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Abstract. In this article integro-differential Volterra equations whose convolution kernel depends on the vector variable are considered
and a connection of these equations with a class of semi-Markov processes is established. The variable order α(x)-fractional diffusion
equation is a particular case of our analysis and it turns out that it is associated with a suitable (non-independent) time-change of the
Brownian motion. The resulting process is semi-Markovian and its paths have intervals of constancy, as it happens for the delayed
Brownian motion, suitable to model trapping effects induced by the medium. However in our scenario the interval of constancy may
be position dependent and this means traps of space-varying depth as it happens in a disordered medium. The strength of the trapping
is investigated by means of the asymptotic behaviour of the process: it is proved that, under some technical assumptions on α(x), traps
make the process non-diffusive in the sense that it spends a negligible amount of time out of a neighborhood of the region argmin(α(x))

to which it converges in probability under some more restrictive hypotheses on α(x).

Résumé. Dans cet article, les équations de Volterra intégro-différentielles dont le noyau de convolution dépend de la variable vec-
torielle sont considérées et une relation entre ces équations et une classe de processus semi-Markoviens est établie. L’équation de
diffusion fractionnelle d’ordre variable α(x) est un cas particulier de notre analyse et elle se révèle être associée à un changement de
temps approprié (non indépendant) du mouvement Brownien. Le processus résultant est semi-markovien et ses trajectoires ont des
intervalles de constance, comme cela arrive pour le mouvement Brownien retardé, adapté pour modéliser les effets de piégeage in-
duits par le milieu. Cependant, dans notre scénario, l’intervalle de constance peut dépendre de la position et cela signifie des pièges
de profondeur variant dans l’espace comme cela se produit dans un milieu désordonné. La force du piégeage est étudiée au moyen
du comportement asymptotique du processus: il est démontré que, sous certaines hypothèses techniques sur α(x), les pièges rendent
le processus non diffusif en ce sens qu’il passe un temps négligeable hors d’un voisinage de la région argmin(α(x)) vers laquelle il
converge en probabilité sous quelques hypothèses plus restrictives sur α(x).
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1. Introduction

In recent years the interplay between anomalous diffusion phenomena and integro-differential (fractional type) equations
have gained considerable attention by the scientific comunity. This is certainly due to the fact that fractional equations are
very popular in applications and in the theoretical literature (see, for example, Meerschaert and Sikorskii [42] for general
information). As non-local equations in the time-variable they are able to include memory effects in the evolution and this
is certainly usefull in applications (see, for example, Hairer et al. [30] for very recent developments, see [42] or Metzler
and Klafter [45] for a review of classical applications or Georgiou and Scalas [26], Raberto et al. [48], Scalas [52] for
more exotic models). One of the first and more natural model is the so-called fractional diffusion related to the equation,
for α ∈ (0,1),

∂α
t q = 1

2
�q (1.1)
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and with anomalous diffusion phenomena (see [45] for a review of these relationships). Equation (1.1) is said to be related
with subdiffusive phenomena in the sense that the mean square displacement,

(�x)2 :=
∫
Rd

|x − u|2q(t, x − u)du (1.2)

behaves as (�x)2 ∼ Ctα as t → ∞, for α ∈ (0,1), Hence any model which can be associated with (1.1) is less then
diffusive, since α ∈ (0,1). From the probabilistic literature we know that the process associated with (1.1) is a Brownian
motion time-changed with the inverse of an independent stable subordinator (this is due to Baeumer and Meerschaert
[4], see also Bazhlekova [6] for pioneering results on the fractional Cauchy problem and Grothaus et al. [28,29] for a
possible different approach). The resulting process is also called delayed Brownian motion (Magdziarz and Schilling
[38]) since its sample paths remain constant for time-intervals determined by the jumps of the stable subordinator: hence
the process is delayed in the sense that the Brownian paths are stretched by the random time-change (see [38] also for a
detailed investigation of the asymptotic of the delayed Brownian motion, or Capitanelli and D’Ovidio [2] for asymptotic
properties of diffusion time-changed via independent inverse subordinators). Taken in full generality, the equation (1.1)
has the form

d

dt

∫ t

0

(
q(s, x) − q(0, x)

)
k(t − s) ds = Gq(t, x), (1.3)

where G generates a Markov process M . The corresponding process is the time-change of M with the inverse of an
independent subordinator whose Lévy measure ν(·) is given by ν(t,∞) = k(t) (this is due to Chen [17]). We can say that
this kind of processes are delayed in the same sense as for the delayed Brownian motion, since the paths remain constants
due to the jumps of the corresponding subordinator. Intervals of constancy are a classical feature of semi-Markov pro-
cesses (see Harlamov [31] for the modern formulation of the corresponding theory) and it is true indeed that the delayed
Brownian motion and in general delayed Markov processes are semi-Markov (see Cinlar [21] and also Meerschaert and
Straka [43] for the interpretation as limit of continuous time random walks). Hence the memory described by non-locality
of the equation (in the time variable) is introduced in the sense that the lack of memory of the exponential distribution is
lost, due the interval of constancy.

The intervals of constancy of the delayed Brownian motion are suitable to model trapping effects induced by the
medium, in case the traps are homogeneous in space. However the traps are often of space-varying depth in the sense that
the strength of the trapping may be position dependent as it happens in a disordered medium (e.g. [24,37,55,57,61]). In
the present paper we provide a model which is suitable to include this heterogeneity. The starting point is the “variable
order” generalization of (1.3), i.e., the equation

d

dt

∫ t

0

(
q(s, x) − q(0, x)

)
k(t − s, x) ds = Gq(t, x). (1.4)

It is clear that (1.4) specializes to

∂
α(x)
t q = 1

2
∂2
xq (1.5)

by suitably choosing k. First we provide a connection of (1.4) with semi-Markov processes. It turns out that to construct
the corresponding process one has to consider a Markov additive process (Mt , σt ) where the additive component σt is
strictly increasing and has a time-dependent Lévy measure which is determined by the path (the current position) of the
Markov process Mt . This construction will be made precise in Section 2 by means of the theory of Markov additive
processes discussed by Cinlar [18,19]. In the case of (1.5) the first coordinate Mt is given by a Brownian motion. Now
let Lt = inf{s ≥ 0 : σ(s) > t} and define X(t) := M(L(t)). It is clear that M and L are now dependent processes and
thus the random length of the intervals of constancy which are determined by the jumps of σ depends on the position of
M . This gives rise to a very heterogeneous behaviour of the process: the trapping effect induced by the time-change is
space-varying. When σt behaves locally as an α(x)-stable subordinator whose order α(x) is determined by the position
of Mt the process M(L(t)) is associated with (1.5). We found under some technical assumptions on α(x) that, a.s.,

t−1
∫ t

0
1{M(L(w))∈A} dw ∼ 1 as t → ∞, (1.6)

where A is a suitable neighborhood of the region argmin(α(x)) and the condition on α(x) depends on the struc-
ture of A. For example suppose that there exists β > 0 small enough such that the region Aβ := {x ∈ R : α(x) <
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αmin + β < 1} is bounded and has a Lebesgue null boundary, then (1.6) holds true for Aβ , for all β ≤ β0 and
some β0 > 0, if 2αmin < min(limx→∞ α(x), limx→−∞ α(x)) but if instead one has that the α(x) satisfies 2αmin >

min(limx→∞ α(x), limx→−∞ α(x)) there is attraction to infinity and so the process is diffusive in the sense that, for
all β ≤ β0 and all K > 0, a.s.,

t−1
∫ t

0
1{M(L(w))∈Ac

β∩[−K,K]c} dw ∼ 1 as t → ∞. (1.7)

Another case we cover is when argmin(α(x)) is unbounded and argmin(α(x)) = Aβ for all β small enough: here the
conditions on α(x) can be relaxed depending on limx→∞ l (argmin(α(x))∩ [−x, x]), where l (·) is the Lebegue measure.
In Section 4 we cover several situations of this type. Hence the trapping effect induced by the time-change, depending
on α(x), can be so much stronger in the region argmin(α(x)) than in the rest of R that the amount of time spent by the
process in that position grows linearly with t , as t → ∞, a.s. Further when α(x) satisfies some more restrictive conditions
(including that the set argmin(α(x)) is a union of intervals and x 	→ α(x) jumps on the minimum) we have proved that

lim
t→∞P x

(
M

(
L(t)

) ∈ argmin
(
α(x)

)) = 1. (1.8)

Hence the behaviour of the resulting process is so heterogeneous that it is completely far from a diffusion since it spends
a negligible amount of time far from argmin(α(x)) and in some cases the whole probability mass converges to the region
argmin(α(x)).

We call this phenomenon anomalous aggregation, inspired by Fedotov [23] who observed such a behaviour in the
context of chemotaxis and anomalous subdiffusive transport. We remark that aggregating phenomena in the context of
anomalous diffusion have been observed in other situations (e.g. [14,37,54]), and that a connection with fractional order
equations has been argued in [16,24]).

2. Construction of the process

We recall in this section some facts from the theory of Markov additive processes and semi-Markov processes (for this
we refer to Cinlar [19–21]) and we introduce our assumptions from the point of view of this theory.

2.1. Additive processes

Let (�,F,Ft ,Mt , θt ,P
x) be a Markov process on R

d and let σ = {σt ; t ≥ 0}, be a family of functions from (�,F)

into (Rm,B(Rm)). Then (M,σ) = (�,F,Ft ,Mt , σt , θt ,P
x) is said to be a Markov additive process if it holds that [19,

Definition 1.2]

1. t 	→ σt is right-continuous with left limits, σ0 = 0, σt = σζ for any t ≥ ζ ,
2. for each t ≥ 0, σt : � 	→ R

m, is measurable with respect to Ft and B(Rm),
3. for each t ≥ 0, B ∈ B(Rd), B ′ ∈ B(Rm) the mapping R

d � x 	→ P x(Mt ∈ B,σt ∈ B ′) ∈ [0,1] is Borel measurable,
4. for each s, t ≥ 0, σt+s = σt + σs ◦ θt , a.s.,
5. for each s, t ≥ 0, x ∈ R

d , B ∈ B(Rd), B ′ ∈ B(Rm),

P x
(
Ms ◦ θt ∈ B,σs ◦ θt ∈ B ′ |Ft

) = P M(t)
(
Ms ∈ B,σs ∈ B ′). (2.1)

Note that the process (Mt , σt ) is a strong Markov process adapted to Ft , and the strong Markov property holds in the
sense that, for any F random variable Z and Ft stopping time T , one has

E
x[Z ◦ θT |FT ] = E

M(T )[Z]. (2.2)

However, we remark that the process (M,σ) = (�,F,Ft ,Mt , σt , θt ,P
x) is not a Markov process (with translation) in

the classical sense (e.g. [12, Def. I.3.1]) because of the action of θt (Item 4). However, we have by [19, Proposition 2.3.]
that the classical definition of Markov process as it is given in [12, Def. I.1.1] is fulfilled. In common situations, and in this
paper, the second coordinate σ is one-dimensional and striclty increasing. Note that conditionally on a path M(s), s ≤ t

the process σ(t) has independent increments and it can be decomposed analogously to the Lévy’s decomposition as

σ = A + σf + σ c + σd, (2.3)
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where A is an additive functional of M (a drift component), σf is a purely discontinuous process whose jump are fixed
by M , σc is a continuous component and σd is stochastically continuous. If one assume that M(y) is a Hunt process with
a reference measure and that σ = σd is strictly increasing one can apply [20, formula (2.23)] to say that

E
[
e−λσ(y) | M(s), s ≤ y

] = e− ∫ ∞
0 (1−e−λs )

∫ t
0 ν(ds,My)dHy , (2.4)

where Hy is a continuous additive functional of M and ν(·, x) is a family of Lévy measures supported on (0,∞)

parametrized by x. In the present paper we deal with this kind of processes to construct a class of semi-Markov pro-
cesses governed by (1.4) (see also [34] for construction of semi-Markov processes with regenerative sets).

2.2. The semi-Markov model

In the present paper the process M defined as M = (�,F,Fy,My, θy,P
x) will be a Hunt process on (R,B(Rd)), i.e.,

y 	→ My is a.s. right-continuous, M is normal and strong Markov with respect to Fy and quasi-left-continuous on [0,∞)

(the process is non-explosive). It will be further true that My is a Feller process, and thus it is associated with a semigroup
of operators {Ty}y≥0 defined by (Tyu)(x) = E

xu(My), such that Ty : C0(R
d) 	→ C0(R

d), where C0(R
d) denotes the space

of continuous functions on R
d vanishing at infinity, and strongly continuous in the sup-norm ‖ · ‖, i.e. ‖Tyu − u‖ → 0 as

y → 0. The process (�,F,Fy,My,σy, θy,P
x) will be an additive process with σy one-dimensional, strictly increasing

and constructed as follows. Let D ∈ R
+ ×R

d be a Borel set and define

μM(D) = l
({

y ≥ 0 : (y,M(y)
) ∈ D

})
, (2.5)

where l is the Lebesgue measure. For Borel sets D = A × S the measure μ gives, informally, the amount of time in A

spent by My in S ∈ B(Rd). When A is fixed we may define the measure on (Rd ,B(Rd))

μM,A(S) := μM(A × S). (2.6)

By the definition of occupation measure we have that the identity∫
A

u
(
M(y)

)
l (dy) =

∫
Rd

u(x)μM,A(dx) (2.7)

is valid for every (measurable) non-negative function u on R
d . Hence we may assume on the line of (2.4) that by fixing

A = [0, y] we have

E
x
[
e−λσ(y) | M(w),w ≤ y

] = e− ∫ ∞
0 (1−e−λs )

∫
Rd ν(ds,w)dμM,[0,y](ω)(dw), (2.8)

where ν(·,w) is, for any w ∈R
d , the Lévy measure of some subordinator, i.e., it is supported on (0,∞) and such that the

integrability condition∫ ∞

0
(s ∧ 1)ν(ds,w) < ∞ (2.9)

is fulfilled for any w ∈ R
d . Hence if μM,A(dw) is absolutely continuous with respect to the Lebesgue measure one has

that

E
x
[
e−λσ(y) | M(w),w ≤ y

] = e− ∫ ∞
0 (1−e−λs )

∫
Rd ν(ds,w)lM,[0,y](w)dw, (2.10)

where lM,[0,y](w) is the Radon–Nycodim derivative (local time of M at w). Of course one can choose a version of the
local time such that lX,[0,y](w,ω) is a well defined r.v. for every ω so lX,[0,y](w,ω) is measurable (R+ × � 	→ R

d). We
will use the notation

E
x
[
e−λσ(y) | M(w),w ≤ y

] = e− ∫ y
0 f (λ,Mw(ω))dw, (2.11)

where the functions

[0,∞) ×R
d 	→ f (λ, x) =

∫ ∞

0

(
1 − e−λs

)
ν(ds, x) (2.12)
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are such that λ 	→ f (λ, x) are a family of Bernstein functions parametrized by x ∈ R
d . We remark that f (λ, x) can be

viewed as the Laplace exponents of the subordinators representing the increments of σ when Mw = x (see Schilling et
al. [53] for further information on Bernstein functions).

Consider now the process My at the time t = σ(y). One can easily let the second coordinate of the Markov additive
process (My,σy) take value on the whole real line by considering the couple process (My, z + σy), i.e., the process at the
second coordinate is started at z ∈R, and we define for t ∈ R,

L(t) = inf
{
s ≥ 0 : z + σ(s) > t

}
. (2.13)

Then consider the random set

R := {
z + σ(y) : 0 ≤ y < ∞}

, (2.14)

which is the range of z + σ(y) so that

R = {
z + σ(y) : 0 ≤ σ(y) < ∞} ∪ {

z + σ(y−) : y ∈ J
}
, (2.15)

where

J = {
0 ≤ s < ∞ : σ(s) − σ(s−) > 0

}
, (2.16)

and so

Rc =
⋃
s∈J

(
z + σ(s−), z + σ(s)

)
. (2.17)

Then let

g(t) = sup{s < t : s ∈R}, H(t) = inf{s > t : s ∈R}. (2.18)

If we denote σ z(y) := z + σ(y) we can rewrite the quantities (2.18) as

g(t) = σz
(
L(t)−)

, H(t) = σ z
(
L(t)

)
. (2.19)

Finally we are ready to define for any t ∈R

X(t) = M
(
L(t)

)
, g(t) ≤ t < H(t). (2.20)

Note that definition (2.20) is valid also for t < 0 and is equivalent to

X(t) = M(y), σ z(y−) ≤ t < σ z(y). (2.21)

Note that the process X(t) is a semi-Markov process in the sense that it enjoys the Markov property at any stopping time
T such that

T (ω) ∈ {
s : σy(ω) = s for some y

}
, (2.22)

see the discussion in [21, Section 4b]. The semi-Markov property can be equivalently viewed in the sense of Gihman and
Skorohod (see Gihman and Skorohod [27, III.3] or Harlamov [31, III.12]): define

γ (t) := t − 0 ∨ sup
{
s ≤ t : X(s) �= X(t)

}
, t ≥ 0, (2.23)

then one has that the couple process (Xt , γt ) is a (strong) Markov process (compare with Meerschaert and Straka [43,
Section 4]).
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3. The governing integro-differential equation

Let �t be the operator

(�tu)(x) := E
[
u
(
X(t)

) | X(0) = x
]
. (3.1)

In this section we establish a connection between the mapping

t 	→ �tu, (3.2)

for suitable functions u, and the equation

d

dt

∫ t

0

(
q(s, ·) − q(0, ·))ν̄(t − s, ·) ds = Gq(t, ·), (3.3)

where

(
D·

t q(t)
)
(·) := d

dt

∫ t

0

(
q(s, ·) − q(0, ·))ν̄(t − s, ·) ds (3.4)

and, for any s > 0, x ∈ R
d ,

ν̄(s, x) := ν
(
(s,∞), x

)
(3.5)

and G is the generator of the Markov process M . In what follows we will often write as above q(t) instead of q(t, ·) or
q(t, x), when the dependence on the vector variable x ∈ R

d is not used. We will show that t 	→ �tu satisfies (3.3) in the
mild sense (see below for the definition of mild solution). Let us remark that in the case

ν(ds, x) = α(x)s−α(x)−1

�(1 − α(x))
ds, (3.6)

for α(x) strictly between zero and one, then one has

ν̄(s, x) = s−α(x)

�(1 − α(x))
. (3.7)

By substituting (3.7) in (3.4) we obtain the fractional derivative of variable order α(x): this is because when x 	→ α(x)

is constant the operator becomes a genuine fractional derivative of order α ∈ (0,1) called the regularized fractional
Riemann–Liouville derivative and also Dzerbayshan–Caputo derivative (see Meerschaert and Sikorskii [42, Chapter 2] for
a complete discussion). When x 	→ α(x) is constant the genuine time-fractional equation has a well-known probabilistic
interpretation since Baeumer and Meerschaert [4]: take σα an α-stable subordinator independent from the Markov process
M , let Lα(t) := inf{s ≥ 0 : σα(s) > t} and define X(t) = M(Lα(t)), then the mean value E

xu(X(t)) satisfies the time-
fractional equation. When the subordinator considered is not necessarily stable, but a general subordinator σf with
Laplace exponent f independent from M then the equation governing the mean value of X(t) = M(Lf (t)) has been
written down in different forms by several authors (e.g. [17,32,35,36,38,40,41,44,59,60]). The more general and at the
same time explicit approach is proposed by Chen [17]: if M is a Markov process associated with a semigroup on some
Banach space B generated by G and σf (t) is an independent strictly increasing subordinator with Laplace exponent
f (λ) and inverse process Lf (t) then q(x, t) := E

xu(M(Lf (t))) is the unique solution to

d

dt

∫ t

0

(
q(s) − q(0)

)
ν̄(t − s) ds = Gq(t), q(0) = u ∈ Dom(G). (3.8)

The reader can consult Capitanelli and D’Ovidio [15] for a different approach based on Dirichlet forms, Meerschaert
et al. [39] for a detailed study of time-fractional equations on bounded domains, also Bazhlekova [7] for an analytical
study of integro-differential equations of the form (3.8) with completely monotone kernels and Beghin and Ricciuti [8]
or Orsingher et al. [46] for variable order α(t) equations. Our equation (3.3) is more general in the sense that the kernel
of the convolution in (3.4) depends on the vector variable x. Equations having this form have been considered, from a
probabilistic point of view, in Baeumer and Straka [5, Section 6.2] (the fractional case) and the associated processes are
obtained as limit of continuous times random walks, and in Orsingher et al. [47]. In this paper the authors considered a
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Markov additive process (Mt , σt ) where Mt is a Markov chain and σt depends on Mt as in (2.8) and proved that the mean
value E

xu(M(L(t))) satisfies (3.3) with

(Gu)(x) = θx

∫ (
u(y) − u(x)

)
hx(dy), (3.9)

where hx(·) are the transition probabilities of the jump chain embedded in M and θx the parameters of the exponential
waiting times. See also Garra et al. [25] for the variable order fractional equation governing a counting process.

In this section we show that the equation (3.3) governs in the mild sense the mean value of general semi-Markov
processes, obtained as a time-change, when Mt is not necessarily stepped. We will assume throughout this section that
the processes Mt and (Mt , σt ) are Feller processes and thus they are associated with semigroups of operators, respectively,
Tt and Pt , which map the Banach space of continuous functions vanishing at infinity (on R

d and R
d+1) equipped with

the sup-norm ‖ · ‖, into itself. The semigroups are also strongly continuous, i.e., they are such that ‖Ttu − u‖ → 0 as
well as ‖Pth − h‖ → 0 for t → 0 for any u ∈ C0(R

d) and h ∈ C0(R
d+1). We will denote the generators of Tt and Pt ,

respectively, (G,Dom(G)) and (A,Dom(A)). Recall that the generator is the operator

Gu := lim
t→0

Ttu − u

t
(3.10)

with domain

Dom(G) :=
{
u ∈ C0

(
R

d
) : lim

t→0

Ttu − u

t
exists as uniform limit

}
. (3.11)

We will assume that C∞
c (Rd) ⊂ Dom(G) and we know that this implies (e.g. [13, Theorem 2.21]) that G has the form

(Gu)(x) = −c(x)u(x) + l(x) · ∇u(x) + 1

2
divQ(x)∇u(x)

+
∫
Rd

(
u(x + y) − u(x) − ∇u(x) · yχ

(|y|))N(x,dy), (3.12)

where c(x) ≥ 0, (l(x),Q(x),N(x, ·)) is a Lévy triplet for any fixed x ∈ R
d with Q(x) ∈ R

d×d symmetric a positive
semidefinite and N(x, ·) satisfies∫

Rd−{0}
(|y|2 ∧ 1

)
N(x,dy) < ∞, (3.13)

while the non-negative bounded function χ is a truncation function such that 0 ≤ χ(s) ≤ 1 − κ(s ∧ 1) for some κ > 0 and
sχ(s) remains bounded. It is well known further that under these assumptions the operator G has the form [13, Corollary
2.23]

Gu(x) = −q(x,D)u(x) := −
∫
Rd

eix·ξ q(x, ξ )̂u(ξ) dξ, (3.14)

where q(x, ξ) is a continuous negative definite function with representation

q(x, ξ) = q(x,0) − il(x) · ξ + 1

2
ξ · Q(x)ξ (3.15)

+
∫
Rd−{0}

(
1 − eiy·ξ + iξ · yχ

(|y|))N(x,dy) (3.16)

and

û(ξ) := (2π)−d

∫
Rd

e−ix·ξ u(x) dx. (3.17)

We will further assume that q(x,0) = 0 and that q has bounded coefficients in the sense of [13, eq. (2.33)], i.e.,

sup
x∈Rd

∣∣q(x,0)
∣∣ + sup

x∈Rd

∣∣l(x)
∣∣ + sup

x∈Rd

∣∣Q(x)
∣∣ + sup

x∈Rd

∫
Rd

(|y|2 ∧ 1
)
N(x,dy) < ∞ (3.18)

and hence we know (e.g [13, Theorem 2.33]) that Tt is conservative and x 	→ q(x, ξ) is a continuous function.
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With the forthcoming result we characterize the generator of the couple process (Mt , σt ).

Proposition 3.1. Assume that the strong Markov processes Mt and (Mt , σt ) are Feller processes associated with the
semigroups of operators Tt and Pt as above. Let A be the generator of Pt and assume that C∞

c (Rd) ⊂ Dom(G) as
well as C∞

c (Rd+1) ⊂ Dom(A) and so G and A are pseudo-differential operators; let q(x,D) defined as in (3.14) be
the symbol of G. Assume q(x,0) = 0 in (3.16) and that q has bounded coefficients in the sense of (3.18). Further let
x 	→ f (λ, x) be continuous and such that

sup
x∈Rd

∫ ∞

0
(s ∧ 1)ν(ds, x) < ∞. (3.19)

Then we have that the Feller process (Mt , σt ) is generated by (A,Dom(A)) where A has the form

(Ah)(x, z) =(Gh)(x, z) +
∫ ∞

0

(
h(x, z + w) − h(x, z)

)
ν(dw,x). (3.20)

Proof. Observe that, for h ∈ C∞
c (Rd+1), we have∫

Rd+1
eiξ1x+iξ2z

(
q(x, ξ1) − f (−iξ2, x)

)̂
h(ξ1, ξ2) dξ1 dξ2

=
∫
Rd+1

eiξ1x+iξ2zq(x, ξ1)̂h(ξ1, ξ2) dξ1 dξ2

−
∫
Rd+1

eiξ1x+iξ2z

∫ ∞

0

(
1 − eiξ2w

)
ν(dw,x)̂h(ξ1, ξ2) dξ1 dξ2

= (Gh)(x, z) +
∫ ∞

0

(
h(x, z + w) − h(x, z)

)
ν(dw,x)

= (Ah)(x, z) (3.21)

and hence the operator A is a pseudo-differential operator with simbol q(x,D) − f (D,x). Now note that in view of
(3.19) we have that q(x, ·) − f (·, x) has bounded coefficients in the sense of [13, eq. (2.33)]. Further since we have that
x 	→ q(x, ·) and x 	→ f (·, x) are continuous we can apply [13, Theorem 2.36] to compute the symbol of the process
(Mt , σt ) and we show that it is equal to q(x,D) − f (D,x). We prove that, as t → 0,

t−1(
E

xe−iξ1x−iξ2zeiξ1Mt+iξ2σ
z
t − 1

) → q(x,D) − f (D,x). (3.22)

We have that(
E

xe−iξ1x−iξ2zeiξ1Mt+iξ2σ
z
t − 1

)
= (

E
xe−iξ1xeiξ1Mt+iξ2σt − 1

)
=

(
e−iξ1x

∫
Rd×[0,∞)

eiξ1yeiξ2wP x(σt ∈ dw | Mt = y)P x(Mt ∈ dy) − 1

)

=
(

e−iξ1x

∫
Rd×[0,∞)

eiξ1yeiξ2w

∫
P x

(
σt ∈ dw | Mt = y, (Ms)s<t = ωs

)

× P x
(
(Ms)s<t ∈ dωs | Mt = y

)
P x(Mt ∈ dy) − 1

)

= e−iξ1xE
xe− ∫ t

0 f (−iξ2,Mw)dweiξ1Mt − 1

t→0+∼ e−iξ1xE
x
(
1 − tf (−iξ2,Mt)

)
eiξ1Mt − 1, (3.23)

where in the last step we have used (2.8). Now note that by (3.23) we can write, as t → 0+,

lim
t↓0

t−1(
E

xe−iξ1x−iξ2zeiξ1Mt+iξ2σ
z
t − 1

)
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= lim
t↓0

t−1
∫
Rd

(
eiξ1y−iξ1x − 1

)
P x(Mt ∈ dy)

− e−iξ1x

∫
Rd

eiξ1yf (−iξ2, y)P x(Mt ∈ dy)

= q(x, ξ1) − f (−iξ2, x), (3.24)

where in the last step we have used the fact that Exu(Mt) → u(x) as t → 0 for any continuous bounded function u and
that q(x,D) is the symbol of the process Mt . �

In the forthcoming results it will be useful to know the following property of the process (Mt , σt )

Lemma 3.2. The processes Mt and σt don’t jump simultaneously, a.s.

Proof. This is a consequence of [20, (1.6)d and Remark (2.8)]. �

Remark 3.3. Note that by Proposition 3.1 we have that A is a pseudo-differential operator whose representation is of the
form (3.12) on R

d+1. Precisely, we have that

(Ah)(x, z)

= −c(x)h(x, z) + l(x) · ∇xh(x, z) + 1

2
divQ(x)∇xh(x, z)

+
∫
Rd+1

(
h(x + y, z + w) − h(x, z) − ∇xh(x, z) · yχ

(|y|))K(x, z, dy, dw), (3.25)

where the jump kernel K(x, z, dy, dw) := δ0(dw)N(x, dy)+ δ0(dy)ν(dw,x) is supported on the coordinate axes (Rd ×
{0}) × ({0} × [0,∞)), since the processes Mt and σt don’t jump simultaneously, a.s., by Lemma 3.2. Hence

(Ah)(x, z)

= −c(x)h(x, z) + l(x) · ∇xh(x, z) + 1

2
divQ(x)∇xh(x, z)

+
∫
Rd

(
h(x + y, z) − h(x, z) − ∇xh(x, z) · yχ

(|y|))N(x,dy)

+
∫ ∞

0

(
h(x, z + w) − h(x, z)

)
ν(dw,x). (3.26)

Now we obtain some properties of the operator �t and the corresponding mapping t 	→ �tu, which will be used in
the subsequent results. The following auxiliary lemmas characterize the strong continuity with respect to ‖ · ‖ of t 	→ �tu

for u ∈ C0(R
d).

Lemma 3.4. Suppose that ū(s) := infx∈Rd ν̄(s, x) is the tail of a Lévy measure of some subordinator of infinite activity.
Then, for any δ > 0, s, t ≥ 0, it is true that

lim
s→t

sup
x∈Rd

P x
(|Lt − Ls | > δ

) = 0. (3.27)

Proof. Our first aim is to construct path-wise a proper subordinator σ such that regardless of the initial position x of
M , stochastically σs ≥ σ s for all s ≥ 0. This can be done as follows. Consider the dyadic decomposition of R+, that is
([ k

2n , k+1
2n ))k≥0, and from σt = ∑

s≤t �σs define for any fixed t > 0 and the running trajectory of M

σ
(n)
t =

∑
s≤t

∑
k

k

2n
1{�σs∈[ k

2n , k+1
2n )}BMs−, k

2n
, (3.28)

where B
Ms−, k

2n
is a Bernoulli random variable with parameter p

Ms−, k
2n

such that

p
Ms−, k

2n
= u([ k

2n , k+1
2n ))

ν([ k
2n , k+1

2n ),Ms−)
≤ 1
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provided ν([ k
2n , k+1

2n ),Ms−) > 0 and zero otherwise. Conditionally on the path of M all Bernoulli random variables are
independent of each other. Note that we have used that ū(s) = infx∈Rd ν̄(x, s) with ν and u being the respective measures
behind the respective tails. We note that for any t > 0, n ≥ 1 conditionally on (Ms = ws)s≤t

σ
(n)
t ≤ σt . (3.29)

Moreover,

E
[
e−λσ

(n)
t |Ms = ws, s ≤ t

] = e
−∑

k

∫ t
0 (1−e

−λ k
2n )

u([ k
2n , k+1

2n ))

ν(Ms−,[ k
2n , k+1

2n ))
ν(Ms−,[ k

2n , k+1
2n )) ds

= e−t
∑

k(1−e
−λ k

2n )u([ k
2n , k+1

2n ))

and we see that σ
(n)
t are Compound Poisson processes and clearly

lim
n→∞σ

(n)
t

d= σ t , (3.30)

where σ is a subordinator with

E
[
e−λσ 1

] = e− ∫ ∞
0 (1−e−λy)u(dy). (3.31)

From now on fix t > 0 and x ∈R
d . We consider 0 < al ↑ t . Let ε > 0. Then

P x(Lt − Lal
> ε) = P x(Lt − Lal

> ε;σLal
≤ t)

=
∫

y∈Rd

∫ t

al

P x(Lt − Lal
> ε,σLal

∈ dv;MLal
∈ dy)

=
∫

y∈Rd

∫ t

al

P y(Lt−v > ε)P x(σLal
∈ dv;MLal

∈ dy)

≤ sup
y∈Rd

P y(Lt−al
> ε) = sup

y∈Rd

P y(σε ≤ t − al).

From (3.29) we have that for any n ≥ 1

P x(Lt − Lal
> ε) ≤ P

(
σ (n)

ε ≤ t − al

)
as σ (n) is independent of the initial position of the Markov process M . By Portmanteau’s theorem we deduct that

P x(Lt − Lal
> ε) ≤ lim sup

n→∞
P

(
σ (n)

ε ≤ t − al

) ≤ P(σ ε ≤ t − al).

Since σ is of infinite activity, that is ū(0) = ∞, we obtain that

lim sup
l→∞

sup
x∈Rd

P x(Lt − Lal
> ε) ≤ lim

l→∞P(σ ε ≤ t − al) = 0.

The other scenario when al ↓ t is proved in the same fashion using that {Lt �= Lal
} = {σLt ∈ [t, al)}. �

Lemma 3.5. Assume that the strong Markov process M(t) is a Feller process and let Mt := sup0≤s≤t |Ms −M0|. Suppose
that for any δ > 0

lim
t→0

sup
x

P x(Mt > δ) = 0. (3.32)

Then, under the assumption of Lemma 3.4 we have that the mapping

[0,∞) � t 	→ �tu(x) := E
xu(M

(
L(t)

)
, for u ∈ C0

(
R

d
)

(3.33)

is uniformly continuous (strongly continuous with respect to ‖ · ‖).
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Proof. Take an arbitrary sequence an ↑ t . Recall that C0(R
d) functions are uniformly continuous and hence pick u ∈

C0(R
d) and fix ε > 0 such that one has |u(x) − u(y)| < ε whenever |x − y| < δ. Fix another arbitrary constant δ� > 0.

We have that∣∣∣∣
∫ (

u(MLt ) − u(MLan
)
)
dP x

∣∣∣∣
≤

∫ ∣∣u(MLt ) − u(MLan
)
∣∣dP x

=
∫

{Lt=Lan }
(
u(MLt ) − u(MLan

)
)
dP x +

∫
{Lt−Lan>δ�}

∣∣u(MLt ) − u(MLan
)
∣∣dP x

+
∫

{0<Lt−Lan<δ�,|MLt −MLan
|<δ}

∣∣u(MLt ) − u(MLan
)
∣∣dP x

+
∫

{0<Lt−Lan<δ�,|MLt −MLan
|>δ}

∣∣u(MLt ) − u(MLan
)
∣∣dP x

≤ 2‖u‖P x
(
Lt − Lan > δ�

) + ε + 2‖u‖P x
(
Lt − Lan < δ�, |MLt − MLan

| > δ
)
. (3.34)

Recall the action of the translation operator θt on Lt , i.e., for any stopping time τ

Lt ◦ θτ = inf{w ≥ 0 : σw+τ − στ > t} (3.35)

and use (2.2) to say that

P x
(|MLt − MLan

| > δ,Lt − Lan < δ�
)

= P x
(∣∣(MLt−σLan

− M0) ◦ θLan

∣∣ > δ,Lt−σLan
◦ θLan

< δ�
)

= E
xP MLan

(|MLt−σLan
− M0| > δ,Lt−σLan

< δ�
)

≤ sup
y

P y(Mδ� > δ). (3.36)

Hence we have by Lemma 3.4 that

lim
n

sup
x

∣∣Ex
(
u(MLt ) − u(MLan

)
)∣∣ ≤ ε + 2‖u‖ sup

x
P x(Mδ� > δ). (3.37)

Now let δ� → 0 and use (3.32). Since ε is arbitrary and by repeating the same argument for an ↓ t we get the result. �

In the following proposition we characterize function spaces on which we want that the linear operators �t and
Rλ := ∫ ∞

0 e−λt�t dt to act.

Proposition 3.6. Under the assumptions of Proposition 3.1 and Lemma 3.5 further suppose that for any λ > 0 there exist
two positive constants c and C such that c ≤ f (λ, x) ≤ C. Let �tu(x) := E

xu(M(L(t))) and define

Rλu :=
∫ ∞

0
e−λt�tudt. (3.38)

Then we have that �t : C0(R
d) 	→ C0(R

d) and Rλ : C0(R
d) 	→ Dom(G).

Proof. First we prove that Rλu ∈ C0(R
d) for any u ∈ C0(R

d). Observe that, for any Borel set B ⊂R
d we have that

(Rλ1{B})(x) = E
x

∫ ∞

0
e−λt1{B}(Xt ) dt

×E
x
∑
y

∫ σ 0(y)

σ 0(y−)

e−λt1{B}(My)dt
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= λ−1
E

x
∑
y

(
e−λσ 0(y−) − e−λσ 0(y)

)
1{B}(My)

= λ−1
E

x
∑
y

(
1 − e−λ(σ 0(y)−σ 0(y−))

)
e−λσ 0(y−)1{B}(My). (3.39)

Recall that under our assumptions M is a Hunt process with a reference measure. Hence apply [20, Lemma 2.24]) and
use also the fact that, a.s., σ 0(y) = σ 0(y−) to write

q̃(λ, x) = λ−1
E

x

∫ ∞

0

∫ ∞

0

(
1 − e−λs

)
ν(ds,My)e

−λσ 0(y−)1{B}
(
M(y)

)
dy

= λ−1
E

x

∫ ∞

0
e−λσ 0(y)f (λ,My)1{B}

(
M(y)

)
dy. (3.40)

Hence we have by a classical standard machine argument that, for any u ∈ Bb(R
d),

Rλu = λ−1
E

x

∫ ∞

0
e−λσ 0(y)f (λ,My)u

(
M(y)

)
dy. (3.41)

Hence if we define R as the potential operator of Pt , i.e.,

Rh :=
∫ ∞

0
Pthdt (3.42)

we obtain

Rλu(x) = λ−1Rh(x,0) where h(x, z) = u(x)f (λ, x)e−λz. (3.43)

Since Pt has the Feller property, we have that Pth ∈ C0(R
d × [0,∞)) and further

|Pth| ≤ C‖u‖Ee−σ 0(t) = C‖u‖Exe− ∫ t
0 f (λ,Mw)dw ≤ C‖u‖e−ct , (3.44)

which is integrable on (0,∞). Hence

x 	→ Rh(x,0) ∈ C0
(
R

d
)

(3.45)

by the dominated convergence theorem since (t, x, z) 	→ Pth(x, z) is continuous for each h ∈ C0(R
d × [0,∞)). The fact

that �tu ∈ C0(R
d) follows from uniform continuity of t 	→ �tu and [1, Proposition 1.7.6].

Now we prove that Rλu ∈ Dom(G) for u ∈ C0(R
d). We have that

Rλu(x) = λ−1Rh(x,0). (3.46)

But since Ran(R) ⊂ Dom(A) one has that Rh(x, z) ∈ Dom(A) and ARh = −h ∈ C0(R
d × [0,∞)) (e.g. [33, Lemma

3.5.72]). Then, since Rh(x, z) = e−λzRh(x,0) and using (3.20) and (3.46), we get

ARh(x, z) = GRh(x,0) + Rh(x,0)

∫ ∞

0

(
e−λ(z+w) − e−λz

)
ν(dw,x)

= λe−λz
(
GRλu(x) − f (λ, x)Rλu(x)

)
(3.47)

and since Rλu ∈ C0(R
d) we have that GRλu ∈ C0(R

d). It follows that Rλu ∈ Dom(G). �

Now we can provide the form of the Kolmogorov equation of Xt . We show that t 	→ �tu is a mild solution of

D·
t q(t) = Gq(t), q(0) = u (3.48)

i.e., it is a function q(t) ∈ C([0,∞);C0(R
d)) such that

∫ t

0 q(s) ds ∈ Dom(G) which satisfies∫ t

0

(
q(s, ·) − u(·))ν̄(t − s, ·) ds = G

∫ t

0
q(s) ds. (3.49)
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Note that this notion of mild solution is equivalent to the classical notion (e.g. [22, Def. 6.3]) valid for the abstract Cauchy
problem

d

dt
q(t) = Gq(t), q(0) = u, (3.50)

where G is a closed linear operator. Indeed a function q(t) is said to be a mild solution of (3.50) if∫ t

0
q(s) ds ∈ Dom(G) and q(t) − u = G

∫ t

0
q(s) ds. (3.51)

It is a known fact that t 	→ Ttu is a mild solution of (3.50) for any u ∈ C0(R
d) (e.g. [1, Proposition 3.1.9]) and thus the

following theorem provides the analogue of this fact for semi-Markov processes.

Theorem 3.7. Under the assumptions of Proposition 3.6 let also ‖ν̄(s, x)‖ be integrable on [0, t] for any t ≥ 0. Then we
have that the mapping

[0,∞) � t 	→ q(t) := �tu (3.52)

is a mild solution of (3.48) for any u ∈ C0(R
d).

Proof. Let

v(t) :=
∫ t

0
q(s) ds, (3.53)

and define

ṽ(λ) :=
∫ ∞

0
e−λtv(t) dt. (3.54)

We have by [1, eq. (1.11)] that

ṽ(λ) = λ−1Rλu (3.55)

and thus ṽ(λ) ∈ Dom(G) by Proposition 3.6. Let

q̃(λ) =
∫ ∞

0
e−λtq(t) dt (3.56)

and then note that (3.41) implies

q̃(λ, x) = λ−1
E

x

∫ ∞

0
e−λσ 0(y)f (λ,My)u

(
M(y)

)
dy. (3.57)

Now define

(Rh)(x, z) := lim
N→∞

∫ N

0
E

xh
(
My,σ

z
y

)
dy (3.58)

and note that, for h(x, z) := e−λzf (λ, x)u(x), one has

λ−1(Rh)(x,0) = q̃(λ, x). (3.59)

For z ≥ 0 one has instead by repeating the computation (3.41) above that

(Rh)(x, z) = e−λz
E

x

∫ ∞

0
e−λσ 0(y)f (λ,My)u

(
M(y)

)
dy

= λe−λzq̃(λ, x). (3.60)
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Use now the representation (3.20) together with (3.60) to say that

(−ARh)(x,0) = λ
(
f (λ, ·) − G

)
q̃(λ, x). (3.61)

Now if h(x, z) ∈ Dom(R), i.e.,

Dom(R) = {
h ∈ C0

(
R

d × [0,∞)
) : Rh ∈ C0

(
R

d × [0,∞)
)}

, (3.62)

we could use [33, Lemma 3.5.72] to say that −ARh = h if Rh ∈ Dom(A), but we proved this before. Hence, use this in
(3.61) to find that

λ
(
f (λ, ·) − G

)
q̃(λ, x) = h(x,0) = f (λ, x)u(x). (3.63)

Now we have by (3.55)and (3.63) that

Gṽ(λ) = G
q̃(λ, ·)

λ
= f (λ, ·)

λ
q̃(λ, ·) − f (λ, x)

λ2
u =: g̃(λ) (3.64)

and since∫ ∞

0
e−λt ν̄(t, x) dt = f (λ, x)

λ
(3.65)

we have by [1, Proposition 1.6.4] that

g(t) =
∫ t

0

(
q(s, ·) − u

)
ν̄(t − s, ·) ds. (3.66)

Note that since by Lemma 3.5 we know that t 	→ q(t, x) is C([0,∞);C0(R
d)) we have that t 	→ g(t) is C([0,∞);

C0(R
d)) by [1, Proposition 1.3.4] and thus, since G is closed, it follows from [1, Proposition 1.7.6] that Gv(t) =∫ t

0 (q(s, ·) − u)ν̄(t − s, ·) ds for all t ≥ 0, i.e., the function q(t, ·) is a mild solution of (3.48). �

In the forthcoming Section 4 we will study the asymtpotic behaviour of X(t) = B(L(t)) as t → ∞. It turns out
that some interesting and clarifying examples concern the case in which x 	→ f (λ, x) is a stepped function. Hence, for
completeness, we provide the form of the Kolmogorov’s equation of Xt to cover the case in which x 	→ f (λ, x) is not
continuous. In this case, for example, the assumptions of Proposition 3.1 are not satisfied as well as the assumptions of
Proposition 3.6. An inspection of the proof shows indeed that Rλu ∈ Dom(G) is a consequence of Pth ∈ C0(R

d) and
that h ∈ Dom(R) where h(x, z) = u(x)e−λzf (λ, x). In general this is no more true, even if we equip Pt with the Feller
property since x 	→ f (λ, x) is not continuous.

However it turns out that the equation can be still written down as in Theorem 3.7 in an approximate sense. Hence we
will consider an approximating sequence of Bernstein functions f n(λ, x), each one of which satisfies the assumptions
used above and such that f n(λ, x) → f (λ, x) where x 	→ f (λ, x) is not necessarily continuous but satisfies the assump-
tion (3.19) and f n(λ, x) is bounded above and below by constants cn and Cn (which can of course depend on λ). Hence
we need to provide first a weak convergence result.

Proposition 3.8. Assume that x 	→ f (λ, x) is bounded below by c > 0 and above by C ≥ c and that (3.19) holds. Assume
further that there exists a sequence f n(λ, x) → f (λ, x) such that, for any n the functions f n(λ, x) are Bernstein functions
as in Propositions 3.1 and 3.6 with constants cn ≤ f n(λ, x) ≤ Cn. Assume that inf cn > 0, supCn < ∞. Now let ūn(s) be
the tail of Lemma 3.4 and assume that u(s) := infn ūn(s) is the tail of the Lévy measure of a subordinator with infinite
activity. Let M be a Feller process as in Lemma 3.5. Let �n

t u := E
xu(M(Ln(t))). Then for any u ∈ Cb(R

d) one has
�n

t u → �tu.

Proof. Let

R n
λ u :=

∫ ∞

0
e−λt�n

t udt. (3.67)

and recall that |�n
t u| ≤ ‖u‖. Let’s apply again [1, Proposition 1.7.6 and Theorem 1.7.3] to say that if R n

λ u → Rλu then
�tu = limn �n

t u for almost all t ≥ 0. However if t 	→ limn �n
t u is continuous we have that the equality is true for any
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t ≥ 0 since t 	→ �tu is certainly continuous by Lemma 3.5. First we prove that R n
λ u → Rλu and then we prove the

continuity of t 	→ limn �n
t u. By (3.41) we obtain that

R n
λ u(x) = λ−1

∫ ∞

0
E

xe−λσ 0
n (t)u

(
M(t)

)
f n

(
λ,M(t)

)
dt = λ−1

∫ ∞

0
P n

t hn(x,0) dt, (3.68)

where hn(x, z) = f n(λ, x)u(x)e−λz and P n
t denote the Feller semigroup of the process (Mt , σ

n
t ). Note now that

P n
t hn(x,0)

=
∫
Rd

∫ ∞

0
f n(λ, y)u(y)e−λzP x

(
M(t) ∈ dy,σ 0

n (t) ∈ dz
)

=
∫
Rd

f n(λ, y)u(y)Ex
[
e− ∫ t

0 f n(λ,Ms)ds | M(t) = y
]
P x

(
M(t) ∈ dy

)
−→

∫
Rd

f (λ, y)u(y)Ex
[
e− ∫ t

0 f (λ,Ms)ds | M(t) = y
]
P x

(
M(t) ∈ dy

)
= Pth(x,0), (3.69)

where in the last step the limit is moved inside the integrals by the bounded convergence theorem. Further note∣∣P n
t hn(x,0)

∣∣ ≤ (supCn)‖u‖Ee− ∫ t
0 f n(λ,My)dy

≤ (supCn)‖u‖e−t infn cn , (3.70)

which is integrable and thus R n
λ u → Rλu by the dominated convergence theorem. Now we prove that t 	→ limn �n

t u is
continuous by showing that t 	→ �n

t u is uniformly continuous with respect to n. This can be done, under the assumption
ū(0, x) := infn ν̄n(0, x) = ∞ for any x ∈ R

d with the same argument used in Lemma 3.5. Hence we can construct the
subordinator σ such that stochastically σn

s ≥ σ s regardless of n (and x) as in Lemma 3.4. Hence define for any fixed t > 0
and the running trajectory of M

σ
(m,n)
t =

∑
s≤t

∑
k

k

2m
1{�σs∈[ k

2m , k+1
2m )}B

n

Ms−, k
2n

, (3.71)

where Bn

Ms−, k
2n

is a Bernoulli random variable with parameter pn

Ms−, k
2n

such that

pn

Ms−, k
2m

= u([ k
2m , k+1

2m ))

νn(Ms−, [ k
2m , k+1

2m ))
≤ 1

provided νn([ k
2m , k+1

2m ),Ms−) > 0 and zero otherwise. Hence conditionally on (Ms = ws)s≤t

σ
(m,n)
t ≤ σn

t . (3.72)

Moreover,

E
[
e−λσ

(m,n)
t |Ms = ws, s ≤ t

] = e−t
∑

k(1−e
−λ k

2n )u([ k
2m , k+1

2m ))

and σ
(m,n)
t are compound Poisson processes and such that limm→∞ σ

(m,n)
t

d= σ t , where σ is a subordinator with

E[e−λσ 1] = e− ∫ ∞
0 (1−e−λy)u(dy). As in Lemma 3.4 one has

P x
(
Ln

t − Ln
al

> ε
) ≤ sup

y∈Rd

P y
(
σn

ε ≤ t − al

) ≤ P
(
σ (m,n)

ε ≤ t − al

)
and thus by the same argument we have

lim sup
l→∞

sup
n

sup
x∈Rd

P x
(
Ln

t − Ln
al

> ε
) ≤ lim

l→∞P(σ ε ≤ t − al) = 0.

Now we can repeat the same steps as in Lemma 3.5 to say that t 	→ �n
t u is continuous uniformly in n. �



Semi-Markov processes, integro-differential equations and anomalous diffusion-aggregation 2655

Here we provide the approximation of the Kolmogorov’s equation of X(t), i.e., we show that t 	→ �tu is a mild
solution of (3.48) in the following sense∫ t

0

(
�su(x) − u(x)

)
ν̄(t − s, x) ds = lim

n
G

∫ t

0
�n

s uds. (3.73)

Proposition 3.9. Let M be the Feller process generated by (G,Dom(G)) under the assumptions on Theorem 3.7.
Suppose that f satisfies the assumptions of Proposition 3.8 and further that

∫ t

0 supn ν̄n(s, x) ds < ∞. Denote �n
t u :=

E
xu(M(Ln

t )). Then we have that the mapping

[0,∞) � t 	→ q(t) := �tu (3.74)

is a mild solution of (3.48) in the sense of (3.73).

Proof. We have by Theorem 3.7 that �n
t u satisfies∫ t

0

(
�n

s u(x) − u(x)
)
ν̄n(t − s, x) ds = G

∫ t

0
�n

s uds. (3.75)

Since ∥∥�n
t u − u

∥∥ ≤ 2‖u‖ (3.76)

and since
∫ t

0 supn ν̄n(t − s, x) ds < ∞ we have by the dominated convergence theorem and Proposition 3.8 that∫ t

0

(
�su(x) − u(x)

)
ν̄(t − s, x) ds = lim

n
G

∫ t

0
�n

s uds. (3.77)
�

Remark 3.10. Suppose that αn(x) is a sequence of functions such that there exist δ1 > 0 and δ2 > 0 small enough such
that αn(x) < 1 − δ1 and αn(x) > δ2, so they never reach the boundary 0 or 1 for any x and n. Define

νn(ds, x) = αn(x)s−αn(x)−1

�(1 − αn(x))
ds (3.78)

so that

ν̄n(s, x) = s−αn(x)

�(1 − αn(x))
(3.79)

and

f n(λ, x) = λαn(x). (3.80)

Suppose αn(x) → α(x) pointwise. Then one has that ν̄n and f n satisfy the assumption of Proposition 3.9 since λαn(x) is
always included between two constants (depending on λ) cn and Cn, such that inf cn > 0 as well as supCn < ∞ and

inf
n

inf
x

ν̄n(s, x) = C
(
s−α1{s≤1} + s−α1{s>1}

)
, (3.81)

where α = inf(x,n) α
n(x) and α = sup(x,n) α

n(x), is the tail of a Lévy measure with infinite activity. A similar argument
apply to supn ν̄(s, x) which is therefore integrable.

4. The variable order diffusion equation and the anomalous aggregation phenomenon

In this section we study the asymptotic behaviour of the process X(t) = M(L(t)) in the case when the leading process M

is a one-dimensional standard Brownian motion. Hence let G = 1
2∂2

x and assume that

ν(ds, x) = α(x)s−α(x)−1

�(1 − α(x))
ds, α :R 	→ (0,1). (4.1)
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The equation (3.48) and Theorem 3.7 yield to

dα(x)

dtα(x)
q(t, x) = 1

2
∂2
xq(t, x). (4.2)

In Fedotov and Falconer [24] the authors considered the Fokker–Plank (forward) equation

∂

∂t
p(x, t) = ∂2

xD
∂α(x)

∂tα(x)
p(x, t), (4.3)

which can be viewed as the forward equivalent of (4.2) (for details on the relationships between equations, see also
Ricciuti and Toaldo [49, Section 5] and we suggest the instructive discussion in Straka [56] which fully justifies the
meaning of (4.3) as a model for diffusive phenomena). They showed that a random walk on a finite lattice with space
size a > 0 can be viewed as an approximation (as a → 0) of (4.3) for x ∈ [0,L], L > 0, and then they proved that, as
t → ∞, this random walk converges in probability to the point x ∈ [0,L] at which α(x) has its minimum. They further
ran some numerical simulations to validate their results. It turns out that the small value of the anomalous exponent
completely dominates the long-time behaviour of subdiffusive system. The authors refer to this phenomenon as a “Black
Swan” (term proposed by Taleb [58]), to describe the crucial role of rare events with extreme impact. Similar aggregation
phenomena were also observed for a symmetrical random walk by Fedotov [23].

In this section this phenomenon is investigated rigorously for the semi-Markov process (time-changed Brownian mo-
tion) which is related to (4.2) by the results in the previous section. Essentially our investigations validate the simulations
in [24] under some technical assumptions on x 	→ α(x). To be precise we discuss the asymptotic behaviour of two quan-
tities, that is∫ t

0 1{X(s)∈A} ds

t
and P

(
X(t) ∈ A

)
, (4.4)

where A ⊆ R is usually a neighbourhood of the set where α attains minimum. Depending on the behaviour of l (A ∩
[−x, x]), as x → ∞, we provide a criterion based on α∗ = minx∈R α(x),αI = limx→∞ α(x),αJ = limx→−∞ α(x) which
distinguishes, apart from a critical case, the two-regime behaviour that is

lim
t→∞

∫ t

0 1{X(s)∈A} ds

t
∈ {0,1}.

When the function α attains minimum on union of intervals we are able to determine whether the limit limt→∞ P(X(t) ∈
A) is 0 or 1 thereby mathematically confirming the outcome of [24]. We wish to stress that the existence of a limit for
the first relation in (4.4) does not necessarily imply the existence of a limit for the second. We believe this to be the case
in this setting but we have not been able to establish this in complete generality. We also believe that this “aggregation
phenomenon” can be shown also for other Feller processes, e.g., a stable process, and thus further investigations in this
direction are needed.

We start with the introduction of some notation. For any set A ⊆R we set

Ht(A) =
∫ t

0
1{Bs∈A} ds = μB,[0,t](A). (4.5)

For brevity we shall use Ht := Ht(A) when A is clear. Then, if l (∂A) = 0 < l (A) then it holds, without a loss of
generality, that

σ(s) = σ1(Hs) + σ2(s − Hs), (4.6)

where σ1, σ2 are two independent increasing processes constructed from σ as follows

σ1(Hs) =
∑
v≤s

(
σ(v) − σ(v−)

)
1{Bv∈A};σ2(s − Hs) =

∑
v≤s

(
σ(v) − σ(v−)

)
1{Bv /∈A}. (4.7)

Denote next A+ = A ∩R
+,A− = A ∩R

− and assume for the time being that A = A+. Also we introduce

G(t) :=
∫ t

0
l
(
A ∩ [0, x])dx and D(s) = inf

{
t > 0 : G(t) > s

}
. (4.8)
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Reserve τ for the inverse local time at zero of the Brownian motion B . It is well-known that τ is a stable subordinator of
index 1/2. Furthermore, from [10, Chapter 9] we have that

χ(t) := Hτ(t) =
∫ τ(t)

0
1{B(s)∈A} ds (4.9)

is a driftless subordinator with Lévy measure say �χ and Laplace exponent �χ(u) = − logE[e−uχ(1)], u ≥ 0. Since we
use extensively two results on the growth of subordinators, see [9, Chapter III, Theorems 13 and 14], we state them here
for convenience. Some general and recent results on the growth of Lévy processes can be found in [3,50,51].

Theorem 4.1. Let ζ be a real valued subordinator with Laplace exponent �ζ (u) = − logE[e−uζ(1)], u ≥ 0, and
E[ζ(1)] = ∞. Then the following growth estimates are valid:

1. If h : (0,∞) 	→ R
+ is a function such that h(t)/t increases then a.s.

lim sup
t→∞

ζ(t)

h(t)
= ∞ ⇐⇒

∫ ∞

1
�̄ζ

(
h(t)

)
dt = ∞, (4.10)

where �̄ζ (x) = ∫ ∞
x

�ζ (dy). If any of the conditions fails then one has limt→∞ ζ(t)/h(t) = 0 almost surely.
2. If �ζ is regularly varying at zero with index α ∈ (0,1) then there is a deterministic regularly varying function of index

1/α, say fζ , such that almost surely

lim inf
t→∞

ζ(t)

fζ (t)
= 1. (4.11)

An immediate corollary is the result.

Corollary 4.2. If ζ is stable subordinator of index α ∈ (0,1) then, for any ε > 0 small enough, almost surely

lim inf
t→∞

ζ(t)

t
1
α
−ε

= ∞; lim sup
t→∞

ζ(t)

t
1
α
+ε

= 0. (4.12)

With the help of these well-known results we can get the following growth result for the occupation measure H .

Proposition 4.3. If χ(1) has a finite mean or the Laplace exponent �χ is regularly varying at zero of index α ∈ (0,1),
then, for any ε > 0 small enough a.s.

lim
t→∞

Hτ(t)

Ht2+ε

= 0; lim
t→∞

Hτ(t)

Ht2−ε

= ∞. (4.13)

Proof. From (4.12) and the fact that τ is a stable subordinator of index 1/2 we get almost surely

lim inf
t→∞

τ(t)

t2−ε
= ∞ (4.14)

and

lim sup
t→∞

τ(t)

t2+ε
= 0. (4.15)

The proof of (4.13) then follows by a pathwise argument in the following fashion. Set

uε(t) = sup
{
s > 0 : τ(s) ≤ t2+ε

}
.

Then

Hτ(t)

Ht2+ε

≤ Hτ(t)

Hτ(uε(t)−)

= χ(t)

χ(uε(t)−)
.
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From (4.15) which holds for any ε > 0, we conclude that there exists δ = δ(ε) > 0, such that uε(t)/t1+δ → ∞, t → ∞.
Indeed, this follows from the fact that for any 0 < ε̃ < ε,

0 = lim sup
t→∞

τ(uε(t))

(uε(t))2+ε̃
≥ lim sup

t→∞
t2+ε

u2+ε̃
ε (t)

.

Therefore,

lim sup
t→∞

Hτ(t)

Ht2+ε

≤ lim sup
t→∞

χ(t)

χ(uε(t)−)
≤ lim sup

t→∞
χ(t)

χ(t1+δ)
.

Now, the first relation of (4.13) follows from the strong law of large numbers, when E[χ(1)] < ∞ and from Theorem 4.1,
when �χ is regularly varying of index α ∈ (0,1) at zero. Indeed in the latter case there is a deterministic fχ regularly
varying of index 1/α such that (4.11) holds. Thus

lim sup
t→∞

Hτ(t)

Ht2+ε

≤ lim sup
t→∞

χ(t)

χ(t1+δ)
≤ 2 lim sup

t→∞
χ(t)

fχ (t1+δ)
.

Now since gχ(t) := fχ(t1+δ) is regularly varying of index 1/α + δ/α we can use the Potter’s bounds, see [11, Theorem
1.5.6 (iii)], to ensure it is true that gχ(t) ≥ Ct1/α+δ/α−c,0 < c < δ/α,C ∈ (0,∞), and therefore

lim sup
t→∞

Hτ(t)

Ht2+ε

≤ lim sup
t→∞

χ(t)

χ(t1+δ)
≤ 2 lim sup

t→∞
χ(t)

fχ (t1+δ)
≤ 4

C
lim sup
t→∞

χ(t)

t
1
α
+ δ

α
−c

= 0.

The fact that the last equals zero in turn follows from Theorem 4.1(1) applied with h(t) = t1/α+δ/α−c where in relation
(4.10) we have that

∫ ∞
1 �̄χ (h(t)) dt < ∞ since �χ being regularly varying of index α ∈ (0,1) at zero implies that

�̄χ (h(t)) is regularly varying of index −1 − δ + cα < −1 at infinity, see [9, Chapter III.1].
The second relation of (4.13) follows a similar pattern. Noting that with uε(t) = sup{s > 0 : τ(s) ≤ t2−ε} we have that

τ(uε(t)) ≥ t2−ε we arrive for some δ = δ(ε) > 0 at limt→∞ uε(t)/t1−δ = ∞ and henceforth

lim sup
t→∞

χ(t)

χ(t1−δ)
≤ lim sup

t→∞
χ(t)

uε(t)
≤ lim sup

t→∞
Hτ(t)

Ht2−ε

.

The arguments then proceed as in the previous case. �

Next, let us consider two cases which distinguish between the scenario when A is bounded or not.

4.1. Bounded set

Since none of the asymptotic relations in (4.4) depends on finite time horizon we can assume that A ⊆R
+ (the Brownian

motion would pass below A for a finite period of time) and limx→∞ l (A∩[0, x]) = a ∈ (0,∞). In this case in the notation
of [10, Chapter 9] as t → ∞

G(t) =
∫ t

0
l
(
A ∩ [0, x])dx ∼ at

and thus as t → ∞

D(t) = inf
{
s > 0 : G(s) > t

} ∼ t

a
,

see (4.8). Then, according to [10, Chapter 9, Corollary 9.4 (ii)] we have that∫ t

0
�̄χ (x) dx � t

D(t)

∞∼ a,

where �̄χ (x) = ∫ ∞
x

�χ(dy). This means that E[χ(1)] < ∞ and therefore a.s. χ(t) = Hτ(t)
∞∼ E[χ(1)]t . From Proposi-

tion 4.3 we arrive at the following result.



Semi-Markov processes, integro-differential equations and anomalous diffusion-aggregation 2659

Corollary 4.4. If A ⊆R
+ and limx→∞ l (A ∩ [0, x]) = a ∈ (0,∞) then a.s. for any ε > 0

lim
t→∞

Ht

t
1
2 −ε

= ∞; lim
t→∞

Ht

t
1
2 +ε

= 0. (4.16)

Proof. Since Hτ(t)
∞∼ E[χ(1)]t we can use this relation in (4.13) and change variables therein. �

Having established sufficiently precise asymptotic behaviour of the occupation measure the next aim is to find under
what conditions σ1(Ht ) or σ2(t − Ht) can be compared to σ1, σ2 at deterministic times. From Corollary 4.4 we arrive at
the following result.

Corollary 4.5. It holds true that, for any ε > 0,

lim
t→∞

σ1(Ht )

σ1(t
1
2 +ε)

= 0; lim
t→∞

σ1(Ht )

σ1(t
1
2 −ε)

= ∞, a.s., (4.17)

provided there exists α ∈ (0,1) such that for any ε1 > 0 small enough a.s.

lim sup
t→∞

σ1(t)

σα(t)
< ∞,

lim inf
t→∞

σ1(t)

σα+ε1(t)
> 0,

(4.18)

where σβ stands for a suitable stable subordinator of index β ∈ (0,1) defined on the same path space as σ1.

Proof. If (4.18) holds true, then a.s. for some constant C ∈ (0,∞) depending on the path and ε1 > 0

lim
t→∞

σ1(Ht )

σ1(t
1
2 +ε)

≤ C lim sup
t→∞

σα(Ht )

σα+ε1(t
1
2 +ε)

.

From Corollary 4.2 we conclude that for any ε2, ε3 positive and small enough

lim
t→∞

σ1(Ht )

σ1(t
1
2 +ε)

≤ C lim sup
t→∞

(Ht )
1
α
+ε2

(t
1
2 +ε)

1
α+ε1

−ε3
.

Now, for fixed ε > 0 we can choose εi, i = 1,2,3, so small that for given ε5 > 0 small enough

( 1
2 + ε)( 1

α+ε1
− ε3)

( 1
α

+ ε2)
= 1

2
+ ε5.

Thererefore, from the second relation in (4.16) we arrive at

lim
t→∞

σ1(Ht )

σ1(t
1
2 +ε)

≤ C lim sup
t→∞

(
Ht

t
1
2 +ε5

) 1
2 +ε2

= 0.

This proves the first limit in (4.17) and the second follows in the same manner. �

Here and hereafter for any stochastic process Y = (Yt )t≥0 with paths that are a.s. right-continuous with left limits we
use (�Y)t≥0 := (Yt − Yt−)t≥0 for the jump process related to Y . We need the following elementary result.

Proposition 4.6. Let σ(t) = V (t)+Y(t), where V,Y are two non-decreasing processes that do not jump simultaneously
almost surely. If L(t) is again the passage time of σ across t > 0 and V (L(t))/σ (L(t)) → 1 in distribution then for every
η ∈ (0,1)

lim
t→∞P

({
�Y

(
L(t)

) = �σ
(
L(t)

)} ∪ {
σ
(
L(t)

) = σ
(
L(t)−)};V (

L(t)−) ≤ (1 − η)t
) = 0. (4.19)
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If V (L(t))/σ (L(t)) → 1 almost surely then almost surely, for any η ∈ (0,1),

sup
{
t > 0 : V (

L(t)−) ≤ (1 − η)t;�Y
(
L(t)

) = �σ
(
L(t)

) ∪ σ
(
L(t)

) = σ
(
L(t)−)}

< ∞. (4.20)

Proof. The proof that follows is rather trivial. We observe that since on the event {�Y(L(t)) = �σ(L(t))} ∪ {σ(L(t)) =
σ(L(t)−)}, because Y,V do not jump simultaneously, it is true that V (L(t)) = V (L(t)−) then

P
({

�Y
(
L(t)

) = �σ
(
L(t)

)} ∪ {
σ
(
L(t)

) = σ
(
L(t)−)};V (

L(t)
) ≤ (1 − η)t

)
≤ P

(
V

(
L(t)

) ≤ (1 − η)t
)

≤ P

(
V (L(t))

σ (L(t))
≤ 1 − η

)
. (4.21)

The result now follows from the assumption that V (L(t))/σ (L(t)) → 1 in distribution. Relation (4.20) follows from the
fact that on{

V
(
L(t)−) ≤ (1 − η)t;{�Y

(
L(t)

) = �σ
(
L(t)

)} ∪ {
σ
(
L(t)

) = σ
(
L(t)−)}}

we have that

V (L(t)−)

σ (L(t))
= V (L(t))

σ (L(t))
≤ (1 − η)t

t
= 1 − η,

which cannot happen for arbitrary large t on the event {limt→∞ V (t)
σ (t)

= 1}, which is of probability one. �

Remark 4.7. All subsequent results are stated under the assumption X0 = 0 a.s. However, as X(t) = B(L(t)) and B is
recurrent all these limit results are clearly valid with X0 = x a.s. for some x ∈R.

We start with a simple but illuminating example, which covers the case when α takes only two values.

Lemma 4.8. Let α(x) = α1, x ∈ A ⊆R
+ and α(x) = α2, x ∈ R \ A. Let furthermore α1, α2 ∈ (0,1) and A bounded such

that 0 < l (A), l (∂A) = 0. Then if α2 > 2α1 we have that

lim
t→∞

∫ t

0 1{X(s)∈A} ds

t
= 1, a.s., (4.22)

and if α2 < 2α1 then

lim
t→∞

∫ t

0 1{X(s)∈A∪[−K,K]} ds

t
= 0, a.s. (4.23)

for any K ≥ 0.

Proof. First, note that σ1 and σ2 defined in (4.6) and (4.7) are respectively stable subordinators of index α1 and α2
evaluated at an independent of them time Ht . Then the conditions (4.18) of Corollary 4.5 are satisfied and (4.17) together
with Corollary 4.2 translates to

lim
t→∞

σ1(Ht )

t
1

2α1
+ε

= 0; lim
t→∞

σ1(Ht )

t
1

2α1
−ε

= ∞, a.s. (4.24)

for any ε > 0 small enough. Also, as (t − Ht)/t → 1 we get in the same fashion that

lim
t→∞

σ2(t − Ht)

t
1
α2

+ε
= 0; lim

t→∞
σ2(t − Ht)

t
1
α2

−ε
= ∞, a.s. (4.25)

If α2 > 2α1 then from the second relation of (4.24) and the first relation of (4.25) we get that almost surely

lim
t→∞

σ1(Ht )

σ (t)
= 1, (4.26)
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see (4.6) for the definition of σ . Recall that in this setting the underlying Markov process in the definition of X(t−) =
M(L(t)−), see (2.20), is the Brownian motion B and X(t−) = B(L(t)) from the continuity of B . Now since l (∂A) = 0
we have that

P
(∃t ≥ 0 : σ(t) − σ(t−) > 0;B(t) ∈ ∂A

) = 0.

This is true since first almost surely l ({s ≥ 0 : B(s) ∈ ∂A}) = 0, second almost surely then it holds that

l
([0, t] \ {

t ≥ s ≥ 0 : B(s) ∈ ∂A
}) = t,

third from (2.10) and σ being a composition of two stable subordinators we have that

E
[
e−λσ(t) | B(w),w ≤ t

] = e
− ∫ ∞

0 (1−e−λs )(
C1

sα1+1 Ht+ C2
sα2+1 (t−Ht )) ds

, (4.27)

and forth relation (4.27) implies that since {s ≥ 0 : B(s) ∈ ∂A} is independent of σ and of zero measure then the proba-
bility of σ jumping at times in this set is zero. However, from (4.26) we have that

lim
t→∞

σ1(HL(t))

σ (L(t))
= 1; lim

t→∞
σ1(HL(t)−)

σ (L(t)−)
= 1; a.s. (4.28)

To check the latter note that σ1(Ht ) ≤ σ(t), t > 0. Assume that there is ε > 0 and a set Ã of positive probability such that
on Ã

lim sup
t→∞

σ1(HL(t)−)

σ (L(t)−)
≤ 1 − ε. (4.29)

Clearly we can choose t0, t1 > 0 and event Ā such that

P(Ā) = P

(
∀t ≥ t0 : σ1(Ht )

σ (t)
≥ 1 − ε

100
; t ≥ t1 : L(t) ≥ t0 + 1

)
≥ 1 − 1

2
P(Ã).

Then P(Ã ∩ Ā) > 0 and we work with trajectories in Ã ∩ Ā. Then for any η ∈ (0,1) we have, applying in the last
inequality (4.29), that for some t > t1

1 − ε

100
≤ σ1(HL(t)−η)

σ (L(t) − η)
≤ σ1(HL(t)−)

σ (L(t) − η)
= σ1(HL(t)−)

σ (L(t)−)

σ (L(t)−)

σ (L(t) − η)
≤

(
1 − ε

2

)
σ(L(t)−)

σ (L(t) − η)
.

Setting η → 0 and using that limη→0 σ(L(t) − η) = σ(L(t)−) we arrive at a contradiction. Next, let

At = {
�σ

(
L(t)

) = �σ1(HL(t))
}
.

Then, clearly

l
(
s ≤ t : X(s) ∈ A

) = σ1(HL(t)−) + (
t − σ

(
L(t)−))

1{At }

and on At

l
(
s ≤ t : X(s) ∈ A

) = t − σ2
(
(t − HL(t))−

)
.

Fix η ∈ (0,1) and set

At,η = {
σ1(HL(t)−) ≤ (1 − η)t

}
.

Since σ(L(t)) = σ1(HL(t)) + σ2(L(t) − HL(t)) and (4.28) holds true then the conditions of Proposition 4.6 are satisfied
in the almost surely sense and we have from (4.20) that almost surely there exists t0 depending on the path and η such
that At,η ∩ Ac

t =∅ for all t ≥ t0. This leads to

lim
t→∞

l (s ≤ t : X(s) ∈ A)

t
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= lim
t→∞

(
l (s ≤ t : X(s) ∈ A)1{At,η}

t
+ l (s ≤ t : X(s) ∈ A)1{Ac

t,η}
t

)

≥ lim
t→∞

(
(σ1(HL(t)−) + (t − σ(L(t)−))1{At })1{At,η}

t
+ σ1(HL(t)−)1{Ac

t,η}
t

)

≥ lim
t→∞

(
(σ1(HL(t)−) + (t − σ(L(t)−))1{At })1{At,η}

t
+ (1 − η)1{Ac

t,η}
)

= lim
t→∞

(
t − σ2((t − HL(t))−)

t
1{At,η} + (1 − η)1{Ac

t,η}
)

≥ lim
t→∞(1 − η)1{At,η} + (1 − η)1{Ac

t,η} = (1 − η),

where the very last equality follows from fact that a.s.

1 = lim
t→∞

σ1(HL(t)−)

σ (L(t)−)

= lim
t→∞

σ1(HL(t)−)

σ1(HL(t)−) + σ2((t − HL(t))−)

and hence

lim
t→∞

σ2((t − HL(t))−)

t
≤ lim

t→∞
σ2((t − HL(t))−)

σ1(HL(t)−)
= 0.

Since η is arbitrary we get that

lim
t→∞

l (s ≤ t : X(s) ∈ A)

t
= 1,

which proves (4.22).
Let next 2α1 > α2. Then using exactly the same arguments and (4.25) we arrive at

lim
t→∞

σ2(t − Ht)

σ (t)
= 1 (4.30)

and almost surely

lim
t→∞

l (s ≤ t : X(s) ∈ Ac)

t
= 1.

However, if, for some K > 0, we set Ht(1),Ht (2) the occupation measures of the Brownian motion of [0,K] \ A and
[−K,0), then

σ2(t − Ht) = σ2
(
t − Ht − Ht(1) − Ht(2)

) + σ2
(
Ht(1)

) + σ2
(
Ht(2)

)
.

Clearly, the same reasoning for Ht applies to Ht(1),Ht (2) and yields through utilization of Corollaries 4.4, 4.5, for any
ε > 0, to

lim
t→∞

σ2(Ht (i))

t
1

2α2
+ε

= 0; lim
t→∞

σ2(Ht (i))

t
1

2α2
−ε

= ∞, a.s., i = 1,2. (4.31)

This allows us to deduct that (4.30) is further augmented to

lim
t→∞

σ2(t − Ht − Ht(1) − Ht(2))

σ (t)
= 1, a.s.

As before we can again deduct that

lim
t→∞

l (s ≤ t : X(s) ∈ Ac ∪ (−∞,−K) ∪ (K,∞))

t
= 1.

This concludes the proof. �
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Let us now assume that α : R 	→ (0,1), supx∈R α(x) < 1 and set α∗ = minx∈R α(x) > 0. Assume further that there
exists β small enough such that Aβ = {x ∈ R : α(x) < α∗ + β < 1} is bounded and satisfies 0 < l (Aβ) < ∞ and for any
0 < ε < β, l (Aε) > 0. Also let l (∂Aε) = 0 for all ε ≤ β . Without loss of generality let Aβ ⊆ R

+. Denote by Hs(β) the
occupation measure of Aβ as above and σ1(Hs(β)) the process in the decomposition (4.6). Then, we have the result:

Lemma 4.9. With the conditions on Aβ and α above we have that for any β > ε > 0 small enough

lim
s→∞

σ1(Hs(β))

(Hs(β))
1

α∗ +ε
= 0 (4.32)

and

lim
s→∞

σ1(Hs(β))

(Hs(β))
1

α∗+ε
−ε

= ∞. (4.33)

Proof. Recall that the intensity measure of σ is in general

ν(ds, x) = α(x)

�(1 − α(x))

ds

sα(x)+1
= vx(s) ds, s ∈ R

+, x ∈ R. (4.34)

Set

0 < q1 := inf
x∈Aβ

α(x)

�(1 − α(x))
≤ sup

x∈Aβ

α(x)

�(1 − α(x))
:= q2 < ∞. (4.35)

From (4.34) the density of the intensity measure of σ can be estimated uniformly on (s, x) ∈ R
+ ×R as

vx(s) ≤ q2
(
s−α∗−β + s−α∗)

(4.36)

and for ε < β on (s, x) ∈R
+ × Aε (recall that Aε = {x ∈ R : α(x) < α∗ + ε < 1})

vx(s) ≥ q1s
−α∗−ε1{s≥1}. (4.37)

Therefore, if ση is a stable subordinator of index η assume that we can construct pathwise stable subordinators of index
α∗, α∗ + ε,α∗ + β such that

σ1
(
Hs(β)

) ≤ σα∗(
c1Hs(β)

) + σα∗+β
(
c1Hs(β)

)
,

σ1
(
Hs(β)

) ≥ σα∗+ε
(
c2Hs(β)

) −
∑

v≤c2Hs(β)

�σα∗+ε
v 1{�σα∗+ε

v ≤1},
(4.38)

where c1, c2 > 0 and in the second inequality we have truncated the jumps less or equal to 1. However, from an easy
application of Corollary 4.2 to both σα∗

, σ α∗+β at infinity we get almost surely that for any ε > 0 as small as we wish

lim inf
s→∞

σα∗
(c1Hs(β))

(c1Hs(β))
1

α∗ −ε
= ∞; lim sup

s→∞
σα∗+β(c1Hs(β))

(c1Hs(β))
1

α∗+β
+ε

= 0. (4.39)

Henceforth choosing 1
α∗+β

+2ε < 1
α∗ then we check that σα∗

(c1Hs(β)) dominates the right-hand side of the first inequal-

ity in (4.38). Also σα∗+ε(c2Hs(β)) dominates the second term in the right-hand side of the second inequality in (4.38)
since the small jumps have all exponential moments and have an almost surely linear growth. Therefore, almost surely,

lim sup
s→∞

σ1(Hs(β))

σα∗
(c1Hs(β))

≤ 1 and lim inf
s→∞

σ1(Hs(β))

σα∗+ε(c2Hs(β))
≥ 1.

Thus, (4.32) and (4.33) follow respectively from another application of Corollary 4.2 in the last relations. This proves the
claims modulo to verification of the pathwise construction in (4.38). Let us start with the upper bound therein. It can be
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obtained by the addition of two independent processes, say Ỹ , Ȳ , with density of the intensity measures of the form

ṽx(s) :=
((

hs−α∗−1 − α(x)s−α(x)−1

�(1 − α(x))

)
1{s>1} + hs−α∗−11{s≤1}

)
1{x∈Aβ },

v̄x(s) :=
((

hs−α∗−β−1 − α(x)s−α(x)−1

�(1 − α(x))

)
1{s≤1} + hs−α∗−β−11{s>1}

)
1{x∈Aβ }

as long as h > q2 = supx∈Aβ

α(x)
�(1−α(x))

which ensures the positivity of ṽx, v̄x on R
+ × Aβ . Then on Aβ the total intensity

of the sum of the three independent processes is

vx(s) + ṽx(s) + v̄x(s) = hs−α∗−1 + hs−α∗−β−1

or the process is also the sum of two independent copies of time-changed stable subordinators, denoted σα∗
(c1·),

σα∗+β(c2·). Indeed, to see the latter simply adjoin Ỹ with the jumps of σ smaller than 1 and Ȳ with the jumps of σ

larger than 1. Also, we recall that if χ is a subordinator with a Lévy measure � then the Lévy measure of χct is c� and
by choosing c1 = h�(1−α∗)

α∗ and c2 = h�(1−α∗−β)
α∗+β

we ensure that the intensity is respectively hs−α∗−1 and hs−α∗−β−1.
The lower bound in (4.38) can be obtained by thinning of the jumps of σ1, say � = (�s)s≥0, in the manner∑

s

�sbs

with bs independent of σ1 Bernoulli random variable with parameter depending on the current position of the Brownian
motion

p(Bs,�s) = h�−α∗−ε−1
s

α(Bs)
�(1−α(Bs))

�
−α(Bs)−1
s

1{|�s |>1}.

This procedure thins the jumps accordingly as long as p(Bs,�s) < 1 on (s, x) ∈R
+ × Aε , for which it suffices that

h

α(Bs)
�(1−α(Bs))

< 1,

the choice of which is always possible when Bs ∈ Aε from (4.35) and ensures that

p(Bs,�s) = h�−α∗−ε−1
s

α(Bs)
�(1−α(Bs))

�
−α(Bs)−1
s

< 1.

Then the intensity of the thinned process is given for x ∈ Aε by

ṽx(s) = hs−α∗−ε−1

α(x)
�(1−α(x))

s−α(x)−1
vx(s)1{s≥1} = hs−α∗−ε−11{s≥1}

or that of a time-changed stable process whose jumps smaller than 1 have been trimmed away. �

However, (4.32) and (4.33) can be combined with (4.16) to yield the following almost sure estimates on the growth of
σ1(Hs(β)).

Corollary 4.10. For all ε > 0 small enough

lim
t→∞

σ1(Ht (β))

t
1

2α∗ +ε
= 0 (4.40)

and

lim
t→∞

σ1(Ht (β))

t
1

2α∗+2ε
−ε

= ∞. (4.41)
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Next, we estimate the growth of σ2.

Corollary 4.11. Let α,Aβ be as in Lemma 4.9. Assume also that α∗ = minx∈R α(x) > 0, maxx∈R α(x) < 1, 1 >

limx→∞ α(x) = αI > α∗ and 1 > limx→−∞ α(x) = αJ > α∗. Then, with α� = min{αI ,αJ ,2(α∗ + β)}

lim
t→∞

σ2(t − Ht(β))

t
1

α� +ε
= 0; lim

t→∞
σ2(t − Ht(β))

t
1

α� −ε
= ∞, a.s., (4.42)

for all ε small enough.

Proof. Fix ε > 0. Let K > 0 be large enough in such a way that supx<−K |α(x)−αJ | ≤ ε/100 and supx>K |α(x)−αI | ≤
ε/100. Let

A◦ = Aβ ∪ [−K,K],
where clearly l (A◦) ∈ (0,∞). Also set A� = A◦ \ Aβ . Then the occupation measure of A◦ is evaluated as

H ◦
t = Ht(β) + H �

t

and from the construction of σ1 and l (∂Aβ) = 0, we check that σ2 grows only on A� or by the increase of H �. Since
α(x) > α∗ + β on Ac

β and l (A◦) ∈ (0,∞) absolutely the same arguments as in Lemma 4.9 and Corollary 4.10 yield that

lim
t→∞

σ2(H
�
t )

t
1

2(α∗+β)
+η1

= 0; lim
t→∞

σ2(H
�
t )

t
1

2(α∗+β)
−η1

= ∞ a.s., (4.43)

for all η1 > 0 small enough. Next, note that

σ2
(
t − Ht(β)

) = σ2
(
t − H ◦

t

) + σ2
(
H �

t

)
. (4.44)

Precisely, as the construction leading to (4.38), denoting α◦ = min{αI ,αJ }, we can show that

σ2
(
t − H ◦

t

) ≤ σα◦(c1
(
t − H ◦

t

)) + σα◦+η
(
c1

(
t − H ◦

t

))
,

σ2
(
t − H ◦

t

) ≥ σα◦+η
(
c2

(
t − H ◦

t

)) −
∑

v≤c2(t−H ◦
t )

�σα◦+η
v 1{�σ

α◦+η
v ≤1},

(4.45)

where ε/100 < η < ε/2 and c1, c2 correspond to time changes related to estimates of the densities precisely as in (4.36)
and (4.37), and σ · stands for a stable subordinator of index · ∈ (0,1). However, as in (4.16) we have that H ◦

t grows almost
surely sublinearly and thus we can conclude that for any such η small enough

lim inf
t→∞

σ2(t − H ◦
t )

t
1
α◦ −η

= ∞; lim sup
t→∞

σ2(t − H ◦
t )

t
1

α◦+η
+η

= 0.

Since K can be chosen as large as we wish and thus ε and η as small as we wish, we deduct via (4.44) and (4.43) the
validity of (4.42) for all ε small enough. This settles the proof of the corollary. �

Then the following result holds true

Theorem 4.12. Let α : R 	→ (0,1), α∗ = minx∈R α(x) > 0,maxx∈R α(x) < 1 and

1 > lim
x→∞α(x) = αI > α∗, 1 > lim

x→−∞α(x) = αJ > α∗.

Also let there exist β0 small enough such that for all β0 ≥ β , the set Aβ = {x ∈ R : α(x) < α∗ + β < 1} is bounded and
satisfies 0 < l (Aβ) < ∞ and also l (∂Aβ) = 0. Then,

1. if 2α∗ < min{αI ,αJ } we have that for any 0 ≤ β ≤ β0

lim
t→∞

∫ t

0 1{X(s)∈Aβ } ds

t
= 1, a.s.; (4.46)
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2. and if 2α∗ > min{αI ,αJ }, for any K > 0,

lim
t→∞

∫ t

0 1{X(s)∈Ac
β∩[−K,K]c} ds

t
= 1, a.s. (4.47)

Proof. Recall that X(t) = B(L(t)). Let 2α∗ < min{αI ,αJ } and choose β ′ > 0 small enough so that even 2α∗ + 2β ′ <

min{αI ,αJ }. Choose β < β ′ so that the conditions of the theorem are satisfied. Then using Corollaries 4.10, 4.11 we get
precisely as in the proof of Lemma 4.8 that the equivalent to (4.26) relation holds, that is

lim
t→∞

σ1(Ht (β))

σ (t)
= 1, a.s. (4.48)

Since again

l
([0, t] \ {

t ≥ s ≥ 0 : B(s) ∈ ∂Aβ

}) = t

and the validity of Proposition 4.6 in the almost sure sense is at hand, precisely as in the proof of (4.22) of Lemma 4.8 we
establish (4.46). Assume next that 2α∗ > min{αI ,αJ }. Then for any β > 0,

α� = min
{
αI ,αJ ,2

(
α∗ + β

)} = min{αI ,αJ }
and from (4.41) and (4.42) we conclude that

lim
t→∞

σ2(t − Ht)

σ (t)
= 1 a.s.

Moreover, from (4.43) and (4.44) and with

H �
t =

∫ t

0
1{B(s)∈A�} ds;H ◦

t =
∫ t

0
1{B(s)∈A◦} ds,

where for any K > 0, A◦ = Aβ ∪ [−K,K] and A� = A◦ \ Aβ , we have that

lim
t→∞

σ2(t − H ◦
t )

σ (t)
= 1 a.s.

Then the proof follows precisely as the proof of case 2α1 > α2 of Lemma 4.8. �

When A0 = {x ∈ R : α(x) = α∗} is a bounded disjoint union of intervals which implies that l (A0) ∈ (0,∞) and for
all small β > 0, A0 = Aβ , where Aβ = {x ∈ R : α(x) < α∗ + β}, then we have the stronger result which localizes in
probability the anomalous diffusion.

Theorem 4.13. Let α :R 	→ (0,1) and A0 = {x ∈R : α(x) = α∗} = ⋃
i Ii , be bounded and where Ii are disjoint intervals.

Let also l (A0) ∈ (0,∞), l (∂A0) = 0 and for all small β > 0, A0 = Aβ , where Aβ = {x ∈ R : α(x) < α∗ + β}. Finally,
let α∗ = minx∈R α(x) > 0,maxx∈R α(x) < 1 and

1 > lim
x→∞α(x) = αI , 1 > lim

x→−∞α(x) = αJ .

Then if 2α∗ < min{αI ,αJ } it holds true that

lim
t→∞P

(
X(t) ∈ A0

) = 1. (4.49)

For clarity let us consider a special case which is of greatest interest.

Corollary 4.14. Let α : R 	→ (0,1) be piece-wise constant taking values 0 < α1 < α2 < · · · < αn < 1. Let A = {x ∈ R :
α(x) = α1} be a finite union of intervals such that l (A) ∈ (0,∞) and

min
{

lim
x→∞α(x); lim

x→−∞α(x)
}

= αj , 2 ≤ j ≤ n.
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If 2α1 < αj then

lim
t→∞P

(
X(t) ∈ A

) = 1. (4.50)

Otherwise, if 2α1 > αj and Aj = {x ∈R : α(x) = αj }, then

lim
t→∞P

(
X(t) ∈ Aj

) = 1. (4.51)

We proceed with the proof of the Theorem 4.13.

Proof of Theorem 4.13. If 2α∗ < min{αI ,αJ } we choose β > 0 small enough that A = Aβ . From (4.48) we get that

lim
t→∞

σ1(Ht )

σ (t)
= 1, a.s., (4.52)

where we recall that X(t) = B(L(t)), L(t) = inf{s > 0 : σ(s) > t} and from (4.6) and the assumptions of the theorem

σ(t) = σ1(Ht ) + σ2(t − Ht)

with Ht = ∫ t

0 1{B(s)∈A} ds. We note that σ1 is simply a stable subordinator of index α1. From (4.52) we arrive at

lim
t→∞

σ1(HL(t))

σ (L(t))
= 1, a.s.

Therefore (4.20) of Proposition 4.6 is valid and hence for any η ∈ (0,1)

lim
t→∞P

(
σ1(HL(t)) ≤ (1 − η)t;�σ2

(
L(t) − HL(t)

) = �σ
(
L(t)

)) = 0,

where we have used that P(�σ(L(t)) = 0) = 0. Henceforth, if (4.50) fails then for any η ∈ (0,1) and some c ∈ (0,1)

c ≤ lim sup
t→∞

P
(
X(t) /∈ A

)
= lim sup

t→∞
P

(
σ1(HL(t)) ∈ (

(1 − η)t, t
);�σ2

(
L(t) − HL(t)

) = �σ
(
L(t)

))
≤ lim sup

t→∞
P

(
σ1

(
L1(t)−

) ∈ (
(1 − η)t, t

))
, (4.53)

where the very last inequality follows easily from σ1(HL(t)) ∈ ((1−η)t, t) and σ1(HL(t)) ≤ σ1(L1(t)−) < t with L1(t) =
inf{s > 0 : σ1(s) > t}. Next, note that σ1 is a stable subordinator of index α1, see the definition of A, and (4.34) is the
form of its intensity measure. Also from [9, Chapter III, Section 1] we know that the potential density of σ1 is

u1(x) = Cxα1−1, x > 0,

and from [9, Chapter III, Proposition 2]

P
(
σ1

(
L1(t)−

) ∈ (
(1 − η)t, t

)) = C

∫ t

(1−η)t

ν̄(t − y)yα1−1 dy

= D

∫ t

(1−η)t

(t − y)−α1yα1−1 dy

= D

∫ 1

(1−η)

(1 − y)−α1yα1−1 dy,

where D > 0 is the multiplication of the constant of the potential density and (4.34). However, for any η small we then
get that

lim
t→∞P

(
σ1

(
L1(t)−

) ∈ (
(1 − η)t, t

))
<

c

2
,

which contradicts (4.53). Therefore, we conclude that (4.50) holds true. �
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Proof of Corollary 4.14. Relation (4.50) is an immediate consequence of Theorem 4.13. The proof of (4.51) in fact
carries on using the same arguments as in the proof of Theorem 4.13. We summarize them as follows:

• since 2α1 > αj then from Corollary 4.10 and Corollary 4.11 we deduct that limt→∞ σ2(t − H ◦
t )/σ (t) = 1 a.s., where

A◦ = A ∪ [−K,K];
• on Aj the subordinator σ2 is stable of index αj ;
• therefore (4.20) of Proposition 4.6 is valid and contradiction with it is established, provided that lim inft→∞ P(X(t) ∈

Aj) < 1, precisely as in the proof of Theorem 4.13.

This completes the proof. �

4.2. Unbounded set

We consider now the situation

lim
x→∞x−cl

(
A ∩ [−x, x]) = a ∈ (0,∞), c ∈ [0,1)

and A unbounded. Consider A1 = A ∩ [0,∞),A2 = A ∩ (−∞,0). Assume further that

lim
x→∞x−c1 l

(
A1 ∩ [0, x]) = a1 ∈ (0,∞),

lim
x→∞x−c2 l

(
A2 ∩ [−x,0]) = a2 ∈ (0,∞)

(4.54)

and without loss of generality that 1 > c1 ≥ c2 ≥ 0. In this case, we say that A satisfies the growth Assumption (G). Set

Ht(A) =
∫ t

0
(1{Bs∈A1} + 1{Bs∈A2}) ds = H 1

t + H 2
t . (4.55)

Also we introduce

F1(t) :=
∫ t

0
1{A1∩[0,x]} dx; F2(t) :=

∫ t

0
1{A2∩[−x,0]} dx (4.56)

and from (4.54) we have that

Fi(t) ∼ ait
ci i = 1,2. (4.57)

From [10, Proposition 9.5] we arrive at the following fact

Lemma 4.15. The subordinators Hi
τ(t)

, i = 1,2, have Laplace exponents �i, i = 1,2, that are regularly varying and of
the type

�i(λ)
0∼ biλ

1
1+ci , i = 1,2, (4.58)

where bi are some positive and finite constants. Moreover, for any ε > 0 small enough,

lim inf
t→∞

Hi
t

t
1+ci−ε

(2+ε)

= ∞ and lim sup
t→∞

Hi
t

t
1+ci+ε

(2−ε)

= 0 a.s. (4.59)

Proof. The proof of (4.58) is immediate from substitution in the quantities involved in the statement of [10, Proposition
9.5]. Relation (4.59) follows from the fact that �i are regularly varying which leads to (4.13) of Proposition 4.3 and the
fact (4.58) ensures that Theorem 4.1 holds true and yield for any ε > 0 small enough

lim inf
t→∞

Hi
τ(t)

t1+ci−ε
= ∞ and lim sup

t→∞
Hi

τ(t)

t1+ci+ε
= 0. (4.60)

�

Let us now assume that α : R 	→ (0,1) and set α∗ = minx∈R α(x). Assume further that the set A = {x ∈ R : α(x) =
α∗ < 1} satisfies the growth Assumption (G) with 1 > c1 ≥ c2 ≥ 0, see (4.54). Also let us suppose that l (∂A) = 0 and
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A = Aβ = {x ∈ R : α(x) < α∗ +β < 1} for all β > 0 small enough. The occupation measure of A is as in (4.55) as above.
The next statement estimates the growth of different pieces of σ . Denote

σ(t) = σ1(Ht ) + σ2(t − Ht) = σ 1
1

(
H 1

t

) + σ 2
1

(
H 2

t

) + σ2(t − Ht), (4.61)

where σ i
1 correspond to the processes localized to Ai, i = 1,2.

Then we have the result.

Corollary 4.16. Let α be such that the set A satisfies the conditions above. Assume that limx→∞,x /∈A α(x) = αI and
limx→−∞,x /∈A α(x) = αJ . Then for all ε > 0 small enough

lim
t→∞

σ1(Ht )

t
1+c1
2α∗ +ε

= 0; lim
t→∞

σ 1
1 (H 1

t )

t
1+c1
2α∗ −ε

= ∞, a.s. (4.62)

and with α◦ = min{αI ,αJ }

lim
t→∞

σ2(t − Ht)

t
1

α◦+ε

= 0; lim
t→∞

σ2(t − Ht)

t
1

α◦−ε

= ∞, a.s. (4.63)

Proof. Since α(x) = α∗ on A, we have that σ1 = σα∗
, that is stable with index α∗ and thus for all ε small enough

lim inf
t→∞

σα∗
(Ht )

(Ht )
1

α∗ −ε
= ∞; and lim sup

t→∞
σα∗

(Ht )

(Ht )
1

α∗ +ε
= 0. (4.64)

Then from (4.59) and using c1 ≥ c2 we get the first relation of (4.62). The second follows from the first relation of (4.64)
and the fact that c1 ≥ c2 combined with (4.60). Relation (4.63) is deducted precisely as in the proof of Corollary 4.11

using the facts that t − Ht
∞∼ t since 1 > c1 ≥ c2 ≥ 0 and (4.59). �

We are now in a position to state the main result of this section.

Theorem 4.17. Let α : R 	→ (0,1), maxx∈R{α(x)} < 1 and suppose that α∗ = minx∈R α(x) > 0. Assume further that
A = {x ∈ R : α(x) = α∗ < 1} satisfies the growth Assumption (G) with 1 > c1 ≥ c2 ≥ 0, see (4.54). Also let l (∂A) = 0
and A = Aβ = {x ∈ R : α(x) < α∗ + β < 1} for all β > 0 small enough. Finally, set α◦ = min{αI ,αJ }, where we have
limx→∞,x /∈A α(x) = αI and limx→−∞,x /∈A α(x) = αJ . Then,

1. if 2α∗
1+c1

< α◦ we have that

lim
t→∞

∫ t

0 1{X(s)∈A} ds

t
= 1 a.s.,

lim
t→∞P

(
X(t) ∈ A

) = 1;
(4.65)

2. if 2α∗
1+c1

> α◦ then for any K > 0

lim
t→∞

∫ t

0 1{X(s)∈[−K,K]c∩Ac} ds

t
= 1 a.s. (4.66)

Remark 4.18. Inspection of the proof and the arguments shows that the result is also true provided c1 = 1, that is
limx→∞ x−1l (A ∩ [−x, x]) = a ∈ (0,∞), where A = {x ∈R : α(x) = α∗}. Then only (4.65) can hold.

Proof. The first relation of (4.65) is established precisely as in the proof of Theorem 4.12 using the different growth for
the occupation measure in this case. The second relation of (4.65) is proved with the same method as in the proof of
Theorem 4.13 noting that on A, σ1 is stable subordinator of index α∗ and the contradiction this would trigger thanks to
(4.20) of Proposition 4.6 provided we assume that lim inft→∞ P(X(t) ∈ A) < 1. Relation (4.66) is again as the proof of
Theorem 4.12. �
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