′√pn

) ≤ exp
(
c′pn

)
.

Therefore we have the following two propositions.

Proposition 8.1 (Mid-range LCD). For δ > 0, n−1+δ ≤ p ≤ 1/2 and λ ∈ [−K
√

pn,K
√

pn]. There exist constants

c, c′′, c̃ > 0

such that for M = n

(np)1/16 ,

P
(∃v ∈ ŜD s.t.

∥∥(
An − p(Jn − In) − λ

)
v
∥∥

2 ≤ c̃ε0(pn)7/16) ≤ exp
(−c′′n

)
,

where 1
c̄

n1/2

(np)1/32 ≤ D ≤ exp((pn)1/32), ε0 = cn1/2−δ/12/D and

ŜD := {
v ∈ Incomp(M,ρ) : D ≤ D̂(v) ≤ 2D

}
.

Proposition 8.2 (Small LCD). For δ > 0, n−1+δ ≤ p ≤ 1/2 and λ ∈ [−K
√

pn,K
√

pn]. There exist constants

c, c′′, c̃ > 0

such that for M = n

(np)1/8

P

(
∃v ∈ ŜD s.t.

∥∥(
Mn − p(Jn − In) − λ

)
v
∥∥

2 ≤ c̃

2
ε0(pn)7/16

)
≤ exp

(−c′′n
)
,

where ρ′√M ≤ D ≤ 1
c̄

√
αn, ε′

0 = (ρ′√pM)−1/2 and

ŜD := {
v ∈ Incomp(M,ρ) : D ≤ D̂(v) ≤ 2D

}
.
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8.1. Proof of Theorem 2.2

Proof. (Sketch) We first handle the case where p ≤ 1/2. Observe that the set {Jnx : x ∈ Sn−1} = {θ · 1 : θ ∈ [−n,n]}
where 1n is the vector of all ones. Let Xn = {κ · 1 : κ ∈ [−pn,pn]}. As this is a one-dimensional set, we can create a net
with small cardinality. Let B be a c̃ε0(pn)7/16-net of Xn with c̃ from Proposition 8.1 and

|B| ≤ 2pn

c̃ε0(pn)7/16
≤ exp

(
(np)1/16).

By the triangle inequality, for x, x′ ∈Xn,∣∣inf
∥∥(

An − p(Jn − In) − λ
)
v − x

∥∥
2 − ∥∥(

An − p(Jn − In) − λ
)
v − x′∥∥

2

∣∣ ≤ ∣∣x − x′∣∣.
Therefore, the standard union bound and triangle inequality argument shows that for D in the mid-range LCD,

P

(
inf

x∈Xn

inf
v∈SD

∥∥(
An − p(Jn − In) − λ

)
v − y

∥∥
2 ≤ c̃ε0(pn)7/16

)
≤ exp(−cn).

The same applies for the low-range. Finally observing that,

inf
x∈Xn

inf
v∈SD

∥∥(
An − p(Jn − In) − λ

)
v − y

∥∥
2 ≤ inf

v∈SD

∥∥(
An − (λ − p)

)
v
∥∥

2,

summing over the level sets as before and using the same net argument on λ, we can conclude that any eigenvector of An

has large LCD. The rest of the argument proceeds as in the proof of Theorem 2.1.
For the remaining p > 1/2 case, we observe that the adjacency matrix of G(n,p), An(p), has the same distribution as

Jn − In −An(1−p). Therefore, to control ‖(An(p)−p(Jn − In)λ)v‖2 it suffices to manage ‖(An(1−p)− (1−p)(Jn −
In))v‖2, for which our previous argument applies. �

9. Concluding remarks

As mentioned before, we believe the threshold for a random matrix to have simple spectrum should be p ∼ logn/n

rather than p ∼ n−1+δ . The calculations near the threshold are more involved and will appear elsewhere. Additionally,
our arguments naturally offer a quantitative bound on the size of the gaps between eigenvalues and the smallest absolute
value of an eigenvalue (which is needed to bound the condition number of the matrix). We have made no attempt to
optimize these bounds so we pursue this line of work in a separate article.

The proof of our result for adjacency matrices applies almost without change to matrices of the form Rn + Mn where
Rn is a deterministic low-rank matrix. However, to generalize this result to arbitrary non-zero mean matrices requires
several new tools which we are currently developing. The ε-net arguments that lie at the core of our current work fail in
this setting as we no longer have the necessary control on the operator norm of the matrix and the image of the matrix
may not be a perturbation of a low-dimensional space as for the adjacency matrix. To address these new concerns, it will
be necessary to use sparse versions of the Inverse Littlewood–Offord theorems of the second author and Nguyen.

Appendix A: Proof of Proposition 5.3

A.1. Matrix lemma

The following observation was first utilized in [3]. If we fix the submatrix corresponding to the support of a sparse vector,
it is likely that many of these rows will contain exactly one non-zero entry. In this case, in the product of the matrix with
the sparse vector, there is no cancellation in these coordinates. As we are dealing with deviations of a matrix from a fixed
vector u, we simply modify the lemma to show that there are many rows with exactly one non-zero coordinate with a
convenient sign.

Lemma A.1. Let Mn be a n × n matrix with independent entries mij = δij ξij where δij are Bernoulli random variables
with P(δij = 1) = p, where p ≥ C logn/n and ξij are iid random variables with max{P(ξij ≥ 1),P(ξij ≤ −1)} ≥ c0. For
κ ∈ N, we define EJJ ′

c to be the event that for any vector of signs {εj }nj=1 there are at least cκpn rows of Mn for which
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there is exactly one non-zero entry mij with mij εj ≥ 1 and i �= j in the columns corresponding to J , and all zero entries
in the columns corresponding to J ′. Let

m= κ := κ
√

pn ∧ 1

8p
.

Then, there exists constants 0 < cA.1, c
′
A.1, depending only on c0 such that

P

( ⋂
κ≤(8p

√
pn)−1∨1

⋂
J∈

( [n]
κ

) ⋂
J ′∈

( [n]
m

)
,J∩J ′=∅

EJ,J ′
c′
A.1

)
≥ 1 − exp(−cpn).

Proof. The same proof as in [3, Proof of Lemma 3.2] yields the result when applied to the upper �n/2�×�n/2� submatrix
of Mn. The entries in this submatrix are independent. �

A.2. Very sparse vectors

Definition A.2. For any x ∈ Sn−1, let πx : [n] → [n] be a permutation which arranges the absolute values of the coordi-
nates of x in an non-increasing order. For 1 ≤ m ≤ m′ ≤ n, denote by x[m:m′] ∈ R

n the vector with coordinates

x[m:m′](j) = x(j) · 1[m:m′]
(
πx(j)

)
.

In other words, we include in x[m:m′] the coordinates of x which take places from m to m′ in the non-increasing rearrange-
ment.

For α < 1 and m ≤ n define the set of vectors with dominated tail as follows:

Dom(m,α) := {
x ∈ Sn−1 | ‖x[m+1:n]‖2 ≤ α

√
m‖x[m+1:n]‖∞

}
.

Lemma A.3. Denote

�0 :=
⌈

log(1/8p)

log
√

pn

⌉
,

P
(∃x ∈ Dom

(
1/8p, (CK)−1)

such that
∥∥(Mn − λ)x

∥∥
2 ≤ (

C′K
)−�0√pn

and ‖Mn − λI‖ ≤ K
√

pn
)

≤ exp(−cpn).

Proof. We begin by diving [n] into two roughly equal sets. Let n0 = 
n/2�. We denote this decomposition by

Mn − λI =
(

A B

BT C

)
, x =

(
y

z

)
.

Thus, we have the following equivalence.∥∥(Mn − λ)x
∥∥2

2 = ‖Ay + Bz‖2
2 + ∥∥BT y + Cz

∥∥2
2.

We condition on a realization of A and C.

P
(∃x ∈ Sparse(m) ∩ Sn−1 such that

∥∥(Mn − λ)x
∥∥

2 ≤ √
cnp

)
.

Let us begin with the assumption that p ≥ (1/4)n−1/3. In this regime, �0 = 1. For k ∈ [n] let Jk = {k} and J ′
k =

supp(x) \ Jk . Define the following vectors of signs. {εj }nj=1 = {sgn(zj ) · sgn((Ay)j )}nj=1.∥∥(Mn − λ)x
∥∥2

2 ≥
∑

k∈supp(x)∩[1,n0]

∑
i∈Ik

(
(Bz)i + (Ay)i

)
)2 +

∑
k∈supp(x)∩[n0+1,n]

∑
i∈Ik

((
BT y

)
i
+ (Cz)i

)2
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≥
∑

k∈supp(x)∩[1,n0]

∑
i∈Ik

(Bz)2
i +

∑
k∈supp(x)∩[n0+1,n]

∑
i∈Ik

(
BT y

)2
i

≥
∑

k∈supp(x)∩[1,n0]
cA.1pnz2

i +
∑

k∈supp(x)∩[n0+1,n]
cpny2

i = cpn,

where in the final inequality we have invoked Lemma A.1 with the necessary signs. Now we extend this estimate to
Dom(1/8p, (CK)−1). Let m = (8p)−1. Assume that

∥∥(Mn − λ)x
∥∥ <

1

2
√

cpn.

Since x ∈ Sn−1, we have ‖x[m+1:n]‖∞ ≤ m−1/2. Therefore,

‖x[m+1:n]‖2 ≤ (CK)−1√m‖x[m+1:n]‖∞ ≤ (CK)−1.

Therefore we have∥∥(Mn − λ)x[1:m]
∥∥

2 ≤ ∥∥(Mn − λ)x
∥∥

2 + (K
√

pn)(CK)−1 <
3

4
√

cpn

for C ≥ 4√
c
.

Furthermore,

∣∣∥∥(Mn − λ)(x[1:m]/‖x[1:m])
∥∥

2 − ∥∥(Mn − λ)x[1:m]
∥∥

2

∣∣ ≤ K
∣∣1 − ‖x[1:m]‖2

∣∣ ≤
√

cpn

2
.

Now we address the remaining C logn
n

≤ p ≤ (1/4)n−1/3. Note that

1

8p
√

pn
> 1.

Let x ∈ Dom(1/8p, (CK)−1). We rearrange the coordinates of x by decreasing magnitude and group them into blocks
of size (pn)�/2 with � = 1, . . . , �0. From here on, for simplicity, we assume that (pn)�0/2 = 1/8p. In other words, set

z� = x[(pn)(�−1)/2+1:(pn)�/2],

and

z�0+1 = x[(pn)�0/2+1:n].

For ease of notation, let m = (pn)�0/2. We now find a block of substantial �2 norm. Observe that

‖z�0+1‖2 ≤ (CK)−1√m‖z�0+1‖∞ ≤ √
2(CK)−1‖z�0‖2. (4)

Since x ∈ Sn−1 implies
∑�0+1

�+1 ‖z�‖2
2 = 1, we have

�0∑
�=1

‖z�‖2
2 ≥ 1 − 2(CK)−2.

On the other hand, for K ≥ 1, if C > 2, then 3
∑∞

�=1(CK)−� < 1. Therefore,

�0∑
�=1

(CK)−2� <

�0∑
�=1

‖z�‖2
2,

from which one can deduce that there exists � ≤ �0 such that ‖z�‖2 ≥ (CK)−�. Let �∗ be the largest index with this
property and define u = ∑�∗

�=1 z�, v = ∑�0+1
�=�∗+1 z�. We begin with the case �∗ < �0. By the triangle inequality and (4),
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we have

‖v‖2 ≤
�0+1∑

�=�∗+1

‖z�‖2 ≤ 2
√

2(CK)−�∗+1.

Let κ = (pn)(�∗−1)/2. Note that

κ ≤ (np)(�0−1)/2 ≤ 1

8p
√

pn
.

We apply Lemma A.1 with this choice fo κ . Divide the support of u into
√

pn blocks of size κ . Define L�∗ :=
π−1

x ([1, (np)�∗/2]), where πx is the permutation arranging the coordinates of x in decreasing order with respect to magni-
tude. For s ∈ [(pn)1/2], define Js := π−1

x ([(s −1)κ +1, sκ]), and set J ′
s = L�∗ \Js . Since |J ′

s | ≤ |L�∗ | = κ
√

pn, we apply
Lemma A.1 to get a set A with large probability, such that on A, there exists subset of rows Is with |Is | ≥ cκpn for all
s ∈ [√pn], such that for every i ∈ Is , we have |ai,j0 | ≥ 1 for only one index j0 ∈ Js and ai,j = 0 for all j ∈ Js ∪ J ′

s \ {j0}.
It can further be checked that I1, I2, . . . , I√

pn are disjoint subsets. Therefore, on set A for any i ∈ Is ,∣∣((Mn − λ)u
)
i

∣∣ = ∣∣(Mn)i,j0u(j0)
∣∣ = ∣∣(Mn)i,j0

∣∣ · ∣∣u(j0)
∣∣ ≥ ∣∣x(

π−1
x (sκ)

)∣∣.
Here we used that πx is a non-increasing rearrangement. Now note that for i /∈ supp(u),(

(Mn − λ)u
)
i
= (Mnu)i, and supp(u) = κ

√
np � cκnp,

as long as np → ∞. Therefore,

∥∥(Mn − λ)u
∥∥2

2 ≥
(pn)1/2∑

s=1

∑
i∈Is\supp(u)

(
(Mnu)i

)2

≥ cpn

2

(pn)1/2∑
s=1

κ
(
x
(
π−1

x (sκ)
))2

≥ cpn

2

(pn)�∗/2∑
k=(pn)(�∗−1)/2

(
x
(
π−1

x (k)
))2

= cpn

2
‖z�∗‖2

2 ≥ cpn

2
· (CA.3K)−2�∗ , (5)

where the third inequality uses the monotonicity of the sequence {|x(π−1
x (k))|}nk=1. Combining the above with the bound

on ‖v‖2, on the set A, we get that∥∥(Mn − λ)x
∥∥

2 ≥ ∥∥(Mn − λ)u
∥∥

2 − ‖Mn − λ‖ · ‖v‖2

≥
√

cpn

2
(CK)−�∗ − (K + R)

√
pn · 2

√
2(CK)−(�∗+1) ≥ √

pn
(
C′K

)−�∗√pn,

where the last inequality follows if the constants C, C′ are chosen large enough independently of �∗.
Now we consider the case when �∗ = �0. Note that in this setting, using (5), we have that

‖(Mn − λu‖2 ≥
√

cpn

2
‖z�0‖2,

and from (4), we have ‖v‖2 = ‖z�0+1‖2 ≤ √
2(CK)−1‖z�0‖2. Now proceeding similarly as before, on A, we obtain that∥∥(Mn − λ)x

∥∥
2 ≥ √

pn
(
C(K + R)

)−�0√pn.

Since by Lemma A.1, P(A) ≥ 1 − exp(−cpn), the proof is complete. �
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A.3. Moderately sparse vectors

A.3.1. Small ball probability
Lemma A.4. Let δi be independent Bernoulli random variables taking value 1 with probability p and ξi be independent
random variables with mean 0, variance 1, and subgaussian moment bounded by B . For a vector x = (x1, . . . , xn) ∈ R

n,
we have

L
(

n∑
i=1

δiξixi,
1

4
‖x‖2

√
p

)
≤ 1 − cp

(‖x‖∞/‖x‖2)2 + p
.

Proof. We can assume that x is a unit vector. We use the symmetrization technique to reduce the Levy function to a
bound on the small ball probability around the origin. Let δ′

1, . . . , δ
′
n and ξ ′

1, . . . , ξ
′
n be independent copies of δ1, . . . , δn

and ξ1, . . . , ξn. For any r ∈R,

P
2

(∣∣∣∣∣
n∑

i=1

δiξixi − r

∣∣∣∣∣ ≤ t

)
= P

(∣∣∣∣∣
n∑

i=1

δiξixi − r

∣∣∣∣∣ ≤ t

)
P

(∣∣∣∣∣
n∑

i=1

δ′
iξ

′
i xi − r

∣∣∣∣∣ ≤ t

)
(6)

≤ P

(∣∣∣∣∣
n∑

i=1

(
δiξi − δ′

iξ
′
i

)
xi

∣∣∣∣∣ ≤ 2t

)
. (7)

Let ζi := δiξi − δ′
iξ

′
i and S := ∑n

i=1 ζixi . Observe Eζi = 0, Eζ 2
i = 2p, Eζ 3

i = 0 and Eζ 4 = 2pEξ4 + 6p2(Eξ2)2 ≤ Cp

for some constant C depending only on the subgaussian moment B . ES2 = ∑n
i=1 Eζ 2

i · x2
i = 2p and

ES4 =
n∑

i=1

Eζ 4
i · x4

i + 3
∑
j �=k

Eζ 2
j x2

j ·Eζ 2
k x2

k ≤ C‖x‖2∞p + 12p2

for some constant C′ depending only on B . Thus by the Paley–Zygmund inequality, for 2t ≤ √
2p,

P
(|S| ≤ 2t

) ≤ 1 − (ES2 − 4t2)2

ES4
.

Therefore,

P

(
|S| ≤ 1

2
√

p

)
≤ 1 − cp

C‖x‖2∞ + p
.

Combining this with inequality (6) yields

P

(∣∣∣∣∣
n∑

i=1

δiξixi − r

∣∣∣∣∣ ≤ 1

4
√

p

)
≤

√
1 − c′p

‖x‖2∞ + p

and setting c = c′/2 yields the result. �

Lemma A.5. For a random variable, X, with subgaussian moment bounded by B . Then for any k ∈N
+, we have

E
(|X|k)1/k ≤ 2B

√
k.

Lemma A.6. Let V1, . . . , Vn be non-negative independent random variables such that P(Vi > 1) ≥ q , for all i ∈ [n], and
for some q ∈ (0,1/2). Then there exist constants 0 < c, c′ < ∞, such that

P

(
n∑

j=1

Vj ≤ cqn

log(1/q)

)
≤ exp

(−c′
A.6n

)
.
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Corollary A.7. Let Mn be a symmetric random matrix. Then for any α > 1, there exist β,γ > 0 such that for x ∈ R
n

satisfying

‖x‖∞/‖x‖2 ≤ α
√

p,

we have

P
(∥∥(Mn − λ)x

∥∥
2, β

√
pn‖x‖2

) ≤ exp(−γ n).

Proof. Without loss of generality, we can assume that the coordinates of x are organized by their magnitudes in decreasing
order. Let n0 = 
n/2�.

Mn − λI =
(

A B

BT E

)
, x =

(
y

z

)
.

Then,

‖y‖2 ≥ 1

2
‖x‖2

so then ‖y‖∞/‖y‖2 ≤ 2α
√

p. Fix a w ∈ R
n and let Vj = 16

p‖y‖2
2
((BT y + Ez)j − wj)

2. Also, by our assumptions,

c

(‖y‖∞/‖y‖2)2 + p
≥ c

4α2 + 1

with c from Lemma A.4. By Lemmas A.4 and A.6 we have

P
(∥∥(Mn − λ)x

∥∥
2, β

√
pn‖x‖2

) ≤ P
(∥∥BT y + Ez

∥∥
2,2β

√
pn‖y‖2

)
. �

A.4. Compressible vectors

Proof of Proposition 5.3. We begin by diving [n] into two roughly equal sets. Let n0 = 
n/2�. We denote this decom-
position by

Mn − λI =
(

A B

BT E

)
, x =

(
y

z

)
, u =

(
v

w

)
,

where A is n0 × n0 and C is n − n0 × n − n0. Thus, we have the following equivalence.∥∥(Mn − λI)x
∥∥2

2 = ‖Ay + Bz‖2
2 + ∥∥BT y + Ez

∥∥2
2.

We condition on a realization of A and E. Let

W := Sparse(M) \ (Comp
(
(8p)−1, ρ

) ∪ Dom
(
(8p)−1, (CK)−1).

Denote m = (8p)−1 so m < M/2.
Case I: Let’s begin by assuming p ≥ 1

4n−1/3. In this regime, �0 = 1 and so ρ = (C′K)−2 for C′ from Lemma A.3.
Observe that for x ∈ V ,

‖x[m+1:M]‖∞/‖x[m+1:M]‖2 ≤ CK
√

8p

for C from Lemma A.3. Since, x /∈ Comp(m,ρ), ‖x[m+1:M]‖2 ≥ ρ. Thus, by Corollary A.7,

P
(∥∥(Mn − λ)x

∥∥
2 ≤ (

C′K
)−3√

pn‖x[m+1:M]‖2
) ≤ exp

(−c′n
)
.

Now we extend this bound to all vectors in V . Define ε = (C′K)−4ρ. There exists an ε-net N ⊂ V of cardinality less
than (

n

M

)(
3

ε

)M

≤ exp

(
cn log

(
3e

c5.3ε

))
.
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Since limx→0 x log(1/x) = 0 there exists a constant c so that c log( 3e
cε

) ≤ c′/2. Therefore, by the union bound,

P
(∃x ∈ N : ∥∥(Mn − λI)x

∥∥
2 ≤ (

C′K
)−3√

pn‖x[m+1:M]‖2
) ≤ exp

(−(
c′/2

)
n
)
.

We now extend this result to all of W . Assume for all x ∈N ,∥∥(Mn − λI)x
∥∥

2 ≥ (
C′K

)−3√
pn‖x[m+1:M]‖2.

Let x′ ∈ V . There exists a x ∈N such that ‖x′ − x‖2 ≤ ε. We have∥∥(Mn − λI)x′∥∥
2 ≥ ∥∥(Mn − λI)x

∥∥
2 − ‖Mn − λI‖∥∥x − x′∥∥

2

≥ (
C′K

)−3√
pn‖x[m+1:M]‖2 − Kε

≥ 1

2

(
C′K

)−3√
pnρ.

Case II: We now tackle the remaining case where C logn
n

≤ p ≤ 1
4n−1/3. Let I, J ⊂ [n] be disjoint sets such that

|I | = m, |J | = M − m. Let ε, τ be positive numbers to be chosen later. The sets

BI := {
u ∈ Bn

2 : supp(u) ⊂ I
}
,

and

RJ := {
u ∈ Sn−1 : supp(u) ⊂ J and ‖u‖∞ ≤ 4CK

√
p
}

admit an ε-net NI ⊂ BI and a τ -net NJ ⊂ RJ of sizes

|NI | ≤
(

3

ε

)|I |

and

|NJ | ≤
(

3

τ

)|J |
.

Let N0 be an ε-net in [ρ/
√

2,1] ⊂ R, and let

MIJ := {u + lw : u ∈NI ,w ∈ NJ , l ∈N0}
and

M :=
( ⋃

I⊂[n],
|I |=m

⋃
J⊂[n],

|J |=M−m,I∩J=∅

MIJ

)
.

We now verify that this is an appropriate net for W . Let x ∈ W be decomposed as x = ux + vx where ux = x[1:m] and
vx = x[m+1:M]. Since x /∈ Comp(m,ρ) ∪ Dom(m, (CK)−1), this implies that

‖vx‖2 ≥ ρ and ‖vx‖∞ < CK
√

8p‖vx‖2. (8)

Choose ū ∈NI , v̄ ∈NJ and l ∈N0 such that

‖ū − u‖ ≤ ε,
∥∥vx/‖vx‖2 − v̄

∥∥
2 ≤ τ and

∣∣‖vx‖2 − l
∣∣ ≤ ε.

We can easily modify the net M so that M ⊂ W at the cost of adjusting ε and τ by a factor of 2. Thus, by (8) we have
for a fixed x̄ ∈M

P
(
(Mn − λI)x̄ ≤ (

C′K
)−3√

pn‖vx̄‖2
) ≤ e−c′n.
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Now for x ∈ W ,∥∥(Mn − λ)x
∥∥

2 ≥ ∥∥(Mn − λ)x̄
∥∥

2 − ‖Mn − λ‖(‖ux − ux̄‖2 + ‖vx − vx̄‖2
)
.

We observe that

‖vx − vx̄‖2 ≤
∥∥∥∥ vx

‖vx‖2
− vx̄

‖vx̄‖2

∥∥∥∥
2
‖vx̄‖2 + ‖vx‖2

∣∣∣∣1 − ‖vx̄‖x

‖vx‖2

∣∣∣∣ ≤ 2τ‖vx̄‖2 + 2ε.

Therefore, letting μ′ := (CK)−3,∥∥(Mn − λ)x
∥∥

2 ≥ μ′‖vx̄‖2
√

pn − K
√

pn
(
3ε + 2τ‖vx̄‖2

)
.

Setting ε := μ′ρ
12K

and τ = μ′
8K

implies

∥∥(Mn − λ)x
∥∥

2 ≥ 1

2
μ′ρ√

pn.

To take the union bound over all points in the net, we must obtain an upperbound on the size of the cardinality of the net.

|M| ≤
(

n

m

)(
n − m

M − m

)(
3

ε

)m(
3

τ

)M−m 1

ε
.

We first bound(
n

m

)(
n − m

M − m

)
≤

(
n

m

)(
n

M

)
≤

(
en

m

)m(
en

M

)M

≤ (8epn)(8p)−1
(

e

c

)cn

.

Thus,

|M| ≤
(

288eKpn

μ′ρ

)(8p)−1(
24eK

cμ′

)cn

.

We claim that(
288eKpn

μ′ρ

)(8p)−1

≤
(

24eK

cμ′

)cn

.

This reduces to the assertion that

p−1 log

(
pn

ρ

)
= o(n)

which is obvious by our assumption that np → ∞ and �0 = o(np). Finally, we conclude that

|M| ≤ exp
(−c′n/2

)
if we choose c small enough since limx→0 x log(1/x) = 0. Therefore, a union bound concludes the proof. �

Appendix B: Non-centered version of Proposition 5.3

To derive an analogue of Proposition 5.3. We begin by diving [n] into two roughly equal sets. Let n0 = 
n/2�. We denote
this decomposition by

An − p(Jn − In) =
(

E B

BT C

)
, x =

(
y

z

)
.

To lowerbound ‖(An − p(Jn − In))x‖2
2, it suffices to lower bound ‖Ey + Bz‖2

2. For very sparse vectors, we can use the
sign-matching argument from Section A.3 after conditioning on a realization of E. For moderately sparse vectors, the
Lévy concentration argument is insensitive to shifts and for the net argument, we add an extra net over the low-dimensional
image as in Section 8. We omit the details.
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