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Abstract. The long-term behavior of a supercritical branching random walk can be described and analyzed with the help of Biggins’
martingales, parametrized by real or complex numbers. The study of these martingales with complex parameters is a rather recent
topic. Assuming that certain sufficient conditions for the convergence of the martingales to non-degenerate limits hold, we investigate
the fluctuations of the martingales around their limits. We discover three different regimes. First, we show that for parameters with
small absolute values, the fluctuations are Gaussian and the limit laws are scale mixtures of the real or complex standard normal laws.
We also cover the boundary of this phase. Second, we find a region in the parameter space in which the martingale fluctuations are
determined by the extremal positions in the branching random walk. Finally, there is a critical region (typically on the boundary of the
set of parameters for which the martingales converge to a non-degenerate limit) where the fluctuations are stable-like and the limit laws
are the laws of randomly stopped Lévy processes satisfying invariance properties similar to stability.

Résumé. Le comportement en temps long d’une marche aléatoire branchante surcritique peut être décrit et analysé en utilisant les
martingales de Biggins, à paramètres réels ou complexes. L’étude de ces martingales prises en des paramètres complexes est un sujet
d’étude assez récent. En supposant que certaines conditions pour leur convergence vers une limite non-dégénérée sont vérifiées, nous
étudions les fluctuations de ces martingales autour de leurs limites. Nous observons trois régimes différents. D’abord, nous montrons
que dans une région dans laquelle les paramètres sont de petite norme, les fluctuations sont gaussiennes, et les lois limites sont des
mélanges de variables aléatoires gaussiennes réelles ou complexes. Nous obtenons également le comportement au bord de cette région.
Dans un second temps, nous trouvons une région dans l’espace des paramètres dans laquelle les fluctuations des martingales sont
déterminées par les valeurs extrêmes dans la marche aléatoire branchante. Finalement, il existe une région critique (typiquement sur le
bord de l’ensemble des paramètres pour lesquels les martingales convergent vers une limite non-dégénérée) où les fluctuations sont de
type stable, et les lois limites sont les lois de valeurs en un temps aléatoire de processus de Lévy satisfaisant des propriétés d’invariance
similaires à la stabilité.
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1. Introduction

We consider a discrete-time supercritical branching random walk on the real line. The distribution of the branching
random walk is governed by a point process Z on R. Although there are numerous papers in which Z(R) is allowed to
be infinite with positive probability, the standing assumption of the present paper is Z(R) < ∞ almost surely (a.s.). At
time 0, the process starts with one individual (also called particle), the ancestor, which resides at the origin. At time 1, the
ancestor dies and simultaneously places offspring on the real line with positions given by the points of the point process
Z . The offspring of the ancestor form the first generation of the branching random walk. At time 2, each particle of the
first generation dies and has offspring with positions relative to their parent’s position given by an independent copy of
Z . The individuals produced by the first generation particles form the second generation of the process, and so on.
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The sequence of (random) Laplace transforms of the point process of the nth generation positions, evaluated at an
appropriate λ ∈ C and suitably normalized, forms a martingale. This martingale that we denote by (Zn(λ))n∈N0 , where
N0 := N ∪ {0} and N := {1,2, . . .}, is called additive martingale or Biggins’ martingale. These martingales play a key
role in the study of the branching random walk, see e.g. [7, Theorem 4] where the spread of the nth generation particles
is described in terms of additive martingales. In the same paper, Biggins showed that subject to some mild conditions,
Zn(λ) converges almost surely to some limit Z(λ) locally uniformly in λ from a certain open domain � ⊆ C. Biggins’
result was extended by two of the three present authors [29] to (parts of) the boundary of the set �. It is natural to ask for
the rate of this convergence, i.e., for the fluctuations of Z(λ) − Zn(λ).

A partial answer to this question was given by Iksanov and Kabluchko [21], who proved a functional central limit
theorem with a random centering for Biggins’ martingale for real and sufficiently small λ. The counterpart of this result
in the context of the complex branching Brownian motion energy model has been derived by Hartung and Klimovsky
[16]. Another related statement for branching Brownian motion can be found in the recent paper by Maillard and Pain
[35], where the fluctuations of the derivative martingale for branching Brownian motion are studied. The authors of the
present paper also investigated in [22] fluctuations of Z(λ) − Zn(λ) for real λ in the regime where the distribution of
Z1(λ) belongs to the normal domain of attraction of an α-stable law with α ∈ (1,2). We refer to the end of Section 2 for
a detailed account of the existing literature.

The aim of the paper at hand is to give a complete description of the fluctuations of Biggins’ martingales whenever
they converge while making only minimal moment assumptions. It turns out that, apart from the Gaussian regime studied
in [21], there are two further cases. There is an extremal regime, where the fluctuations are determined by the particles
close to the minimal position in the branching random walk. In this regime, the fluctuations are exponentially small with
a polynomial correction. And finally, there is a critical stable regime with fluctuations of polynomial order.

2. Model description and main results

We continue with the formal definition of the branching random walk and a review of the results on which our work is
based.

2.1. Model description and known results

The model.
Set I :=⋃

n≥0 N
n. We use the standard Ulam–Harris notation, that is, for u = (u1, . . . , un) ∈ Nn, we also write u1, . . . , un.

Further, if v = (v1, . . . , vm) ∈ Nm, we write uv for (u1, . . . , un, v1, . . . , vm). For k ≤ n, denote u1, . . . , uk , the ancestor of
u in generation k, by u|k . The ancestor of the whole population is identified with the empty tuple ∅ and its position is
S(∅) = 0. Let (Z(u))u∈I be a family of i.i.d. copies of the basic reproduction point process Z defined on some probability
space (�,A,P). We write Z(u) =∑N(u)

j=1 Xj(u), where N(u) =Z(u)(R), u ∈ I . We assume that Z(∅) =Z . In general,
we drop the argument ∅ for quantities derived from Z(∅), for instance, N = N(∅). Generation 0 of the population is
given by G0 := {∅} and, recursively,

Gn+1 := {
uj ∈Nn+1 : u ∈ Gn and 1 ≤ j ≤ N(u)

}
is generation n + 1 of the process. Define the set of all individuals by G := ⋃

n∈N0
Gn. The position of an individual

u = u1, . . . , un ∈ Gn is

S(u) := Xu1(∅) + · · · + Xun(u1, . . . , un−1).

The point process of the positions of the nth generation individuals will be denoted by Zn, that is,

Zn =
∑
|u|=n

δS(u),

where here and in what follows, we write |u| = n for u ∈ Gn. The sequence of point processes (Zn)n∈N0 is called a
branching random walk.

We assume that (Zn)n∈N0 is supercritical, i. e., E[N ] = E[Z(R)] > 1. Then the generation sizes Zn(R), n ∈ N0 form
a supercritical Galton–Watson process and thus P(S) > 0 for the survival set

S := {#Gn > 0 for all n ∈ N} = {
Zn(R) > 0 for all n ∈ N

}
.



Fluctuations of Biggins’ martingales at complex parameters 2447

The Laplace transform of the intensity measure μ of Z is the function

λ �→ m(λ) :=
∫
R

e−λxμ(dx) = E

[∑
|u|=1

e−λS(u)

]
, λ ∈C, (2.1)

where λ = θ + iη with θ, η ∈ R. (We adopt the convention from [7] and always write θ for Re(λ) and η for Im(λ).)
Throughout the paper, we assume that

D = {
λ ∈C : m(λ) converges absolutely

}= {
θ ∈ R : m(θ) < ∞}+ iR

is non-empty. For λ ∈ D and n ∈N0, let

Zn(λ) := 1

m(λ)n

∫
R

e−λxZn(dx) = 1

m(λ)n

∑
|u|=n

e−λS(u).

Denote by Fn := σ(Z(u) : u ∈ ⋃n−1
k=0 N

k), and let F∞ := σ(Fn : n ∈ N0). It is well known and easy to check that
(Zn(λ))n∈N0 forms a complex-valued martingale with respect to (Fn)n∈N0 . It is called additive martingale in the branch-
ing random walk and also Biggins’ martingale in honor of Biggins’ seminal contribution [6].

Convergence of complex martingales.
Convergence of these martingales has been investigated by various authors in the case λ = θ ∈ R, see e. g. [5,6,32]. For
the complex case, the most important sources for us are [7] and [29]. Theorem 1 of [7] states that if

E
[
Z1(θ)γ

]
< ∞ for some γ ∈ (1,2] (B1)

and

m(pθ)

|m(λ)|p < 1 for some p ∈ (1, γ ], (B2)

then (Zn(λ))n∈N0 converges a.s. and in Lp to a limit variable Z(λ). Theorem 2 in the same source gives that this conver-
gence is locally uniform (a.s. and in mean) on the set � =⋃

γ∈(1,2] �γ where �γ = �1
γ ∩ �3

γ and, for γ ∈ (1,2],

�1
γ = int

{
λ ∈D : E[Z1(θ)γ

]
< ∞}

and �3
γ = int

{
λ ∈D : inf

1≤p≤γ

m(pθ)

|m(λ)|p < 1

}
.

In [29], convergence of the martingales (Zn(λ))n∈N0 for parameters λ from the boundary ∂� is investigated. Theorem 2.1
in the cited article states that subject to the conditions

m(αθ)

|m(λ)|α = 1 and E

[∑
|u|=1

θS(u)
e−αθS(u)

|m(λ)|α
]

≥ − log
(∣∣m(λ)

∣∣) for some α ∈ (1,2) (C1)

and

E
[∣∣Z1(λ)

∣∣α log2+ε+
(∣∣Z1(λ)

∣∣)]< ∞ for some ε > 0 (C2)

with the same α as in (C1), there is convergence of Zn(λ) to some limit variable Z(λ). The convergence holds a.s. and in
Lp for any p < α.

As has already been mentioned the fluctuations of Zn(λ) around Z(λ) as n → ∞ are the subject of the present
paper. More precisely, we find (complex) scaling constants an = an(λ) �= 0 such that an · (Z(λ) − Zn(λ)) converges in
distribution to a non-degenerate limit as n → ∞.

2.2. Main results

We give an example before we state our main results.
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Fig. 1. The figure shows the different regimes of fluctuations of Biggins’ martingales in the branching random walk with binary splitting
and independent standard Gaussian increments.

Example.
There are three fundamentally different regimes for the fluctuations of Zn(λ) around its limit Z(λ). These regimes are
best understood via an example, which is in close analogy to branching Brownian motion.

Example 2.1 (Binary splitting and Gaussian increments). Consider a branching random walk with binary splitting
and independent standard Gaussian increments, that is, Z = δX1 + δX2 where X1,X2 are independent standard normals.
Then m(λ) = 2 exp(λ2/2) for λ ∈C. For every θ ∈R and γ > 1, we have E[Z1(θ)γ ] < ∞. Hence � = {λ = θ + iη ∈ C :
m(pθ)/|m(λ)|p < 1 for some p ∈ (1,2]}. Thus, λ ∈ � if and only if there exists some p ∈ (1,2] with m(pθ)/|m(λ)|p <

1. The latter inequality is equivalent to

(1 − p)2 log 2 + p2θ2 − p
(
θ2 − η2)< 0. (2.2)

It follows from the discussion in [29, Example 3.1] that λ ∈ � iff |θ | ≤ √
2 log 2/2 and θ2 + η2 < log 2, or√

2 log 2/2 ≤ |θ | <
√

2 log 2 and |η| <
√

2 log 2 − |θ |. Corollary 1.1 of [21] applies to parameters θ ∈ R satisfy-
ing m(2θ)/m(θ)2 < 1 or, equivalently, |θ | <

√
log 2. In this case, the corollary gives convergence in distribution of

(
√

2 exp(−θ2/2))n(Z(θ) − Zn(θ)) to a constant multiple of
√

Z(2θ) · X where X is real standard normal and indepen-
dent of Z(2θ). According to [32], Z(2θ) is non-degenerate iff |θ | <

√
2 log 2/2, i.e., the limit in Corollary 1.1 of [21] is

non-degenerate only for θ which are situated on the real axis strictly between the two red vertical lines in Figure 1. Our
first result, Theorem 2.2 below, extends Corollary 1.1 from [21] and, in this particular example, gives the convergence
of (

√
2 exp((λ2/2 − θ2))n(Z(λ) − Zn(λ)) to a constant multiple of

√
Z(2θ) · X in the whole bounded yellow domain

surrounded by red arcs and lines. Here, X is independent of Z(2θ) and complex standard normal if Im(λ) �= 0. For pa-
rameters λ from the red vertical lines, the same limit relation holds, but the limit is degenerate as Z(2θ) = 0 a.s. Indeed,
2θ is then one of the two black dots in the figure. This problem can be resolved with the help of Seneta–Heyde norming.
From [2] we know that

√
nZn(2θ) converges in probability to a constant multiple of the (non-degenerate) limit D∞ of

the derivative martingale. Modifying the scaling in Theorem 2.2 by the additional prefactor n1/4 gives a nontrivial limit
theorem where the limit is a constant multiple of

√
D∞ · X with the same X as before which is further independent of

D∞. This is the content of Theorem 2.3 which applies to the λ from the vertical red lines.
A similar trick does not work for parameters from the open yellow domains surrounded by the two triangles consisting

of red vertical lines and diagonal blue lines. There, the contribution of the minimal positions in the branching random
walk to Z(λ) − Zn(λ) is too large for a limit theorem with a (randomly scaled) normal or stable limit. Instead, it can
be checked that our Theorem 2.5 applies. The most tedious part here is to show that E[|Z(λ)|p] < ∞ for some suitable
p, but this can be achieved by checking that the sufficient conditions (B1) and (B2) are fulfilled. Theorem 2.5 is based
on the convergence of the point process of the branching random walk seen from its tip [34]. The correct scaling factors
provided by the theorem are n3λ/(2ϑ) · (2 exp(λ2/2)/(4λ/ϑ ))n with ϑ = √

2 log 2 and the limit distribution has a random
series representation involving the limit process of branching random walk seen from its tip.

Finally, on the blue lines, it holds that the distribution of the martingale limit Z(λ) is in the domain of attraction of a
stable law and hence Z(λ)−Zn(λ) exhibits stable-like fluctuations. This regime is covered by Theorem 2.9, which shows

that n
λ

2αθ (Z(λ)−Zn(λ)) converges in distribution to a Lévy process independent of F∞ satisfying an invariance property
similar to α-stability (the details are explained in Example 2.7) evaluated at the limit D∞ of the derivative martingale,
where α = √

2 log 2/θ ∈ (1,2) for θ ∈ ( 1
2

√
2 log 2,

√
2 log 2).
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Weak convergence almost surely and in probability.
If ζ, ζ1, ζ2, . . . are random variables taking values in C, we write

L(ζn|Fn)
w→ L(ζ |F∞) in P-probability (2.3)

(in words, the distribution of ζn given Fn converges weakly to the distribution of ζ given F∞ in P-probability) if for
every bounded continuous function φ : C → R it holds that E[φ(ζn)|Fn] converges to E[φ(ζ )|F∞] in P-probability as
n → ∞. Notice that (2.3) implies that ζn converges to ζ in distribution as n → ∞ as for any bounded and continuous
function φ : C → R and every strictly increasing sequence of positive integers, we can extract a subsequence (nk)k∈N
such that E[φ(ζnk

)|Fnk
] converges to E[φ(ζ )|F∞] a.s. Hence, by the dominated convergence theorem,

E
[
φ(ζnk

)
]= E

[
E
[
φ(ζnk

)|Fnk

]]→ E
[
E
[
φ(ζ )|F∞

]]= E
[
φ(ζ )

]
as k → ∞.

This implies E[φ(ζn)] → E[φ(ζ )] as n → ∞ and, therefore, ζn
d→ ζ .

Analogously, we write

L(ζn|Fn)
w→ L(ζ |F∞) P-a.s. (2.4)

(in words, the distribution of ζn given Fn converges a.s. to the distribution of ζ given F∞) if for every bounded continuous
function φ : C → R it holds that E[φ(ζn)|Fn] converges to E[φ(ζ )|F∞] a.s. as n → ∞. Clearly, also L(ζn|Fn)

w→
L(ζ |F∞) P-a.s. implies ζn

d→ ζ .
Henceforth, we shall assume that λ ∈ D satisfies θ ≥ 0. This simplifies the presentation of our results but is not a

restriction of generality. Indeed, if θ < 0, we may replace the point process Z = ∑N
j=1 δXj

by
∑N

j=1 δ−Xj
and θ by

−θ > 0.

Small |λ|: Gaussian fluctuations.
Our first result is an extension of Corollary 1.1 in [21] to the complex case. For λ ∈ D with m(λ) �= 0, we set

σ 2
λ := E

[∣∣Z1(λ) − 1
∣∣2]= E

[∣∣Z1(λ)
∣∣2]− 1 ∈ [0,∞]. (2.5)

Notice that σ 2
θ < ∞ implies σ 2

λ < ∞ since |Z1(λ)| ≤ m(θ)
|m(λ)|Z1(θ).

Throughout the paper, we call a complex random variable ζ = ξ + iτ with ξ = Re(ζ ) and τ = Im(ζ ) standard normal
if ξ and τ are independent, identically distributed centered normal random variables with E[|ζ |2] = E[ξ2] +E[τ 2] = 1.

Theorem 2.2 (Gaussian case). Assume that λ ∈ D with m(λ) �= 0 is such that σ 2
θ < ∞, σ 2

λ > 0 and m(2θ) < |m(λ)|2.
Define

m =
{

m(2θ) if |m(2λ)| < m(2θ),

m(2λ) if |m(2λ)| = m(2θ).

Then

L
(

m(λ)n

mn/2

(
Z(λ) − Zn(λ)

)|Fn

)
w→ L

(
σλ√

1 − m(2θ)/|m(λ)|2
√

Z(2θ)X|F∞
)

in P-probability, (2.6)

where X is independent of F∞. Here, X is complex standard normal if |m(2λ)| < m(2θ) whereas X is real standard
normal if |m(2λ)| = m(2θ).

If, additionally, either 2θ ∈ � or Z(2θ) = 0 a.s., then the weak convergence in P-probability in (2.6) can be strength-
ened to weak convergence P-a.s.

A perusal of the proof of Theorem 2.2 reveals that the theorem still holds when Z(R) = ∞ with positive probability,
that is, our standing assumption Z(R) < ∞ a.s. is not needed for this result.

Further, notice that the limit in Theorem 2.2 may vanish a.s., namely, if Z(2θ) = 0 a.s. Equivalent conditions for
(Zn(2θ))n∈N0 to be uniformly integrable or equivalently

P
(
Z(2θ) > 0

)
> 0 (2.7)
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are given in [32] and [5, Theorem 1.3]. For instance,

E
[
Z1(2θ) log+

(
Z1(2θ)

)]
< ∞ and 2θm′(2θ)/m(2θ) < log

(
m(2θ)

)
(2.8)

imply (2.7). In particular, the condition 2θ ∈ � comfortably ensures (2.7).
However, there may be a region of λ ∈ � for which m(2θ) < |m(λ)|2 and σ 2

θ < ∞ but Z(2θ) is degenerate at 0 as it is
the case in Example 2.1.1 In this situation, the assertion of Theorem 2.2 holds but the limit is degenerate at 0. This means
that 2θ /∈ �. Typically, there is a real parameter ϑ > 0 with ϑ ∈ ∂� such that

ϑm′(ϑ)/m(ϑ) = log
(
m(ϑ)

)
(2.9)

and either 2θ = ϑ or 2θ > ϑ . The second case leads to a non-Gaussian regime in which the extremal positions dominate
the fluctuations on Zn(λ) around Z(λ). This case will be dealt with further below. In the first case, under mild moment
assumptions, a polynomial correction factor is required and a different martingale limit figures, namely, the limit of the
derivative martingale. More precisely, we suppose that (2.8) is violated because 2θ = ϑ where ϑ > 0 is as in (2.9). Then,
for n ∈ N0 and u ∈ Gn, we define

V (u) := ϑS(u) + n log
(
m(ϑ)

)
. (2.10)

By definition and by (2.9),

E

[∑
|u|=1

e−V (u)

]
= 1 and E

[∑
|u|=1

V (u)e−V (u)

]
= 0. (2.11)

The branching random walk ((V (u))u∈Gn
)n≥0 is said to be in the boundary case. Then Wn :=∑

|u|=n e−V (u) = Zn(ϑ) →
0 a.s., but the derivative martingale

∂Wn :=
∑
|u|=n

e−V (u)V (u) (2.12)

converges P-a.s. under appropriate assumptions to some random variable D∞ satisfying D∞ > 0 a.s. on the survival set
S , see [10] for details. Due to a result by Aïdékon and Shi [2, Theorem 1.1], the limit D∞ also appears as the limit in
probability of the rescaled martingale Wn, namely,

√
nWn

P→
√

2

πσ 2
D∞, (2.13)

where

σ 2 = E

[∑
|u|=1

V (u)2e−V (u)

]
∈ (0,∞). (2.14)

Relation (2.13) holds subject to the conditions (2.11), (2.14) and

E
[
W1 log2+(W1)

]
< ∞ and E

[
W̃1 log+(W̃1)

]
< ∞, (2.15)

where W̃1 :=∑
|u|=1 e−V (u)V (u)+ and x± := max(±x,0). For the case where (2.13) holds, we have the following result.

Theorem 2.3 (Gaussian boundary case). Suppose that ϑ > 0 satisfies (2.9) and that (2.14) and (2.15) hold for V (u) =
ϑS(u)+ |u| log(m(ϑ)), u ∈ G. Further, assume that λ ∈D with m(λ) �= 0 is such that σ 2

θ < ∞, σ 2
λ > 0, m(2θ) < |m(λ)|2

and 2θ = ϑ . Define

m =
{

m(2θ) if |m(2λ)| < m(2θ),

m(2λ) if |m(2λ)| = m(2θ)

1In the example, the corresponding region is θ2 + η2 < log 2 and θ ≥ 1
2
√

2 log 2.
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and an := n1/4 m(λ)n

mn/2 for n ∈N. Then

L
(
an

(
Z(λ) − Zn(λ)

)|Fn

)
w→ L

( √
2
π

σλ

σ√
1 − m(2θ)/|m(λ)|2

√
D∞X|F∞

)
in P-probability, (2.16)

where X is independent of F∞. Here, X is complex standard normal if |m(2λ)| < m(2θ) whereas X is real standard
normal if |m(2λ)| = m(2θ).

The regime in which the extremal positions dominate.
Again suppose that ϑ > 0 satisfies (2.9) and that (2.14) and (2.15) hold for V (u) = ϑS(u)+|u| log(m(ϑ)), u ∈ G. Further,
assume that λ ∈ �, but 2θ > ϑ . Then, typically, Zn(2θ) → 0 because (2.8) is violated because

2θm′(2θ)/m(2θ) > log
(
m(2θ)

)
.

It is known, see e.g. [38], that min|u|=n V (u) is of the order 3
2 logn as n → ∞. It will turn out that this is too slow

for a result in the spirit of Theorem 2.2 in the sense that the contributions of the particles with small positions in the
nth generation to Z(λ) − Zn(λ) are substantial, and hence no (conditionally) infinitely divisible limit distribution can
be expected. Instead, the description of the fluctuations Z(λ) − Zn(λ) will follow from Madaule’s work [34], where the
behavior of the point processes

μn :=
∑
|u|=n

δVn(u) (2.17)

with Vn(u) := V (u) − 3
2 logn was studied. For the reader’s convenience, we state in detail a consequence of the main

result in [34].

Proposition 2.4. Suppose the branching random walk (V (u))u∈G satisfies (2.11), (2.14) and (2.15). Further, suppose
that

The branching random walk
(
V (u)

)
u∈G is non-lattice. (A1)

Then there is a point process μ∞ =∑
k∈N δPk

such that μ∞((−∞,0]) is a.s. finite and μn defined by (2.17) converges in
distribution to μ∞ (in the space of locally finite point measures equipped with the topology of vague convergence).

Source. This can be derived from [34, Theorem 1.1]. �

Without loss of generality, we may assume that the atoms Pk of the measure μ∞ are arranged in non-decreasing order,
i.e.,

Pk := inf
{
x : μ((−∞, x])≥ k

}
. (2.18)

Let Z(1)(λ),Z(2)(λ), . . . denote independent random variables with the same distribution as Z(λ)− 1 which are indepen-
dent of μ∞. We consider the following series

Xext :=
∑

k

e− λPk
ϑ Z(k)(λ) = lim

n→∞

n∑
k=1

e− λPk
ϑ Z(k)(λ), (2.19)

where −∞ < P1 ≤ P2 ≤ · · · are the atoms of μ∞ defined by (2.18). Notice that it is a priori not clear whether the series
converges.

Theorem 2.5 (Domination by extremal positions). Suppose that ϑ > 0 satisfies (2.9) and that (2.14), (2.15) and (A1)
hold for V (u) = ϑS(u) + |u| log(m(ϑ)), u ∈ G. Let λ ∈ � and assume that θ ∈ (ϑ

2 , ϑ). If there is p ∈ (ϑ
θ
,2] satisfying

E[|Z(λ)|p] < ∞, then the series Xext defined by (2.19) converges a.s. to a non-degenerate limit. Moreover,

n
3λ
2ϑ

(
m(λ)

m(ϑ)λ/ϑ

)n(
Z(λ) − Zn(λ)

)
d→ Xext.
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Sufficient conditions for E[|Z(λ)|p] < ∞, which are easy to check, are (B1) and (B2). Further sufficient conditions
for E[|Z(λ)|p] < ∞ are given in Proposition 2.6 below. Finally, we should mention the upcoming paper [23] in which
conditions for the convergence in Lp for (Zn(λ))n∈N0 are provided.

The boundary of �: Stable fluctuations.
It has been shown in [29, Theorem 2.1] that the martingale Zn(λ) converges on a part of the boundary of �. More
precisely, consider the condition

m(αθ)

|m(λ)|α = 1 and
θm′(θα)

|m(λ)|α = log
(∣∣m(λ)

∣∣) (2.20)

and define

∂�(1,2) := {
λ ∈ ∂� ∩D : (2.20) holds with some α ∈ (1,2)

}
.

Theorem 2.1 in [29] says that if λ ∈ D satisfies (2.20) (actually, Theorem 2.1 in [29] requires a weaker assumption) and
if E[|Z1(λ)|α log2+ε+ (|Z1(λ)|)] < ∞ for some ε > 0, then (Zn(λ))n∈N0 converges a.s. and in Lp for every p < α to some
limit Z(λ) satisfying E[Z(λ)] = 1. If an additional moment assumption holds, then a simplified version of the proof of
Theorem 2.1 in [29] gives the following result.

Proposition 2.6. Suppose that λ ∈D satisfies

m(αθ)

|m(λ)|α = 1 and
θm′(θα)

|m(λ)|α ≤ log
(∣∣m(λ)

∣∣)
for some α ∈ (1,2). If, additionally, E[|Z1(λ)|γ ] < ∞ for some α < γ ≤ 2, then Zn(λ) → Z(λ) in Lp for all p < α and
there exists a constant C > 0 such that

P
(∣∣Z(λ)

∣∣≥ t
)≤ Ct−α (2.21)

for all t > 0.

For the rest of this section, we assume that λ ∈ ∂�(1,2) and that α ∈ (1,2) satisfies (2.20). Notice that if ϑ > 0 is
defined via (2.9), then αθ = ϑ in the given situation. To determine the fluctuations of Zn(λ) around Z(λ) in this setting,
we require stronger assumptions than those of Theorem 2.1 in [29]. First of all, as before, we define V (u) via (2.10),
i.e., V (u) := ϑS(u) + n log(m(ϑ)) for n ∈ N0 and u ∈ Gn. Then (2.20) becomes (2.11). Further, we shall require that the
following conditions hold:

E
[
Z1(θ)γ

]
< ∞ for some γ ∈ (α,2), (2.22)

E
[
Z1(κθ)2]< ∞ for some κ ∈

(
α

2
,1

)
. (2.23)

Notice that (2.23) implies (2.22) by sub-additivity of the function x �→ xκ . We denote by U = U(λ) the smallest closed
subgroup of the multiplicative group C∗ =C \ {0} such that

P

(
e−λS(u)

m(λ)
∈ U for all |u| = 1

)
= 1.

Furthermore, to keep the presentation simple, we assume that{|z| : z ∈ U
}=R> := (0,∞). (2.24)

Let us now briefly describe the structure of U. If the subgroup U1 =U∩{|z| = 1} coincides with the unit sphere {|z| = 1},
then U is the whole multiplicative group C∗. Otherwise, U1 is a finite group and U consists of finitely many connected
components. By UR we denote the one-parameter subgroup of U which is either R> if U = C∗ or it is the connected
component of U that contains 1 if U �= C∗. Clearly, UR is a subgroup isomorphic to the multiplicative group R>. By γt

we denote the canonical parametrization of UR satisfying |γt | = t . We infer that there exists some w ∈C with Re(w) = 1
such that

γt = tw = exp(w log t) for all t > 0. (2.25)
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Fig. 2. The group U in the case θ = √
2 log 2 −

√
π
10 and η =

√
π
10 .

Clearly, w = 1 if UR = R>. It is also worth mentioning that U1 × R> � U via the isomorphism T : U1 × R> → U,
(z, t) �→ zγt = ztw . For illustration purposes, we interrupt the setup and discuss an example.

Example 2.7 (Binary splitting and Gaussian increments revisited). Again we consider a branching random walk with
binary splitting and independent standard Gaussian increments, that is, Z = δX1 + δX2 with independent standard normal
random variables X1,X2. Recall that, in this situation, we have m(λ) = 2 exp(λ2/2) for λ ∈ C. The parameter region we
are interested in is

√
2 log 2/2 < θ <

√
2 log 2 and η = √

2 log 2 − θ , see Figure 1. For λ = θ + iη from this region, we
have

m(λ) = 2 exp
(
(θ + iη)2/2

)= exp(
√

2 log 2θ + iθη).

Therefore, U is generated by the set

{
eθ(x−√

2 log 2)+iη(x−θ) : x ∈R
}
,

which we may rewrite as

{
eiη2 · e(θ+iη)x : x ∈R

}
.

In particular, (2.24) holds. Moreover, U1 is the closed (multiplicative) subgroup of the unit circle generated by eiη2
. This

group is finite if and only if 1
2π

η2 ∈Q, and U1 = {z ∈C : |z| = 1}, otherwise. As θ varies over (
√

2 log 2/2,
√

2 log 2), the
square of the imaginary part, η2, ranges over the whole interval (0, 1

2 log 2). Thus, for all but countably many θ , the group
U equals C∗, but for countably many θ , U will consist of a finite family of ‘snails’ as depicted in the Figure 2. Finally,
whenever U = C∗, the scaling exponent can be chosen as w = 1. When U �= C∗, then U1 is finite and the connected
component of U1 containing 1 is

{
e(θ+iη)x : x ∈ R

}= {
eλx : x ∈R

}= {
tλ/θ : t > 0

}
so that w = λ/θ in this case.

By � we denote the Haar measure on U satisfying the normalization condition

�
({

z ∈C : 1 ≤ |z| < e
})= 1, (2.26)

i.e., � is the image of the measure �1 × dt
t

, where �1 is the uniform distribution on U1, via the isomorphism T .
To understand the fluctuations of Z(λ) − Zn(λ), one needs to know the tail behavior of Z(λ). The following theorem,

which is interesting in its own right, provides the information required. For its formulation, we introduce some additional
notation. We write Ĉ=C∪{∞} for the one-point (Alexandroff) compactification of C. Further, we denote by C2

c (Ĉ\{0})
the set of real-valued, twice continuously partially differentiable functions on Ĉ \ {0} with compact support. Finally, we
remind the reader that a measure ν on C is called a Lévy measure if ν({0}) = 0 and

∫
C
(|z|2 ∧ 1)ν(dz) < ∞. A Lévy

measure ν is called (U, α)-invariant if ν(uB) = |u|−αν(B) for all u ∈U and all Borel sets B ⊆C \ {0}. Observe that any
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(U, α)-invariant measure ν is determined by a measure on the fundamental domain for the action of U � U1 × R> on
C \ {0}. Indeed, for any B ⊆C \ {0} we can write

ν(B) =
∫

{|z|=1}×R>

1B(st)t−(1+α)σ (ds) dt,

where σ is some U1-invariant measure on {|z| = 1}, see e.g. [36, Proposition 4.3]. In particular, if U = C∗ we get that
ν(dz) = c|z|−(1+α) dz for some constant c ≥ 0. The Lévy measure ν is called non-zero if ν(B) > 0 for some Borel set B

as above.

Theorem 2.8. Let λ ∈D satisfy (2.20) with α ∈ (1,2). Further, suppose that (2.22), (2.23) and (2.24) hold. Then there is
a non-zero (U, α)-invariant Lévy measure ν on C such that

lim|z|→0,
z∈U

|z|−αE
[
φ
(
zZ(λ)

)]=
∫

φ dν

for all φ ∈ C2
c (Ĉ \ {0}).

We denote by (Xt )t≥0 a complex-valued Lévy process which is independent of F∞ and has characteristic exponent

�(x) =
∫ (

ei〈x,z〉 − 1 − i〈x, z〉)ν(dz), x ∈C.

Notice that � is well-defined as integration by parts gives∫
{|z|≥1}

(|z| − 1
)
ν(dz) =

∫ ∞

1
ν
({|z| ≥ t

})
dt = ν

({|z| ≥ 1
})∫ ∞

1
t−α dt < ∞.

Therefore, (Xt )t≥0 is the Lévy process associated with the Lévy–Khintchine characteristics (0,− ∫{|z|>1} zν(dz), ν) (cf.
[27, p. 291, Corollary 15.8]).

Now we are ready to describe the fluctuations of Z(λ) − Zn(λ) for λ ∈ ∂�(1,2).

Theorem 2.9. Suppose that the assumptions of Theorem 2.8 hold. Then there exists w ∈ C such that Re(w) = 1 (see
(2.25) for the definition of w) and

L
(
n

w
2α
(
Z(λ) − Zn(λ)

) | Fn

)
w→ L(XcD∞|F∞) in P-probability (2.27)

for c :=
√

2
πσ 2 , σ 2 defined by (2.14) with V (u) as in (2.10) and D∞ being the a.s. limit of the derivative martingale

defined in (2.12).

Related literature.
The martingale convergence theorem guarantees the almost sure convergence of Zn(θ), but its limit Z(θ) may vanish a.s.
Equivalent conditions for P(Z(θ) = 0) < 1 can be found in [6, Lemma 5], [32] and [5, Theorem 1.3]. Convergence in
distribution of an(Z(λ) − Zn(λ)) as n → ∞ for constants an > 0 can be viewed as a result on the rate of convergence.
In [3,21,22,24,25] the rate of convergence of Zn(θ) to Z(θ) has been investigated in the regime P(Z(θ) = 0) < 1. The
papers [3,24,25] deal with the issue of convergence of the infinite series

∞∑
n=0

an

(
Z(θ) − Zn(θ)

)
. (2.28)

More precisely, in [3], necessary conditions and sufficient conditions for the convergence in Lp of the infinite series in
(2.28) are given in the situation where an = ean for some a > 0. Sufficient conditions for the almost sure convergence of
the series in (2.28) have been provided in the case where an = ean for some a > 0 in [24] and in the case where (an)n∈N0

is regularly varying at +∞ in [25].
The papers [21,22] are in the spirit of the article at hand. In these works, for α ∈ (1,2], it is shown that if κ :=

m(αθ)/m(θ)α < 1, then κ−n/α(Z(θ) − Zn(θ)) converges in distribution to a random variable Z(αθ)1/αU where U is
a (non-degenerate) centered α-stable random variable (normal, if α = 2) independent of Z(αθ). Specifically, the case
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where α ∈ (1,2) and P(Z1(θ) > x) ∼ cx−α for some c > 0 is covered in [22, Corollary 1.3] whereas the case α = 2
and E[Z1(θ)2] < ∞ is investigated in [21, Corollary 1.1]. Both papers actually contain functional versions of these
convergences. The aforementioned assertions are extensions of the corresponding results for Galton–Watson processes
[13,18,19].

The counterpart of our Theorem 2.2, which gives the fluctuations of Biggins’ martingales for small parameters has
a natural analogue in the complex branching Brownian motion energy model. The corresponding statement in the latter
model is [16, Theorem 1.4].

It is well known that if θm′(θ)/m(θ) = log(m(θ)), then Zn(θ) converges to 0 a.s. In this case a natural object to
study is the derivative martingale (Dn)n∈N0 . In order to study the fluctuations of Dn around its limit D∞ one needs an
additional correction term of order (logn)/

√
n. The corresponding result, again in the context of branching Brownian

motion, is given in [35], where it is shown that
√

n(D∞ − Dn + logn√
2πn

D∞) d→ SD∞ for an independent 1–stable Lévy

process (St )t≥0.
The martingale limits Z(λ) solve smoothing equations, namely,

Z(λ) =
∑
|u|=1

e−λS(u)

m(λ)

[
Z(λ)

]
u

a.s., (2.29)

where the [Z(λ)]u, u ∈ N are independent copies of Z(λ) which are independent of the positions S(u), |u| = 1. If
U is centered α-stable and independent of Z(αθ), then the limit variable Z(αθ)1/αU in [21, Corollary 1.1] and [22,
Corollary 1.3] satisfies

Z(αθ)1/αU =
(∑

|v|=1

e−αθS(v)

m(αθ)

[
Z(αθ)

]
v

) 1
α

U
law=
∑
|v|=1

e−θS(v)

m(αθ)1/α

[
Z(αθ)

]1/α

v
Uv,

where (Uv)v∈N is a family of independent copies of U which is independent of all other random variables appearing on
the right-hand side of the latter distributional equality. Hence, the distribution of Z(αθ)1/αU is a solution to the following
fixed-point equation of the smoothing transformation:

X
law=
∑
j≥1

TjXj , (2.30)

where Tj := 1{j∈G1}
e−θS(j)

m(αθ)1/α and the Xj , j ∈ N are independent copies of the random variable X. In (2.30), which should
be seen as an equation for the distribution of X rather than the random variable X itself, T1, T2, . . . are considered given
whereas the distribution of X is considered unknown. Equation (2.30) has been studied in depth in the case where the
Tj and Xj are nonnegative, see [4] for the most recent contribution and an overview of earlier results. If, however, we
consider complex Z(λ) at complex parameters, (2.29) becomes an equation between complex random variables and it is
reasonable to conjecture that the limiting distributions of an(Z(λ) − Zn(λ)) are solutions to (2.30) with complex-valued
Tj and Xj . A systematic study of (2.30) in the case where Tj and Xj are complex-valued has been addressed only recently
in [36].

We finish this section with a short overview of the organization of the paper. In Section 3, we fix some notation and
gather some facts that are used throughout the paper. The case of Gaussian fluctuations is dealt with in Section 4. In
particular, it contains the proofs of Theorems 2.2 and 2.3. Section 5 is devoted to the proof of Theorem 2.5. All results
for martingales corresponding to parameters from the boundary ∂� are derived in Section 6. This includes in particular
the proofs of Theorems 2.8 and 2.9. Finally, there is an appendix with auxiliary results.

3. Preliminaries

In this section, we fix some notation and set the stage for the proofs of our main results.

3.1. Notation

Complex numbers.
Throughout the paper, we identify C and R2. For instance, for z ∈ C, we sometimes write z1 for Re(z) and z2 for Im(z).
Further, we sometimes identify z ∈C with the column vector (z1, z2)

T and write zT for the row vector (z1, z2). As usual,
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we write z for the complex conjugate of z ∈ C, i.e., z = z1 − iz2. In some proofs, we identify a complex number z = reiϕ

with the matrix rR(ϕ) where R(ϕ) is the 2 × 2 rotation matrix

R(ϕ) =
(

cosϕ − sinϕ

sinϕ cosϕ

)
.

By Ĉ we denote the one-point compactification of C, i.e., Ĉ = C ∪ {∞} and a set K ⊆ Ĉ is relatively compact if it is
relatively compact in C or the complement of a bounded subset of C. A function φ : Ĉ → R is differentiable at ∞ if
ψ :C→ R with ψ(z) = φ(1/z) for z �= 0 and ψ(0) = φ(∞) is differentiable at 0.

Conditional expectations.
Throughout the paper, we write Pn(·) for P(·|Fn) for every n ∈ N0. The corresponding (conditional) expectation and
variance are denoted En[·] := E[·|Fn] and Varn[·] := Var[·|Fn]. We further write E[X;A] for E[X1A], Var[X;A] for
Var[X1A], and Cov[X;A] for the covariance matrix of the vector X1A. If X is a complex random variable, we write
Cov[X] for the covariance matrix of the vector (Re(X), Im(X))T. We also use the analogous notation with E, Var and
Cov replaced by En, Varn and Covn.

The martingale.
Further, when λ ∈ � is fixed, we sometimes write Zn for Zn(λ) and Z for Z(λ) in order to unburden the notation.

3.2. Background and relevant results from the literature

Recursive decomposition of tail martingales.
Throughout the paper, we denote by [·]u, u ∈ I the canonical shift operators, that is, for any function � of (Z(v))v∈I ,
we write [�]u for the same function applied to the family (Z(uv))v∈I . Using this notation, we obtain the following
decomposition of Z(λ) − Zn(λ):

Z(λ) − Zn(λ) = m(λ)−n
∑
|u|=n

e−λS(u)
([

Z(λ)
]
u
− 1

)
a.s., (3.1)

which is valid for every n ∈ N0. Therefore, with respect to Pn, Z(λ) − Zn(λ) is a weighted sum of i.i.d. centered random
variables. This explains the appearance of (randomly scaled) normal or stable distributions in our main theorems.

Minimal position: First order.
If θ > 0 with m(θ) < ∞, then [9, Theorem 3] gives

sup
|u|=n

e−θS(u)

m(θ)n
→ 0 a.s. as n → ∞. (3.2)

4. The Gaussian regime

Before we prove Theorems 2.2 and 2.3, we recall some basic facts about complex random variables.

Covariance calculations.
The proofs of Theorems 2.2 and 2.3 are based on covariance calculations for complex random variables. We remind the
reader of some simple but useful facts in this context. If ζ = ξ + iτ is a complex random variable such that E[ζ ] = 0 with
ξ = Re(ζ ) and τ = Im(ζ ), then a simple calculation shows that the covariance matrix of ζ can be represented as

Cov[ζ ] =
(
E[ξ 2] E[ξτ ]
E[ξτ ] E[τ 2]

)
= 1

2

(
Re(E[|ζ |2] +E[ζ 2]) Im(E[|ζ |2] +E[ζ 2])
Im(E[|ζ |2] +E[ζ 2]) Re(E[|ζ |2] −E[ζ 2])

)
. (4.1)

Thus covariance calculations can be reduced to second moment calculations.
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Proof of Theorems 2.2 and 2.3.
Throughout the paragraph, for n ∈N0 and u ∈ Gn, we set Yu := e−λS(u)/mn/2. We start with a lemma.

Lemma 4.1. Suppose that λ ∈D with m(λ) �= 0 is such that σ 2
θ < ∞, σ 2

λ > 0 and m(2θ) < |m(λ)|2. Then

E
[|Z − 1|2]= E[|Z1 − 1|2]

1 − m(2θ)

|m(λ)|2
< ∞ and E

[
(Z − 1)2]= E[(Z1 − 1)2]

1 − m(2λ)

m(λ)2

. (4.2)

Proof. Observe that (B1) and (B2) are satisfied with γ = p = 2. Consequently, E[|Z − 1|2] < ∞. In the next step, we
calculate E[|Z − 1|2] and E[(Z − 1)2]. (Actually, the calculations below again give E[|Z − 1|2] < ∞.) As the increments
of square-integrable martingales are uncorrelated,

E
[|Z − 1|2]= lim

n→∞E
[
(Zn − 1)(Zn − 1)

]=
∞∑

n=0

E
[|Zn+1 − Zn|2

]

= E
[|Z1 − 1|2] ∞∑

n=0

E

[∑
|u|=n

e−2θS(u)

|m(λ)|2n

]
= E[|Z1 − 1|2]

1 − m(2θ)/|m(λ)|2 .

Analogously, we infer

E
[
(Z − 1)2]= E

[
(Z1 − 1)2] ∞∑

n=0

E

[∑
|u|=n

e−2λS(u)

m(λ)2n

]
= E[(Z1 − 1)2]

1 − m(2λ)/m(λ)2
.

�

Our combined proof of Theorems 2.2 and 2.3 is based on an application of the Lindeberg–Feller central limit theorem.

Proof of Theorems 2.2 and 2.3. Recall that m = m(2θ) if |m(2λ)| < m(2θ) and m = m(2λ) if |m(2λ)| = m(2θ). For
n ∈ N, define cn = 1 in the situation of Theorem 2.2 and cn := n1/4 in the situation of Theorem 2.3. Further, let an :=
cn

m(λ)n

mn/2 for n ∈N. Then (3.1) can be rewritten in the form

an(Z − Zn) = cn

∑
|u|=n

Yu

([Z]u − 1
)
. (4.3)

The right-hand side of (4.3) given Fn is the sum of independent centered random variables. We show that the distribution
of this sum given Fn converges in probability to the distribution of a complex or real normal random variable. To this
end, we check the Lindeberg–Feller condition. For any ε > 0, using that |m| = m(2θ), we obtain

∑
|u|=n

En

[∣∣cnYu

([Z]u−1
)∣∣21{|cnYu([Z]u−1)|2>ε}

]= c2
n

∑
|u|=n

|Yu|2σ 2
λ

(
εc−2

n |Yu|−2)= c2
n

∑
|u|=n

e−2θS(u)

m(2θ)n
σ 2

λ

(
εc−2

n |Yu|−2),
where, for x ≥ 0,

σ 2
λ (x) := E

[|Z − 1|21{|Z−1|2>x}
]
.

By Lemma 4.1, we have E[|Z − 1|2] < ∞. The dominated convergence theorem thus yields σ 2
λ (x) ↓ 0 as x ↑ ∞. More-

over, in the situation of Theorem 2.2,

c2
n sup

|u|=n

|Yu|2 = sup
|u|=n

e−2θS(u)

m(2θ)n
→ 0 a.s. as n → ∞

by (3.2) (applied with θ replaced by 2θ ). In the situation of Theorem 2.3,

c2
n sup

|u|=n

|Yu|2 = n1/2 sup
|u|=n

e−V (u) → 0 in P-probability as n → ∞

by Proposition A.3. In any case, we conclude that

∑
|u|=n

En

[∣∣cnYu

([Z]u − 1
)∣∣21{|cnYu([Z]u−1)|2>ε}

]≤ c2
nZn(2θ)σ 2

λ

(
ε
(
cn sup

|u|=n

|Yu|
)−2)→ 0
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as n → ∞ a.s. or in P-probability, respectively, having utilized (2.13) for the convergence in P-probability. By (4.1),
covariance calculations can be reduced to calculations for the second absolute (conditional) moment and the second
(conditional) moment of m(λ)n

mn/2 (Z − Zn):

En

[∣∣an(Z − Zn)
∣∣2]= c2

nEn

[(∑
|u|=n

Yu

([Z]u − 1
))(∑

|v|=n

Y v

([Z]v − 1
))]= c2

nEn

[∑
|u|=n

|Yu|2
∣∣[Z]u − 1

∣∣2]

= E
[|Z − 1|2]c2

n

∑
|u|=n

|Yu|2 = E
[|Z − 1|2]c2

nZn(2θ), (4.4)

where the second equation follows from the fact that, for |u| = |v| = n with u �= v, [Z]u − 1 and [Z]v − 1 are independent
and centered, and hence the cross terms vanish. The right-hand side of (4.4) converges to E[|Z − 1|2]Z(2θ) a.s. in the
situation of Theorem 2.2 and to E[|Z − 1|2]( 2

πσ 2 )1/2D∞ in P-probability in the situation of Theorem 2.3. An analogous
calculation gives

En

[(
an(Z − Zn)

)2]= E
[
(Z − 1)2]c2

n

∑
|u|=n

Y 2
u . (4.5)

We shall find the limit of the right-hand side of (4.5), thereby verifying that the conditions [17, Eqs. (2.5)–(2.7)] are
fulfilled. The claimed convergence then follows from the cited source and the Cramér–Wold device [27, p. 87, Corol-
lary 5.5]. In the situation of Theorem 2.2, if Zn(2θ) → 0 a.s., then

∑
|u|=n Y 2

u → 0 a.s., so that nothing remains to be

shown. Thus, for the remainder of the proof, we suppose that Zn(2θ) converges a.s. and in L1 to Z(2θ) or that (2.13)
holds. We distinguish two cases.

Case 1: Let |m(2λ)| < m(2θ). We apply Lemma A.4 with (L(u))u∈G = (Y 2
u )u∈G . In this case

E

[∑
|u|=1

∣∣L(u)
∣∣]= E

[∑
|u|=1

|Yu|2
]

= E
[
Z1(2θ)

]= 1.

Further,

a := E

[∑
|u|=1

L(u)

]
= E

[∑
|u|=1

Y 2
u

]
= m(2λ)

m(2θ)

satisfies |a| < 1. When the assumptions of Theorem 2.2 hold, Lemma A.4(b) applies (with condition (i) satisfied) and
yields

∑
|u|=n Y 2

u → 0 in P-probability. If, additionally, 2θ ∈ �, then

E

[∑
|u|=1

∣∣L(u)
∣∣p]= E

[∑
|u|=1

|Yu|2p

]
= m(p2θ)

m(2θ)p
< 1

for some p ∈ (1,2]. Hence,
∑

|u|=n Y 2
u → 0 a.s. by Lemma A.4(a). When the assumptions of Theorem 2.3 hold, we obtain

n1/2∑|u|=n Y 2
u → 0 in P-probability by another appeal to Lemma A.4(b) (this time with condition (ii) satisfied). Thus,

under the assumptions of both theorems, the limit of the right-hand side of (4.5) vanishes.
Case 2: Let |m(2λ)| = m(2θ). Then there exists some ϕ ∈ [0,2π) such that m(2λ) = m(2θ)eiϕ . This implies

e−2iηS(u) = eiϕ for all |u| = 1 a.s., equivalently, S(u) ∈ −ϕ
2η

+ π
η
Z for all |u| = 1 a.s. Therefore, a.s. for every u ∈ G,

e−λS(u) = e−θS(u)e−iηS(u) = ±eiϕ|u|/2e−θS(u)

and thereupon m(λ) = eiϕ/2q where q ∈ R with 0 < |q| ≤ m(θ). Consequently, Zn(λ) ∈ R a.s. for every n ∈ N0. Thus,
also Z(λ) ∈ R a.s. Further m(λ)n/mn/2 = m(λ)n/m(2λ)n/2 = qn/m(2θ)n/2 ∈ R. Hence, all terms in (4.4) and (4.5)
coincide and so do their limits. �

It is worth noting that in Case 2, in order to arrive at the stronger statement (weak convergence a.s.), we do not need
2θ ∈ �, but only require the uniform integrability of (Zn(2θ))n∈N0 or equivalently (2.7).
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5. The regime in which the extremal positions dominate

First recall that V (u) is defined by (2.10) and that Vn(u) = V (u) − 3
2 logn for u ∈ Gn. Further, for each K ∈ R define

fK :R→ [0,1] by

fK(x) :=

⎧⎪⎨
⎪⎩

1 for x ≤ K,

K + 1 − x for K ≤ x ≤ K + 1,

0 for x ≥ K + 1.

(5.1)

Our proof of Theorem 2.5 is based on two lemmas about the processes μn, n ∈ N, which were defined in (2.17), and
related point processes. Proposition 2.4 tells us that∫

f dμn
d→
∫

f dμ∞ as n → ∞ (5.2)

for all continuous and compactly supported f : R → [0,∞). This taken together with information about the left tail of
μn for large n provided by [1, Theorem 1.1] enables us to show that relation (5.2) holds for a wider class of functions f .
This is the content of Lemma 5.1.

Lemma 5.1. Suppose that the assumptions of Theorem 2.5 are satisfied. Then relation (5.2) holds for all continuous
functions f :R→ [0,∞) with f (x) = 0 for all sufficiently large x.

Proof. Pick an arbitrary continuous function f : R → [0,∞) satisfying f (x) = 0 for all sufficiently large x. For any
fixed K ∈ R, the function gK(x) := f (x)(1 − fK(x)) is continuous and has a compact support. Therefore,

∫
gK dμn

d→∫
gK dμ∞ as n → ∞ by Proposition 2.4. Since μ∞((−∞, a]) < ∞ a.s. for any a ∈ R by another appeal to Proposi-

tion 2.4, we infer

lim
K→−∞

∫
gK dμ∞ =

∫
f dμ∞ a.s. (5.3)

On the other hand, for any ε > 0,

lim sup
n→∞

P

(∣∣∣∣
∫

f (x)fK(x)μn(dx)

∣∣∣∣> ε

)
≤ lim sup

n→∞
P(μn

(
(−∞,K + 1]) ≥ 1

)

= lim sup
n→∞

P

(
min|u|=n

V (u) − 3

2
logn ≤ K + 1

)
,

where min∅ := ∞. By [1, Theorem 1.1],

lim
K→−∞ lim sup

n→∞
P

(
min|u|=n

V (u) − 3

2
logn ≤ K + 1

)
= 0.

The latter limit relation, (5.3) and [12, Theorem 4.2] imply
∫

f dμn
d→ ∫

f dμ∞. �

With Lemma 5.1 at hand we can now show that for any γ > 1∫
e−γ xμ∞(dx) =

∑
k

e−γPk < ∞ a.s. (5.4)

To see this, pick M > 0 and consider the following chain of inequalities:

P

(∑
j

e−γPj > M

)
= sup

K∈N
P

(∑
j

e−γPj fK(Pj ) > M

)
≤ sup

K∈N
lim inf
n→∞ P

(∑
|u|=n

e−γVn(u)fK

(
Vn(u)

)
> M

)

≤ lim sup
n→∞

P

(∑
|u|=n

e−γVn(u) > M

)
,
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where Lemma 5.1 and the Portmanteau theorem have been used for the first inequality. The latter lim sup tends to 0 as
M → ∞ by [34, Proposition 2.1].

Recall that (Z(k))k∈N denotes a sequence of independent copies of Z(λ) − 1 which are also independent of μ∞ =∑
k δPk

. We define point processes on R×C by

μ∗∞ :=
∑

k

δ(Pk,Z
(k)) and μ∗

n :=
∑
|u|=n

δ(Vn(u),[Z(λ)]u−1), n ∈ N.

Lemma 5.2. Suppose that the assumptions of Theorem 2.5 are satisfied. Then
∫

f dμ∗
n

d→ ∫
f dμ∗∞ for all bounded

continuous function f :R×C→ C such that f (x, z) = 0 whenever x is sufficiently large.

Proof. We derive the assertion from Lemma 5.1. More precisely, first let f : R×C→ [0,∞) be an arbitrary continuous
function such that f (x, z) = 0 for all z ∈ C whenever x is sufficiently large. Since the convergence

∫
f dμ∗

n
d→ ∫

f dμ∗∞ is
equivalent to the convergence of the corresponding Laplace transforms it suffices to show that the Laplace functional of μ∗

n

at f converges to the Laplace functional of μ∗∞ at f . To this end, define ϕ(x) := E[exp(−f (x,Z(1)))] for x ∈ R. Clearly,
0 < ϕ ≤ 1. Further, the continuity of f together with the dominated convergence theorem imply that ϕ is continuous.
Therefore, − logϕ : R→ [0,∞) is continuous. Since f (x, z) = 0 for all sufficiently large x, the same is true for − logϕ.
Lemma 5.1 implies that

∫
(− logϕ(x))μn(dx) d→ ∫

(− logϕ(x))μ∞(dx). Using this, we find that the Laplace functional
of μ∗

n evaluated at f satisfies

E

[
exp

(
−
∫

f (x, y)μ∗
n(dx,dy)

)]
= E

[
En

[
exp

(
−
∑
|u|=n

f
(
Vn(u),

[
Z(λ)

]
u
− 1

))]]= E

[ ∏
|u|=n

ϕ
(
Vn(u)

)]

= E

[
exp

(
−
∑
|u|=n

(− logϕ
(
Vn(u)

)))]

= E

[
exp

(
−
∫ (− logϕ(x)

)
μn(dx)

)]

→ E

[
exp

(
−
∫ (− logϕ(x)

)
μ∞(dx)

)]

= E

[
exp

(
−
∫

f (x, y)μ∗∞(dx,dy)

)]
.

This completes the proof for nonnegative f . For the general case, we decompose f = f1 − f2 + i(f3 − f4) with fj :
R×C→ [0,∞) vanishing for large x. Then for any nonnegative λj , from the first part, we conclude∫

(λ1f1 + λ2f2 + λ3f3 + λ4f4)dμ∗
n

d→
∫

(λ1f1 + λ2f2 + λ3f3 + λ4f4)dμ∗∞

and, in particular, we infer (
∫

fj dμ∗
n)j=1,...,4

d→ (
∫

fj dμ∗∞)j=1,...,4 from which we deduce the convergence
∫

f dμ∗
n

d→∫
f dμ∗∞. �

We now make the final preparations for the proof of Theorem 2.5. We have to show that zn(Z(λ) − Zn(λ)) converges
in distribution where

zn := n
3λ
2ϑ

(
m(λ)

m(ϑ)λ/ϑ

)n

, n ∈N.

We shall use the decomposition

zn

(
Z(λ) − Zn(λ)

)= zn

m(λ)n

∑
|u|=n

e−λS(u)
([

Z(λ)
]
u
− 1

)

= zn

m(λ)n
en λ

ϑ
logm(ϑ)

∑
|u|=n

e− λ
ϑ

V (u)
([

Z(λ)
]
u
− 1

)

=
∑
|u|=n

e− λ
ϑ

Vn(u)
([

Z(λ)
]
u
− 1

)
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=
∑
|u|=n

e− λ
ϑ

Vn(u)fK

(
Vn(u)

)([
Z(λ)

]
u
− 1

)+
∑
|u|=n

e− λ
ϑ

Vn(u)
((

1 − fK

(
Vn(u)

)) · ([Z(λ)
]
u
− 1

))

=: Yn,K + Rn,K.

We first check that the contribution of Rn,K is negligible as K tends to infinity.

Lemma 5.3. If the assumptions of Theorem 2.5 hold, then, for any δ > 0 and every measurable hK :R→ [0,1] satisfying
0 ≤ hK ≤ 1[K,∞)

lim
K→∞ lim sup

n→∞
P

(∣∣∣∣∑
|u|=n

e− λ
ϑ

Vn(u)hK

(
Vn(u)

)([
Z(λ)

]
u
− 1

)∣∣∣∣> δ

)
= 0.

Proof. Let ε, δ > 0 and 1 < β < β0 := p · θ
ϑ

. From Proposition 2.1 in [34], we know that the sequence of distributions of
the random variables

∑
|u|=n e−βVn(u), n ∈N is tight. Therefore, there is an M > 0 such that supn∈N P(Qn) ≤ ε where

Qn :=
{∑

|u|=n

e−βVn(u) > M

}
.

Then

P

(∣∣∣∣∑
|u|=n

e− λ
ϑ

Vn(u)hK

(
Vn(u)

)([
Z(λ)

]
u
− 1

)∣∣∣∣> δ

)
≤ P

(∣∣∣∣∑
|u|=n

e− λ
ϑ

Vn(u)hK

(
Vn(u)

)([
Z(λ)

]
u
− 1

)∣∣∣∣> δ,Qc
n

)
+ ε.

We estimate the above probability using the following strategy. First, we use Markov’s inequality for the function x �→
|x|p . Then, given Fn, we apply Lemma A.1. This gives

P

(∣∣∣∣∑
|u|=n

e− λ
ϑ

Vn(u)hK

(
Vn(u)

)([
Z(λ)

]
u
− 1

)∣∣∣∣> δ,Qc
n

)
≤ 4

δp
E
[∣∣Z(λ) − 1

∣∣p] ·E[∑
|u|=n

e−β0Vn(u)hK

(
Vn(u)

)p1Qc
n

]

≤ 4

δp
E
[∣∣Z(λ) − 1

∣∣p] · e(β−β0)KE

[∑
|u|=n

e−βVn(u)1Qc
n

]

≤ 4

δp
E
[∣∣Z(λ) − 1

∣∣p] · e(β−β0)KM. (5.5)

The above bound does not depend on n and, moreover, tends to 0 as K → ∞. The latter is obvious since β < β0 and thus
limK→∞ e(β−β0)K = 0.

We conclude that

lim
K→∞ lim sup

n→∞
P

(∣∣∣∣∑
|u|=n

e− λ
ϑ

Vn(u)hK

(
Vn(u)

)([
Z(λ)

]
u
− 1

)∣∣∣∣> δ

)
≤ ε.

The assertion follows as we may choose ε arbitrarily small. �

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. Define

Ŷ0 := 0 and Ŷn :=
n∑

k=1

e− λ
ϑ

PkZ(k)(λ), n ∈N

and recall the notation β0 = p · θ
ϑ

> 1. Given μ∞, for each n ∈ N, the random variable Ŷn is the sum of complex-valued
independent centered random variables. An application of Lemma A.1 yields

E
[|Ŷn|p|μ∞

]≤ 4E
[∣∣Z(λ) − 1

∣∣p] · n∑
k=1

e−β0Pk ≤ 4E
[∣∣Z(λ) − 1

∣∣p] ·∑
k

e−β0Pk ,
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and the latter sum is almost surely finite by (5.4). This shows that (Ŷn)n∈N0 , conditionally on μ∞, is an Lp-bounded
martingale. We conclude that Ŷn converges a.s. conditionally given μ∞, hence, also unconditionally thereby proving the
first part of Theorem 2.5. In particular, Xext exists as the a.s. limit of Ŷn as n → ∞.

The proof of the second part is based on an application of Theorem 4.2 in [12] and the decomposition

zn

(
Z(λ) − Zn(λ)

)= Yn,K + Rn,K.

In view of Lemma 5.3, the cited theorem gives the assertion once we have shown the following two assertions:

1. Yn,K
d→ YK as n → ∞ for every fixed K > 0 where YK is some finite random variable;

2. YK
d→ Xext as K → ∞.

The first assertion is a consequence of Lemma 5.2. Indeed, the function (x, z) �→ e− λ
ϑ

xfK(x)z is continuous and vanishes
for all sufficiently large x. Therefore, Lemma 5.2 yields

Yn,K =
∑
|u|=n

e− λ
ϑ

Vn(u)fK

(
Vn(u)

)([
Z(λ)

]
u
− 1

)=
∫

e− λ
ϑ

xfK(x)zμ∗
n(dx,dz)

d→
∫

e− λ
ϑ

xfK(x)zμ∗∞(dx,dz) =: YK.

To see that the second assertion holds, we prove that E[|Xext − YK |p|μ∞] → 0 a.s. as K → ∞ which entails YK
P→ Xext

as K → ∞. To this end, we use (an infinite version of) Lemma A.1 to obtain

E
[|Xext − YK |p|μ∞

]≤ 4E
[∣∣Z(λ) − 1

∣∣p] ·∑
k

e−β0Pk
(
1 − fK(Pk)

)p ≤ 4E
[∣∣Z(λ) − 1

∣∣p] ·∑
k

e−β0Pk1{Pk>K}.

In view of (5.4) the right-hand side converges to zero a.s. as K → ∞. The proof of Theorem 2.5 is complete. �

6. The boundary ∂�(1,2)

In this section, we shall prove Theorems 2.8 and 2.9. These results yield the tail behavior of the martingale limit for
parameters λ from the boundary ∂�(1,2) and the asymptotic fluctuations of the martingale for the same parameters,
respectively. The latter theorem is a consequence of the former, and, after a short discussion of the assumptions, we shall
start by demonstrating this. To this end, we assume that Theorem 2.8 holds. Then the tails of the martingale limit Z are
α-stable-like for some α ∈ (1,2). Decomposition (3.1) of Z−Zn as a weighted sum of conditionally i.i.d. copies of Z−1,
which was already used in the proof of Theorems 2.2 and 2.3, together with the theory of convergence of infinitesimal
triangular arrays implies convergence of the properly scaled Z − Zn to a randomly stopped Lévy process. Some of the
calculations required in the proof of Theorem 2.9 are contained in Lemma 6.1 that precedes the proof of the theorem.

In a second step, carried out in Section 6.2, we derive the tail behavior of Z, i.e., we prove Theorem 2.8. The main
tools are from harmonic analysis, renewal theory and complex analysis (for the non-degeneracy of the limit).

Throughout this section, we fix λ ∈ D and suppose that

m(αθ)

|m(λ)|α = 1 and
θm′(θα)

|m(λ)|α = log
(∣∣m(λ)

∣∣) (2.20)

holds with α ∈ (1,2), i.e., λ ∈ ∂�(1,2). Then ϑ := αθ satisfies (2.9). Additionally, we assume that there are γ ∈ (α,2) and
κ ∈ (α

2 ,1) such that

(2.22) E
[
Z1(θ)γ

]
< ∞ and (2.23) E

[
Z1(κθ)2]< ∞.

As before, for n ∈ N0 and u ∈ Gn, we set L(u) := e−λS(u)/m(λ)n, and abbreviate Zn(λ) and Z(λ) by Zn and
Z, respectively. Notice that

∑
|u|=n |L(u)|α = ∑

|u|=n e−V (u) for each n ∈ N0 where V (u) is defined in (2.10), i.e.,
V (u) := ϑS(u) + |u| log(m(ϑ)). The assumptions of Theorem 2.8 guarantee that (2.13) holds, that is,

√
n
∑
|u|=n

∣∣L(u)
∣∣α P→

√
2

πσ 2
D∞. (6.1)
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Indeed, (2.20) and (2.22) entail conditions (2.11), (2.14) and (2.15), which are sufficient for (2.13) to hold. To be more
precise, (2.20) implies (2.11). Further, the function

R � t �→ mV (t) = E

[∑
|u|=1

e−tV (u)

]
= m(ϑt)

m(ϑ)t

is finite at t = 1/α < 1 since λ ∈D satisfies (2.20) and at t = γ /α > 1 since, by superadditivity,(∑
|u|=1

e−θS(u)

)γ

≥
∑
|u|=1

e−γ θS(u),

and (2.22) holds. Therefore, mV is finite on [1/α,γ /α] and analytic on (1/α,γ /α). In particular, the second derivative is
finite at t = 1, which yields (2.14). Again by superadditivity, we conclude that

(∑
|u|=1

e−θS(u)

)γ

≥
(∑

|u|=1

e−ϑS(u)

)γ /α

.

Thus, (2.22) implies the first condition in (2.15). To see that the second condition in (2.15) also holds, pick δ > 0 such
that α − δ > 1 and use

(∑
|u|=1

e−θS(u)

)γ

≥
(∑

|u|=1

e−(α−δ)θS(u)

) γ
α−δ ≥ δ

γ
α−δ ·

(∑
|u|=1

e−ϑS(u)
(
θS(u)

)
+

) γ
α−δ

.

6.1. Martingale fluctuations on ∂�(1,2)

First, we show how from the knowledge of the tail behaviour of Z(λ) we can deduce Theorem 2.9. To this end, suppose
that the assumptions of Theorem 2.8 are satisfied. Set W = Z − 1 and observe that W has the same tail behavior as Z,
i.e.,

lim|z|→0,
z∈U

E
[|z|−αφ(zW)

]=
∫

φ dν (6.2)

for any φ ∈ C2
c (Ĉ \ {0}). To see that this is true, first notice that, for any w ∈ Ĉ \ {0} and z ∈U such that |z| ≤ 1, we have

∣∣φ(w) − φ(w − z)
∣∣= |z|

∣∣∣∣φ(w) − φ(w − z)

z

∣∣∣∣≤ |z| sup
u

∣∣∇φ(u)
∣∣1P1(w),

where Pj is the j -neighborhood of suppφ, i.e., Pj = {u : |u − t | ≤ j for some t ∈ suppφ}. Setting χ(w) :=
supu |∇φ(u)|1P2 ∗χ0(w) where χ0 :C → [0,∞) is a probability density function smooth on C and supported by the unit
disc, we infer that χ ∈ C2

c (Ĉ \ {0}) and∣∣φ(w) − φ(w − z)
∣∣≤ |z|χ(w).

Hence,∣∣∣ lim|z|→0,
z∈U

E
[|z|−αφ(zW)

]− lim|z|→0,
z∈U

E
[|z|−αφ(zZ)

]∣∣∣≤ lim|z|→0,
z∈U

|z| ·E[|z|−αχ(zZ)
]= 0,

where Theorem 2.8 has been used.
Our first result in this section is a consequence of Theorem 2.8. Recall that, for a complex number z ∈ C, we sometimes

write z1 = Re(z) and z2 = Im(z).

Lemma 6.1. In the situation of Theorem 2.8, for every h > 0 with ν({y : |y| = h}) = 0 and every j, k = 1,2, we have

lim|z|→0,
z∈U

|z|−αE
[
(zW)j (zW)k|; |zW | ≤ h

]=
∫

{|y|<h}
yjykν(dy) and (6.3)
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lim|z|→0,
z∈U

|z|−αE
[
zW ; |zW | ≤ h

]= −
∫

{|y|>h}
yν(dy). (6.4)

Proof. We start with some preparations. Throughout the proof, when letting |z| → 0 it is tacitly assumed that z ∈U. First,
observe that

lim sup
|z|→0

|z|−αE
[|zW |2; |zW | < δ

]→ 0 as δ → 0. (6.5)

To see this, first choose a nonnegative function φ ∈ C2
c (Ĉ \ {0}) satisfying φ ≥ 1{|z|≥1}. Then, by (6.2),

|z|−αP
(|zW | > 1

)≤ |z|−αE
[
φ(zW)

]→
∫

φ dν

as |z| → 0. In particular, there is a finite constant C > 0 such that

sup
0<|z|≤1

|z|−αP
(|zW | > 1

)≤ C. (6.6)

In order to prove (6.5), pick δ ∈ (0,1). We may suppose that 0 < |z| < δ. Then

|z|−αE
[|zW |2; |zW | < δ

]≤ |z|−αE
[(|zW | ∧ δ

)2]= |z|−α

∫ |z|

0
2tP

(|zW | > t
)
dt + |z|−α

∫ δ

|z|
2tP

(|zW | > t
)
dt.

The first integral can be bounded above by

|z|−α

∫ |z|

0
2t dt = |z|2−α ≤ δ2−α.

Regarding the second integral, use (6.6) to arrive at

|z|−α

∫ δ

|z|
2tP

(|zW | > t
)
dt = 2

∫ δ

|z|
t1−α

( |z|
t

)−α

P

(∣∣∣∣zt W

∣∣∣∣> 1

)
dt ≤ 2Cδ2−α

2 − α
.

In conclusion, (6.5) holds. Further, we have to show that

lim sup
|z|→0

|z|−αE
[|zW |; |zW | > K

]→ 0 as K → ∞. (6.7)

Indeed, in view of (6.6), we find

lim sup
|z|→0

|z|−αE
[|zW |; |zW | > K

]= lim sup
|z|→0

[∫ ∞

K

t−α

∣∣∣∣zt
∣∣∣∣
−α

P

(∣∣∣∣zt W

∣∣∣∣> 1

)
dt + K1−α

∣∣∣∣ z

K

∣∣∣∣
−α

P

(∣∣∣∣ z

K
W

∣∣∣∣> 1

)]

≤ CK1−α

(
1

α − 1
+ 1

)
= CK1−αα

α − 1
,

which tends to zero as K → ∞. Hence, (6.7) holds.
We are ready to prove (6.4). To this end, observe that E[zW ; |zW | ≤ h] = −E[zW ; |zW | > h] since E[W ] = 0. Now

pick 0 < δ < h < K such that h + δ < K and that

ν
({

y : |y| = h
})= 0. (6.8)

Let φ ∈ C2
c (Ĉ \ {0}) be of the form φ(z) = zf (|z|) with twice continuously differentiable f : [0,∞) → [0,1] satisfying

f (z) = 0 for z ≤ h and f (z) = 1 for z ∈ [h + δ,K]. Then

lim sup
|z|→0

∣∣∣∣
∫

{|y|>h}
yν(dy) − |z|−αE

[
zW ; |zW | > h

]∣∣∣∣
≤ lim sup

|z|→0

∣∣∣∣
∫

φ(y)ν(dy) − |z|−αE
[
φ(zW)

]∣∣∣∣
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+
∫

{h<|y|<h+δ}
∣∣y − φ(y)

∣∣ν(dy) + lim sup
|z|→0

|z|−αE
[∣∣zW − φ(zW)

∣∣;h < |zW | < h + δ
]

+
∫

{|y|>K}
∣∣y − φ(y)

∣∣ν(dy) + lim sup
|z|→0

|z|−αE
[∣∣zW − φ(zW)

∣∣; |zW | > K
]

≤
∫

{h<|y|<h+δ}
|y|ν(dy) + lim sup

|z|→0
|z|−α(h + δ)P

(
h < |zW | < h + δ

)

+
∫

{|y|>K}
|y|ν(dy) + lim sup

|z|→0
|z|−αE

[|zW |; |zW | > K
]

having utilized (6.2) and |y − φ(y)| ≤ |y| for y ∈ C. While the first term on the right-hand side trivially converges
to zero as δ → 0, the second does so in view of (6.8) and suitable approximation of 1{h<|z|<h+δ} by twice continuously
differentiable functions with subsequent application of (6.2). The third term tends to 0 as K → ∞ since

∫
{|y|≥1} |y|ν(dy) <

∞, which follows from the fact that ν({|y| ≥ t}) = t−αν({|y| ≥ 1}) due to the (U, α)-invariance of ν. The fourth term
tends to 0 as K → ∞ by (6.7).

Turning to the proof of (6.3), we fix h > 0 satisfying (6.8) and pick j, k ∈ {1,2}. For 0 < δ < h/2, choose f ∈
C2

c ((0,∞)) taking values in [0,1] with f = 0 on (0, δ/2], f = 1 on [δ,h − δ] and f = 0 on [h + δ,∞). Define φ ∈
C2

c (Ĉ \ {0}) via φ(z) = zj zkf (|z|), z ∈ Ĉ. In particular, φ(z) = zj zk for δ ≤ |z| ≤ h − δ and φ(z) = 0 for |z| > h + δ.
Using (6.2) with this φ and (6.5) and arguing along the lines of the proof of (6.4), we conclude that

lim sup
|z|→0

∣∣∣∣|z|−αE
[
(zW)j (zW)k; |zW | ≤ h

]− ∫
{|y|≤h}

yjykν(dy)

∣∣∣∣
≤ lim sup

|z|→0
|z|−αE

[|zW |2; |zW | < δ
]+ (h + δ)2 lim sup

|z|→0
|z|−αP

(
h − δ < |zW | ≤ h + δ

)

+
∫

{|y|<δ}
|y|2ν(dy) + (h + δ)2ν

({
h − δ < |y| ≤ h + δ

})
.

This bound tends to 0 as δ → 0. We conclude that (6.3) holds. �

We are now ready to prove Theorem 2.9.

Proof of Theorem 2.9. For any strictly increasing sequence of natural numbers, we can pass to a subsequence (nk)k∈N
such that the convergence in (6.1) and (A.6) hold a.s. along this subsequence. Once more, we use decomposition (3.1).
First, we show that the triangular array {nw/(2α)

k L(u)([Z]u − 1)}|u|=nk,k∈N is a null array. Indeed,

sup
|u|=nk

Enk

[∣∣n w
2α

k L(u)
([Z]u − 1

)∣∣∧ 1
]≤ E

[|Z − 1|] · n 1
2α

k sup
|u|=nk

e− 1
α
V (u) → 0 a.s.

as k → ∞ by (A.6). According to [27, Theorem 15.28 and p. 295], it suffices to prove that, for every h > 0 with ν({z :
|z| = h}) = 0,∑

|u|=nk

L
(
n

w
2α

k L(u)[W ]u |Fnk

)→ cD∞ν vaguely in Ĉ \ {0}, (6.9)

∑
|u|=nk

Covnk

[
n

w
2α

k L(u)[W ]u;
∣∣n 1

2α

k L(u)[W ]u
∣∣≤ h

]→ cD∞
∫

{|z|≤h}
zzTν(dz) a.s., (6.10)

∑
|u|=nk

Enk

[
n

w
2α

k L(u)[W ]u;
∣∣n 1

2α

k L(u)[W ]u
∣∣≤ h

]→ −cD∞
∫

{|z|>h}
zν(dz) a.s., (6.11)

where c =
√

2
πσ 2 . Take any φ ∈ C2

c (Ĉ \ {0}). Then, by (6.2),

lim
k→∞

∑
|u|=nk

Enk

[
φ
(
n

w
2α

k L(u)[W ]u
)]= lim

k→∞n
1/2
k

∑
|u|=nk

∣∣L(u)
∣∣α∫ φ dν = cD∞

∫
φ dν
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a.s. proving (6.9). Similarly, for (6.10) and (6.11), we can apply (6.3) and (6.4), respectively. As a result we conclude that
for any bounded continuous function ψ :C→ R it holds that

Enk

[
ψ
(
n

w
2α

k (Z − Znk
)
)]→ E

[
ψ(XcD∞)|F∞

]
a.s. (6.12)

with c as before. To summarize, we have shown that from any deterministic strictly increasing sequence of positive
integers, we can extract a deterministic subsequence (nk)k∈N such that (6.12) holds. In other words, for every bounded
and continuous ψ : C→ R,

En

[
ψ
(
n

w
2α (Z − Zn)

)]
P→ E

[
ψ(XcD∞)|F∞

]
as n → ∞,

i.e., (2.27) holds. �

6.2. The tail behavior of Z(λ) for λ ∈ ∂�(1,2)

An upper bound on the tails of the distribution of Z(λ) for λ ∈ ∂�(1,2).

Proof of Proposition 2.6. Proposition 2.6 can be proved along the lines of the proof of Theorem 2.1 in [29]. Equation
(4.3) in the cited source carries over to the present situation, so it suffices to show that the truncated martingale (Z

(t)
n )n∈N0

with increments

Z(t)
n − Z

(t)
n−1 =

∑
|u|=n−1

L(u)1{|L(u|j )|≤t for j=0,...,n−1}
([Z1]u − 1

)

satisfies

sup
n∈N0

E
[∣∣Z(t)

n − 1
∣∣γ ]≤ const · tγ−α,

where the constant is independent of t . (This bound is analogous to (4.7) in [29].) To prove the above uniform bound, one
may argue as in the proof of [29, Theorem 2.1] with φ(x) := |x|γ and �(x) := |x|γ−α . What is more, the fact that φ is
multiplicative and satisfies the assumptions of Lemma A.1 (Topchiı̆-Vatutin inequality for complex martingales), allows
for a substantial simplification of the proof given in [29, Theorem 2.1]. In particular, the proof that leads to the finiteness
of (4.5) in [29] (cf. [1, Lemma B.2 (ii)]) gives in our case

sup
n∈N0

E
[∣∣Z(t)

n − 1
∣∣γ ]≤ C1E

[∑
k≥0

∑
|u|=k

∣∣L(u)
∣∣γ 1{|L(u|j )|≤t for j=0,...,k}

]
≤ C2 · tγ−α. (6.13)

A combination of the uniform moment bound above with formula (4.3) in [29] yields the desired tail bound P(|Z(λ)| >

t) ≤ const · t−α for all t > 0. �

Existence of the Lévy measure ν.
We now prove the following, more detailed version of Theorem 2.8. The claim that the Lévy measure ν is non-zero,
which is not covered by Theorem 6.2, will be justified in the next subsection. Recall that � denotes the Haar measure on
U normalized according to (2.26).

Theorem 6.2. Suppose that λ ∈ D and that the assumptions of Theorem 2.8 are satisfied. Then there is a (U, α)-invariant
Lévy measure ν on C \ {0} such that for any φ ∈ C2

c (Ĉ \ {0}), we have∫
φ dν = lim|z|→0,

z∈U
|z|−αE

[
φ(zZ)

]= − 2

σ 2

∫
|z|−α log |z|

(
E
[
φ(zZ)

]−
∑
|u|=1

E
[
φ
(
zL(u)[Z]u

)])
�(dz), (6.14)

where σ 2 = E[∑|u|=1 |L(u)|α(log |L(u)|)2]. Moreover,

∫
|z|−α

(
E
[
φ(zZ)

]−
∑
|u|=1

E
[
φ
(
zL(u)[Z]u

)])
�(dz) = 0. (6.15)
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For the proof of Theorem 6.2, we need the following proposition.

Proposition 6.3. Suppose that (Rn)n∈N0 is a neighborhood recurrent multiplicative random walk on U such that
E[log |R1|] = 0 and σ 2 := E[(log |R1|)2] ∈ (0,∞). Further, suppose that f,h : U → R are continuous functions sat-
isfying |f (z)| ≤ cf (1 ∧ |z|−δ) and |h(z)| ≤ ch(|z|δ ∧ |z|−δ) for some constants cf , ch, δ > 0 and

f (z) = E
[
f (zR1)

]+ h(z) for all z ∈U.

If there exist a sequence (zn)n∈N in U with zn → 0 and a continuous function g such that f (znz) → g(z) for all z ∈ U,
then ∫

h(z)�(dz) = 0 and g(z) = − 2

σ 2

∫
h(y) log |y|�(dy), (6.16)

i.e., g is a constant function that does not depend on the sequence (zn)n∈N0 .

Proof. From our assumptions and the dominated convergence theorem, we deduce

g(z) = lim
n→∞f (zzn) = lim

n→∞
(
E
[
f (zznR1)

]+ h(zzn)
)= lim

n→∞E
[
f (zznR1)

]= E
[
g(zR1)

]
. (6.17)

Consequently, (g(zRn))n∈N0 is a bounded martingale and, therefore, converges a.s. as n → ∞. On the other hand,
(Rn)n∈N0 is neighborhood recurrent on U. Using the continuity of g, we conclude that g is constant.

Now we define stopping times τ := inf{n ∈ N : |Rn| < 1}, T0 := 0 and, recursively, Tn = inf{k ≥ Tn−1 : |Rk| ≥ |RTn−1 |}
for n ∈ N. A variant of the duality lemma [28, Lemma 4] then yields

E

[∫
{|Rτ |≤|z|<1}

f (znz)�(dz)

]
= −

∞∑
k=0

E

[∫
{|z|>|RTk

zn|}
h(z)�(dz)

]
. (6.18)

The left-hand side converges to g(1)E[− log |Rτ |] as n → ∞, and so does the right-hand side. On the other hand, observe
that the bound on h implies that it is directly Riemann integrable (dRi) on U, cf. [14, p. 396] for the precise definition.
Moreover, for any ρ > 0, the function hρ(s) := 1(ρ,∞)(|s|)

∫
{|z|>|s|} h(z)�(dz) is also dRi on U. Hence, we infer

∞∑
k=0

E

[∫
{|z|>|RTk

zn|}
h(z)�(dz)

]
=

∞∑
k=0

E

[
1{|RTk

zn|≤ρ}
∫

{|z|>|RTk
zn|}

h(z)�(dz)

]
+

∞∑
k=0

E
[
hρ(RTk

zn)
]
. (6.19)

Now suppose that c := ∫
h(z)�(dz) �= 0. Then choose ρ > 0 so small that∣∣∣∣

∫
{|z|>|s|}

h(z)�(dz) − c

∣∣∣∣< |c|
2

for all |s| ≤ ρ. From the renewal theorem for the group U [14, Theorem A.1], we conclude that

∞∑
k=0

E
[
hρ(RTk

zn)
]→ 1

E[log |RT1 |]
∫

hρ(s)�(ds) as n → ∞.

On the other hand, the first infinite series in (6.19) is unbounded as n → ∞. This is a contradiction and, hence,∫
h(z)�(dz) = 0, which is the first equality in (6.16). From [28, Proposition 1] we infer that the function s �→∫

{|z|>|s|} h(z)�(dz) is also dRi with

∫∫
{|z|>|s|}

h(z)�(dz)�(ds) =
∫

h(z) log |z|�(dz).

An application of the renewal theorem for the group U [14, Theorem A.1] yields that the right-hand side of (6.18)
converges to

−1

E[log |RT1 |]
∫

h(z) log |z|�(dz).
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Finally, since E[log |Rτ |] ·E[log |RT1 |] = −σ 2

2 by the proof of Theorem 18.1 on p. 196 in [39], we find

g(1) = − 2

σ 2

∫
h(z) log |z|�(dz),

which does not depend on the sequence (zn)n∈N. �

Further, we recall an elementary but useful fact.

Proposition 6.4. Let φ ∈ C2
c (Ĉ \ {0}). Then, for any 0 < ε ≤ 1, there is a finite constant C > 0 such that for any n ∈ N

and any x1, . . . , xn ∈ C it holds that∣∣∣∣∣φ
(

n∑
k=1

xk

)
−

n∑
k=1

φ(xk)

∣∣∣∣∣≤ C
∑

1≤j �=k≤n

|xj |ε|xk|ε.

Source. The proposition which is almost identical with [15, Lemma 6.2] follows from the proof of the cited lemma. �

It is routine to check using induction on n that the formula

E
[
f (Rn)

]= E

[∑
|u|=n

∣∣L(u)
∣∣αf

(
L(u)

)]
, (6.20)

which is assumed to hold for any bounded and measurable function f : C → R, defines (the distribution of) a mul-
tiplicative random walk (Rn)n∈N0 on U with i.i.d. steps Rn/Rn−1, n ∈ N. From (6.20) for n = 1 and (2.20), we in-
fer E[log |R1|] = 0, i.e., the random walk (log |Rn|)n∈N0 on R has centered steps and thus is recurrent. Consequently,
(Rn)n∈N0 is neighborhood recurrent. Moreover, by (6.20) and (2.14), we have E[(log |R1|)2] = σ 2 ∈ (0,∞).

Theorem 6.2 will now be proved by an application of Proposition 6.3.

Proof of Theorem 6.2. For any z ∈U, we define a finite measure νz on the Borel sets of C via

νz(A) = |z|−αP(zZ ∈ A).

First observe that, since P[|Z| > t] ≤ Ct−α by Proposition 2.6, the family of measures {νz}z∈C\{0} as a subset of the set
of locally finite measures on Ĉ \ {0} is relatively vaguely compact (cf. Proposition 3.16 on p. 146 in [37]). Let (zn)n∈N be
a sequence in U satisfying zn → 0 such that νzn converges vaguely to some measure ν.

Let φ ∈ C2
c (Ĉ \ {0}). Define f (z) = |z|−αE[φ(zZ)], h(z) = f (z) − E[f (zR1)] for z ∈ C. We shall show that the

assumptions of Proposition 6.3 are satisfied. From the proposition we then infer that the limit limn→∞ f (zn) (hence, ν)
does not depend on the particular choice of (zn)n∈N, which implies that lim|z|→0,z∈U f (z) exists.

First, notice that f is continuous by the dominated convergence theorem and, thus, also h is continuous again by the
dominated convergence theorem. Since φ is bounded, we have |f (z)| ≤ ‖φ‖∞|z|−α where ‖φ‖∞ := sup

x∈Ĉ\{0} |φ(x)| <
∞. Since, moreover, there is some r > 0 such that φ(z) = 0 for all |z| ≤ r , we infer |f (z)| ≤ |z|−α‖φ‖∞P(|zZ| > r) ≤
C‖φ‖∞r−α for all |z| > 0. Hence, |f (z)| ≤ cf · (1 ∧ |z|−α) for all z �= 0 and some cf > 0. Next, we show that∣∣h(z)

∣∣≤ ch

(|z|δ ∧ |z|−δ
)

(6.21)

for some ch, δ > 0 and all z �= 0. In order to prove that |h(z)| ≤ c|z|−δ for some c > 0, it suffices to give a corresponding
bound on |E[f (zR1)]|. To this end, we first notice that for any s ∈R, by (6.20), we have

E
[|R1|s

]= E

[∑
|u|=1

∣∣L(u)
∣∣α∣∣L(u)

∣∣s]= E

[∑
|u|=1

∣∣∣∣e−λS(u)

m(λ)

∣∣∣∣
α+s]

= m((α + s)θ)

|m(λ)|α+s
.

Thus, E[|R1|s] < ∞ iff m((α + s)θ) < ∞. By assumption m(θ) < ∞ and m(ϑ) < ∞. Since m is convex, it is finite on
the whole interval [θ,ϑ]. Therefore, for δ1 ∈ (0, α − 1), we have m((α − δ1)θ) < ∞ and, equivalently, E[|R1|−δ1] < ∞.
Consequently,∣∣E[f (zR1)

]∣∣≤ cfE
[
1 ∧ |zR1|−α

]≤ cfE
[
1 ∧ |zR1|−δ1

]≤ cfE
[|R1|−δ1

] · |z|−δ1
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for all |z| > 0. It remains to show that we may choose δ > 0 such that also |h(z)| ≤ C|z|δ . To this end, recall that
κ ∈ (α/2,1) is such that E[Z1(κθ)2] < ∞, see (2.23). For this κ , we obtain

∣∣h(z)
∣∣= ∣∣f (z) −E

[
f (zR1)

]∣∣= |z|−α

∣∣∣∣E[φ(zZ)
]−E

[∑
|u|=1

φ
(
zL(u)[Z]u

)]∣∣∣∣
= |z|−α

∣∣∣∣E
[
φ

(∑
|u|=1

zL(u)[Z]u
)

−
∑
|u|=1

φ
(
zL(u)[Z]u

)]∣∣∣∣≤ C|z|2κ−αE

[∑
u �=v

∣∣L(u)[Z]u
∣∣κ ∣∣L(v)[Z]v

∣∣κ]

by Proposition 6.4. The expectation in the above expression can be estimated by

E

[(∑
|u|=1

∣∣L(u)
∣∣κ)2][

E
[|Z|κ]]2 < ∞, (6.22)

where the finiteness is due to (2.23). We have shown that (6.21) holds with δ = δ1 for any δ1 ∈ (0, (2κ − α) ∧ (α − 1)).
Since νzn converges vaguely to ν, we have, for any φ ∈ C2

c (Ĉ \ {0}),

lim
n→∞f (zn) = lim

n→∞

∫
φ dνzn =

∫
φ dν. (6.23)

Fix any z ∈U. Then

lim
n→∞f (znz) = |z|−α lim

n→∞

∫
φ(zx)νzn(dx) = |z|−α

∫
φ(zx)ν(dx) =: g(z) (6.24)

because the function t �→ φ(tz) still belongs to C2
c (Ĉ \ {0}). Finally, we observe that the function t �→ g(t) is continuous

on Ĉ \ {0}. Consequently, Proposition 6.3 applies and shows that (6.15) holds and that

lim|z|→0,
z∈U

|z|−αE
[
φ(zZ)

]= − 2

σ 2

∫
h(z) log |z|�(dz) = − 2

σ 2

∫ (
f (z) −E

[
f (zR1)

])
log |z|�(dz)

= − 2

σ 2

∫
|z|−α log |z|

(
E
[
φ(zZ)

]−E

[∑
|u|=1

φ
(
zL(u)[Z]u

)])
�(dz).

This proves (6.14). The (U, α)-invariance of ν follows from the fact that the right-hand sides of (6.23) and (6.24) are
equal for each z ∈ U. �

The measure ν is non-zero.
In order to show that the Lévy measure ν is non-zero, we adopt the analytic argument invented in [14]. To this end, we
take a nondecreasing function ϕ ∈ C2(R>) such that ϕ(t) = 0 for t < 1/2 and ϕ(t) = 1 for t > 1. We further set ϕ(0) := 0
and ϕ(z) := ϕ(|z|) if z ∈C \ {0}. For s ∈ C, define κ(s) by

κ(s) :=
∫

|z|−s

(
E

[
ϕ

(∑
|u|=1

zL(u)[Z]u
)

−
∑
|u|=1

ϕ
(
zL(u)[Z]u

)])
�(dz)

whenever the absolute value of the integrand is �-integrable. Using the linearity of the �-integral, we may write this
integral as the difference of two �-integrals. Straightforward estimates now show that both these integrals are finite if
Re(s) ∈ (1, α) since the latter entails m(Re(s)θ) < ∞. For s in the strip 1 < Re(s) < α, using Fubini’s theorem and the
invariance of the Haar measure �, we may rewrite κ(s) in the form

κ(s) =
∫

|z|−sϕ(z)�(dz)

(
E

[
|Z|s −

∑
|u|=1

∣∣L(u)[Z]u
∣∣s])=

∫
|z|−sϕ(z)�(dz) ·

(
1 − m(sθ)

|m(λ)|s
)

·E[|Z|s]. (6.25)

Lemma 6.5. For any s > 1 there exists a finite constant Cs such that, for any x, y ∈C, we have∫
|z|−s

∣∣ϕ(zy) − ϕ(zx)
∣∣�(dz) ≤ Cs

∣∣|y|s − |x|s∣∣
and sups∈I Cs < ∞ for every closed interval I ⊂ (1,∞).
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Proof. Without loss of generality we assume that |x| ≤ |y|. Then |ϕ(zy) − ϕ(zx)| may only be positive when |zy| >

1/2 and |zx| < 1. We shall consider the three cases |zx| < 1/2 < |zy| < 1, |zx| < 1 < |zy| and 1/2 < |zx| < |zy| < 1
separately. In the second case, we conclude that the integral in focus does not exceed∫

{|x|< 1
|z| <|y|}

|z|−s
∣∣ϕ(zy) − ϕ(zx)

∣∣�(dz) ≤
∫

{|x|< 1
|z| <|y|}

|z|−s�(dz) = 1

s

(|y|s − |x|s).
Analogously, in the first case, we obtain the upper bound∫

{|x|< 1
2|z| <|y|}

|z|−s
∣∣ϕ(zy) − ϕ(zx)

∣∣�(dz) ≤ 2s

s

(|y|s − |x|s).
It remains to get the bound in the third case. Since the derivative of ϕ (as a function on R>) is bounded so that ‖ϕ′‖∞ =
supx>0 ϕ′(x) < ∞ we have the upper bound∫

{|y|< 1
|z| <2|x|}

|z|−s
∣∣ϕ(zx) − ϕ(zy)

∣∣�(dz) ≤ ∥∥ϕ′∥∥∞
∫

{|y|< 1
|z| <2|x|}

|z|−s
(|zy| − |zx|)�(dz)

= ‖ϕ′‖∞
s − 1

(|y| − |x|)(|2x|s−1 − |y|s−1)≤ ‖ϕ′‖∞
s − 1

2s−1(|y|s − |x|s).
The latter follows from the elementary inequality

(t − 1)
(
2s−1 − t s−1)≤ 2s−1(t − 1) ≤ 2s−1(t s − 1

)
,

that we use for t = |y|
|x| ∈ (1,2). The claim concerning the local boundedness of s �→ Cs is now obvious. �

Lemma 6.6. Suppose that (2.22) and (2.23) hold. Then κ is well-defined and holomorphic on the strip 1 < Re(s) < α + ε

for some ε > 0.

Proof. Let s ∈ (1, γ ) where γ ∈ (α,2] is as in (2.22). First, we show that

E

[∣∣∣∣
∣∣∣∣∑
|u|=1

L(u)[Z]u
∣∣∣∣
s

− max
|u|=1

∣∣L(u)[Z]u
∣∣s∣∣∣∣
]

< ∞, (6.26)

E

[∑
|u|=1

∣∣L(u)[Z]u
∣∣s − max

|u|=1

∣∣L(u)[Z]u
∣∣s]< ∞, and (6.27)

E

[∫
|z|−s

(∑
|u|=1

h
(∣∣zL(u)[Z]u

∣∣)− h
(

max
|u|=1

∣∣zL(u)[Z]u
∣∣))�(dz)

]
< ∞, (6.28)

where h = 1(1,∞) or h = ϕ for ϕ defined in the paragraph preceding Lemma 6.5. In order to prove (6.26), we first observe
that

E

[∣∣∣∣
∣∣∣∣∑
|u|=1

L(u)[Z]u
∣∣∣∣
s

−
(∑

|u|=1

∣∣L(u)[Z]u
∣∣2)s/2∣∣∣∣

]

= E

[∣∣∣∣
(∑

|u|=1

∣∣L(u)[Z]u
∣∣2 +

∑
|u|=|v|=1

u �=v

Re
(
L(u)[Z]uL(v)[Z]v

))s/2

−
(∑

|u|=1

∣∣L(u)[Z]u
∣∣2)s/2∣∣∣∣

]

≤ E

[( ∑
|u|=|v|=1

u �=v

∣∣L(u)[Z]uL(v)[Z]v
∣∣)s/2]

= E

[
E1

[( ∑
|u|=|v|=1

u �=v

∣∣L(u)[Z]uL(v)[Z]v
∣∣)s/2]]
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≤ (
E
[|Z|])s ·E

[( ∑
|u|=|v|=1

u �=v

∣∣L(u)
∣∣∣∣L(v)

∣∣)s/2]

≤ (
E
[|Z|])s ·E

[(∑
|u|=1

∣∣L(u)
∣∣)s]

< ∞,

where we used the subadditivity on [0,∞) of the function t �→ t s/2 for the first inequality, Jensen’s inequality for the
second, and (2.22) to conclude the finiteness. This in combination with the inequality

0 ≤
(∑

|u|=1

∣∣L(u)[Z]u
∣∣2)s/2

− max
|u|=1

∣∣L(u)[Z]u
∣∣s ≤

∑
|u|=1

∣∣L(u)[Z]u
∣∣s − max

|u|=1

∣∣L(u)[Z]u
∣∣s ,

which follows from the aforementioned subadditivity, shows that (6.26) is a consequence of (6.27).
For h = 1(1,∞) or h = ϕ and positive xj , we have

(
1 − h

(
max

j
xj

))
≤
∏
j

(
1 − h(xj )

)+
(∑

j �=k

1{xj >1/2,xk>1/2}
)

∧ 1.

Further, there exists some finite C ≥ 1 such that x − 1 + e−x ≤ C(x ∧ x2) for all x ≥ 0 and P(|Z| > t) ≤ Ct−α , P(|Z| >
t) ≤ Ct−1 for all t > 0 (the latter follows from Markov’s inequality). Using these facts, we infer∫

|z|−s

(
E1

[∑
|u|=1

h
(∣∣zL(u)[Z]u

∣∣)− h
(

max
|u|=1

∣∣zL(u)[Z]u
∣∣)])�(dz)

≤
∫

|z|−s

(∑
|u|=1

E1
[
h
(∣∣zL(u)[Z]u

∣∣)]− 1 + e
−∑|u|=1 E1[h(|zL(u)[Z]u|)]

)
�(dz)

+
∫

|z|−s

(( ∑
|u|=|v|=1

u �=v

P1
(∣∣zL(u)[Z]u

∣∣> 1/2,
∣∣zL(v)[Z]v

∣∣> 1/2
))∧ 1

)
�(dz)

≤ C

∫
|z|−s

(∑
|u|=1

E1
[
h
(∣∣zL(u)[Z]u

∣∣)])∧
(∑

|u|=1

E1
[
h
(∣∣zL(u)[Z]u

∣∣)])2

�(dz)

+ 4αC2
∫

|z|−s

(( ∑
|u|=|v|=1

u �=v

∣∣zL(u)
∣∣α∣∣zL(v)

∣∣α)∧ 1

)
�(dz)

≤ 4C3
∫

|z|−s

(∑
|u|=1

∣∣L(u)
∣∣|z|)∧

(∑
|u|=1

∣∣L(u)
∣∣|z|)2

�(dz)

+ 4αC2
( ∑

|u|=|v|=1
u �=v

∣∣L(u)
∣∣α∣∣L(v)

∣∣α)s/2α ∫
|z|−s

(|z|2α ∧ 1
)
�(dz)

≤
(

4C3
∫

|z|−s
(|z| ∧ |z|2)�(dz) + 4αC2

∫
|z|−s

(|z|2α ∧ 1
)
�(dz)

)
×
(∑

|u=1|

∣∣L(u)
∣∣)s

, (6.29)

where in the last step we have used that (
∑

|u|=1 |L(u)|α)s/α ≤ (
∑

|u|=1 |L(u)|)s . Notice that the last two �-integrals in
(6.29) are finite since 1 < s < 2. Assumption (2.22) entails E[(∑|u|=1 |L(u)|)s ] < ∞ which proves (6.28). Choosing
h = 1(1,∞) and taking the expectation in (6.29), we conclude that (6.27) holds. In particular, for s ∈ C with 1 < s1 =
Re(s) < γ , we infer∫ ∣∣∣∣|z|−s

(
E
[
ϕ(zZ)

]−
∑
|u|=1

E
[
ϕ
(
zL(u)[Z]u

)])∣∣∣∣�(dz) =
∫

|z|−s1

∣∣∣∣E[ϕ(zZ)
]−

∑
|u|=1

E
[
ϕ
(
zL(u)[Z]u

)]∣∣∣∣�(dz)
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≤
∫

|z|−s1

∣∣∣∣E
[
ϕ

(
z
∑
|u|=1

L(u)[Z]u
)]

−E

[
ϕ
(

max
|u|=1

∣∣zL(u)[Z]u
∣∣)]∣∣∣∣�(dz)

+
∫

|z|−s1

(∑
|u|=1

E
[
ϕ
(
zL(u)[Z]u

)]−E

[
ϕ
(

max
|u|=1

∣∣zL(u)[Z]u
∣∣)])�(dz)

≤ Cs1 ·E
[∣∣∣∣
∣∣∣∣∑
|u|=1

L(u)[Z]u
∣∣∣∣
s1

− max
|u|=1

∣∣L(u)[Z]u
∣∣s1

∣∣∣∣
]

+
∫

|z|−s1

(∑
|u|=1

E
[
ϕ
(
zL(u)[Z]u

)]−E

[
ϕ
(

max
|u|=1

∣∣zL(u)[Z]u
∣∣)])�(dz) < ∞

by Lemma 6.5, (6.26) and (6.28). Therefore, κ is well defined on the strip 1 < Re(s) < γ . Further, for any a, b with
1 < a < b < γ and a ≤ Re(s) ≤ b, we have ||z|s | ≤ |z|a + |z|b . Hence, by the dominated convergence theorem, κ is
continuous on a ≤ Re(s) ≤ b and therefore also on the strip 1 < Re(s) < γ . Moreover, for any closed triangle � in
1 < Re(s) < γ , by the above calculation, we can apply Fubini’s theorem and the holomorphy of s �→ |z|−s on Re(s) > 1
to conclude that∫

∂�

κ(s) ds =
∫∫

∂�

|z|s ds

(
E

[
ϕ

(∣∣∣∣∑
|u|=1

zL(u)[Z]u
∣∣∣∣
)

−
∑
|u|=1

ϕ
(∣∣zL(u)[Z]u

∣∣)])�(dz) = 0,

which implies that κ is holomorphic on the strip 1 < Re(s) < γ by Morera’s theorem. �

Theorem 6.7. If (2.23) holds, then the Lévy measure ν is non-zero.

Proof. For s ∈ C with 0 < Re(s) < α, we define the holomorphic function F(s) := E[|Z|s]. The functions κ and F are
related by the identity, valid for 1 < Re(s) < α,

F(s) = κ(s)

1 − m(sθ)
|m(λ)|s

·
(∫

|z|−sϕ
(|z|)�(dz)

)−1

, (6.30)

which is a direct consequence of (6.25). According to Lemma 6.6, κ possesses a holomorphic extension to some neigh-
borhood of α. Assuming that ν = 0 we show that F has such an extension as well. The latter statement will lead to
a contradiction. Indeed, if ν = 0, then

∫
ϕ(|z|)ν(dz) = 0, which together with (6.14) shows that κ ′(α) = 0. Since also

κ(α) = 0 by (6.15), we infer that the numerator in (6.30) has a 0 of at least second order at α, while the denominator has
a zero of at most second order at α by virtue of

d2

ds2

m(sθ)

|m(λ)|s = E

[∑
|u|=1

log2
(

e−θS(u)

|m(λ)|
)(

e−θS(u)

|m(λ)|
)s]

> 0

for all 1 < s < α + ε, in particular for s = α. Hence, F does possess a holomorphic extension to some neighborhood of
α. We conclude from Landau’s theorem (cf. [41, Theorems 5a and 5b in Chap. II]) that

E
[|Z|α+δ

]
< ∞, (6.31)

for some δ > 0.
By In let us denote an increasing family of subtrees of the Harris–Ulam tree I such that I1 = {∅}, |In| = n and⋃

n∈N In = I . By a classical diagonal argument such a family exists. Write un for the unique vertex from the set In \In−1,
n ∈N. Next, we define

Mn :=
n∑

k=1

L(uk)
([Z1]uk

− 1
)

and M(t)
n =

n∑
k=1

L(uk)1{L(uk |j )≤t for all j≤|uk |}
([Z1]uk

− 1
)
,

and observe that they constitute martingales with respect to the filtration (Hn)n∈N0 where Hn := σ(Z(uk) : k = 1, . . . , n)

for n ∈ N0. We claim that Mn converges a.s. to Z − 1. To see this, recall from the proof of [29, Theorem 2.1] that on the
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set {maxv∈G |L(v)| ≤ t}, we have

Zn − 1 = Z(t)
n − 1 =

∑
|u|≤n−1

L(u)1{L(u|j )≤t for j<n}
([Z1]u − 1

)
.

Further, the martingale Z
(t)
n − 1 converges a.s. and in Lγ to some finite limit Z(t) − 1 which equals Z − 1 on

{maxv∈G |L(v)| ≤ t}. We prove that Z(t) − 1 is also the limit in Lγ of the martingale (M
(t)
n )n≥0. Indeed, we write

E
[∣∣Z(t) − 1 − M(t)

n

∣∣γ ]
= E

[∣∣∣∣∣
∞∑

k=0

∑
|u|=k

L(u)1{L(u|j )≤t for j≤k}
([Z1]u − 1

)−
∑

u∈In∩G
L(u)1{L(u|j )≤t for j≤|u|}

([Z1]u − 1
)∣∣∣∣∣

γ]

= E

[∣∣∣∣∣
∞∑

k=0

∑
|u|=k,
u/∈In

L(u)1{L(u|j )≤t for j≤k}
([Z1]u − 1

)∣∣∣∣∣
γ]

.

Notice that given Fk the sum
∑

|u|=k,u/∈In
L(u)1{L(u|j )≤t for j≤k}([Z1]u − 1) is a weighted sum of centered random vari-

ables and can be considered as a martingale increment. Two applications of Lemma A.1 yield

E

[∣∣∣∣∣
∞∑

k=0

∑
|u|=k,
u/∈In

L(u)1{L(u|j )≤t for j≤k}
([Z1]u − 1

)∣∣∣∣∣
γ]

≤ 4E

[ ∞∑
k=0

∣∣∣∣ ∑
|u|=k,
u/∈In

L(u)1{L(u|j )≤t for j≤k}
([Z1]u − 1

)∣∣∣∣
γ
]

≤ 16 ·E[|Z1 − 1|γ ] ·E
[ ∞∑

k=0

∑
|u|=k,
u/∈In

∣∣L(u)
∣∣γ 1{L(u|j )≤t for j≤k}

]
.

The above expectations are finite by (2.22) and (6.13). By the dominated convergence theorem, we infer limn→∞ E[|Z(t)−
1 − M

(t)
n |γ ] = 0. Since P(maxv∈G |L(v)| > t) ≤ t−α , we conclude that Mn → Z − 1 a.s. In view of this and (6.31),

E

[(∑
v∈G

∣∣L(v)
∣∣2∣∣[Z1]v − 1

∣∣2)(α+δ)/2]
< ∞ (6.32)

by the complex version of Burkholder’s inequality. On the other hand, from [33, Theorem 1.5] we have

P

(
max
u∈G

∣∣L(u)
∣∣> t

)
> ct−α (6.33)

for some c > 0 and all sufficiently large t . Pick t0 > 0 such that P(|Z1 − 1| > t0) ≥ 1
2 . Denote by Nt the set of individuals

u that are the first in their ancestral line with the property that |L(u)| > t , i.e.,

Nt = {
u ∈ I : ∣∣L(u)

∣∣> t, and L(u|k) ≤ t for all k < |u|}. (6.34)

Then Nt is an optional line in the sense of Jagers [26, Section 4]. Denote by FNt
the σ -field that contains the information

of all reproduction point processes of all individuals that are neither in Nt nor a descendent of a member of Nt , see again
Jagers [26, Section 4] for a precise definition. Then, by the strong Markov branching property [26, Theorem 4.14] (the
σ -field FNt

was introduced for a proper application of this result) and (6.33), we infer

P

(∑
u∈G

∣∣L(u)
∣∣2∣∣[Z1]u − 1

∣∣2 > t2
0 t2
)

≥ P

(∑
u∈Nt

∣∣[Z1]u − 1
∣∣2 > t2

0

)
≥ P(Nt �=∅) · P(|Z1 − 1| > t0

)≥ c

2
t−α

for all sufficiently large t . This contradicts to (6.32), thereby proving that ν is non-zero. �

Appendix: Auxiliary results

In this section, we gather auxiliary facts needed in the proofs of our main results.
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A.1. Inequalities for complex random variables

Throughout the paper, we need the complex analogues of known inequalities for real-valued random variables.

The Topchiı̆–Vatutin inequality for complex martingales.
We begin with an extension of the Topchiı̆-Vatutin inequality [40, Theorem 2] to complex-valued martingales.

Lemma A.1. Let f : [0,∞) → [0,∞) be a nondecreasing convex function with f (0) = 0 such that g(x) := f (
√

x) is
concave on (0,∞). Let (Mn)n∈N0 be a complex-valued martingale with M0 = 0 a.s. and set Dn := Mn −Mn−1 for n ∈N.
If E[f (|Dk|)] < ∞ for k = 1, . . . , n, then

E
[
f
(|Mn|

)]≤ 4
n∑

k=1

E
[
f
(|Dk|

)]
. (A.1)

Further, if f (x) > 0 for some x > 0 and
∑∞

k=1 E[f (|Dk|)] < ∞, then Mn → M∞ a.s. for some random variable M∞
and (A.1) holds for n = ∞.

Proof. We first observe that

f
(|z + w|)+ f

(|z − w|)≤ 2
(
f
(|z|)+ f

(|w|)) for all z,w ∈ C. (A.2)

To see this, note that g is subadditive as a concave function with g(0) = 0, whence

g
(
x2 + y2)≤ g

(
x2)+ g

(
y2)= f (x) + f (y) for all x, y ≥ 0.

Put x = |u + v|/2 and y = |u − v|/2 for u,v ∈ C and observe that∣∣∣∣u + v

2

∣∣∣∣
2

+
∣∣∣∣u − v

2

∣∣∣∣
2

= |u|2 + |v|2
2

.

This together with the concavity of g gives

1

2

(
f
(|u|)+ f

(|v|))= 1

2

(
g
(|u|2)+ g

(|v|2))≤ g

( |u|2 + |v|2
2

)
≤ f

( |u + v|
2

)
+ f

( |u − v|
2

)
.

Multiply this inequality by 2 and set u = z + w and v = z − w for z,w ∈C to infer (A.2).
The remainder of the proof closely follows the proof of Theorem 2 in [40]. For k = 1, . . . , n assume that E[f (|Dk|)] <

∞ and denote by D∗
k a random variable such that Dk and D∗

k are i.i.d. conditionally given Mk−1. Then

E
[
f
(∣∣Mk−1 + Dk − D∗

k

∣∣)]= E
[
E
[
f
(∣∣Mk−1 + Dk − D∗

k

∣∣) | Mk−1
]]= E

[
E
[
f
(∣∣Mk−1 − (

Dk − D∗
k

)∣∣) | Mk−1
]]

= E[f [∣∣Mk−1 − (
Dk − D∗

k

)∣∣].
An appeal to (A.2) thus yields

E
[
f
(∣∣Mk−1 + Dk − D∗

k

∣∣)]≤ E
[
f
(|Mk−1|

)]+E
[
f
(∣∣Dk − D∗

k

∣∣)]. (A.3)

Another application of (A.2) yields

E
[
f
(∣∣Dk − D∗

k

∣∣)]≤ 4E
[
f
(|Dk|

)]
. (A.4)

Further,

|Mk−1 + Dk| =
∣∣Mk−1 + Dk −E

[
D∗

k |Mk−1,Dk

]∣∣= ∣∣E[Mk−1 + Dk − D∗
k | Mk−1,Dk

]∣∣
≤ E

[∣∣Mk−1 + Dk − D∗
k

∣∣ | Mk−1,Dk

]
,

by Jensen’s inequality for conditional expectation in R2, which is applicable because the function x �→ |x| is convex on
R2. Hence,

E
[
f
(|Mk−1 + Dk|

)]≤ E
[
f
(
E
[∣∣Mk−1 + Dk − D∗

k

∣∣|Mk−1,Dk

])]≤ E
[
f
(∣∣Mk−1 + Dk − D∗

k

∣∣)] (A.5)
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by the monotonicity of f and Jensen’s inequality. Combining (A.3), (A.4) and (A.5), we arrive at

E
[
f
(|Mk|

)]≤ Ef
(|Mk−1|

)+ 4Ef
(|Dk|

)
.

The claimed inequality follows recursively.
Finally, suppose that f (x) > 0 for some x > 0 and that

∑∞
k=1 E[f (|Dk|)] < ∞. Then supn∈NE[f (|Mn|)] ≤

4
∑∞

k=1 E[f (|Dk|)] < ∞. Since f (0) = 0 and f is convex, we conclude that f grows at least linearly fast and, thus,
supn∈NE[|Mn|] < ∞. By the martingale convergence theorem, Mn → M∞ a.s. for some random variable M∞. Further,
f is continuous as it is convex and non-decreasing. Therefore, Fatou’s lemma implies

E
[
f
(|M∞|)]= E

[
lim inf
n→∞ f

(|Mn|
)]≤ lim inf

n→∞ E
[
f
(|Mn|

)]≤ 4
∞∑

k=1

E
[
f
(|Dk|

)]
< ∞.

�

Tail bounds for sums of weighted i.i.d. complex random variables.
Actually, we shall need the following corollary of Lemma A.1, which is closely related to Lemma 2.1 in [8] (see also
formulae (2.3) and (2.10) in [30]) but deals with complex-valued rather than real-valued random variables.

Corollary A.2. Let c1, . . . , cn be complex numbers satisfying
∑n

k=1 |ck| = 1. Further, let Y1, . . . , Yn be independent
copies of a complex-valued random variable Y with E[Y ] = 0 and E[|Y |] < ∞. Then, for ε ∈ (0,1) and with c :=
maxk=1,...,n |ck|,

P

(∣∣∣∣∣
n∑

k=1

ckYk

∣∣∣∣∣> ε

)
≤ 8

ε2

(∫ 1/c

0
cxP

(|Y | > x
)

dx +
∫ ∞

1/c

P
(|Y | > x

)
dx

)
.

Proof. We use Lemma A.1 with f (x) = x21[0,1](x) + (2x − 1)1(1,∞)(x) for x ≥ 0. Clearly, f is convex such that g

defined by g(x) = f (
√

x) = x1[0,1](x) + (2x1/2 − 1)1(1,∞)(x) for x ≥ 0 is concave. Furthermore, f is differentiable
on [0,∞) with nondecreasing and continuous derivative f ′(x) = 2x1[0,1](x) + 21(1,∞)(x) for x ≥ 0. For ε ∈ (0,1), by
Markov’s inequality,

P

(∣∣∣∣∣
n∑

k=1

ckYk

∣∣∣∣∣> ε

)
≤ 1

f (ε)
E

[
f

(∣∣∣∣∣
n∑

k=1

ckYk

∣∣∣∣∣
)]

≤ 4

ε2

n∑
k=1

E
[
f
(|ck||Yk|

)]

= 4

ε2

n∑
k=1

|ck|
∫ ∞

0
f ′(|ck|x

)
P
(|Y | > x

)
dx ≤ 4

ε2

n∑
k=1

|ck|
∫ ∞

0
f ′(cx)P

(|Y | > x
)

dx

= 8

ε2

(∫ 1/c

0
cxP

(|Y | > x
)

dx +
∫ ∞

1/c

P
(|Y | > x

)
dx

)
,

where we have used Lemma A.1 and f (ε) = ε2 for ε ∈ (0,1) for the second inequality, and monotonicity of f ′ for the
third. Integration by parts gives the first equality. �

A.2. The minimal position

In this section, we collect some known results concerning the minimal position in a branching random walk in what is
called the boundary case, see [11].

Proposition A.3. Let ((V (u))|u|=n)n∈N0 be a branching random walk such that the positions in the first generation V (u),
|u| = 1 satisfy the assumptions (2.11), (2.14) and (2.15). Then the sequence of distributions of n3/2 sup|u|=n e−V (u), n ∈N

is tight. In particular,

n1/2 sup
|u|=n

e−V (u) P→ 0 as n → ∞. (A.6)

Notice that, under some extra non-lattice assumption, [1, Theorem 1.1] gives the stronger statement

lim
n→∞P

(
min|u|=n

V (u) − 3

2
logn ≥ x

)
= E

[
e−C∗exD∞] (A.7)
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for all x ∈ R where C∗ is a positive constant and, as before, D∞ is the limit of the derivative martingale defined in (2.12).
For our proposition, we do not need the full strength of (A.7), which allows us to work without the lattice assumption.

Proof of Proposition A.3. We need to estimate min|v|=n Vn(u) from below. Recall that, for u ∈ G, we write V (u) :=
mink=0,...,|u| V (u|k). With this notation, we have

P

[
min|v|=n

Vn(u) < −x
]

≤ P

(
min
u∈G

V (u) ≤ −x
)

+ P

(
min|u|=n,

V (u)≥−x

Vn(u) < −x
)

≤ C(1 + x)e−x

by inequality (4.12) from [34] and [1, Corollary 3.4]. The latter does not require a non-lattice assumption. �

A.3. Asymptotic cancellation

Let Lu = (Lu(v))v∈N, u ∈ V denote a family of i.i.d. copies of a sequence (L(v))v∈N = (L∅(v))v∈N of complex-valued
random variables satisfying

#
{
v ∈ N : L(v) �= 0

}
< ∞ a.s. (A.8)

Define L(∅) := 1 and, recursively,

L(uv) := L(u) · Lu(v)

for u ∈V and v ∈N. Further, we let

Zn :=
∑
|u|=n

L(u) and Wn :=
∑
|u|=n

∣∣L(u)
∣∣,

where summation over |u| = n here means summation over all u ∈ Nn with L(u) �= 0. Finally, we set W̃1 :=∑
|v|=1 |L(v)| log−(|L(v)|). We extend the shift-operator notation introduced in Section 3.2 to the present context, so

if X = �((Lv)v∈V) is a function of the whole family (Lv)v∈V and u ∈ V, then [X]u := �((Luv)v∈V).

Lemma A.4. Assume that E[W1] = 1 and that a := E[Z1] ∈ C satisfies |a| < 1.

(a) If E[∑|v|=1 |L(v)|p] < 1 and E[Wp

1 ] < ∞ for some p > 1, then Zn → 0 a.s. and in Lp∧2.
(b) Suppose that one of the following two conditions holds.

(i) Wn → W in L1;
(ii) E[∑|v|=1 |L(v)| log(|L(v)|)] = 0, E[W1 log2+(W1)] < ∞, E[W̃1 log+(W̃1)] < ∞,

E

[∑
|v|=1

∣∣L(v)
∣∣ log2(∣∣L(v)

∣∣)]< ∞.

Then Zn → 0 in probability if (i) holds and n1/2Zn → 0 in probability if (ii) holds.

Proof. (a) We can assume without loss of generality that p ∈ (1,2]. According to [20, Corollary 5] or [31, Theorem 2.1]
the martingale Wn converges a.s. and in Lp to some limit W . Let

q := max

{
|a|p,E

[∑
|v|=1

∣∣L(v)
∣∣p]}< 1.

For k = �n/2�, we have

E
[|Zn|p

]≤ 2p−1E
[∣∣Zn − akZn−k

∣∣p]+ 2p−1E
[∣∣akZn−k

∣∣p]
≤ 2p−1E

[
E

[∣∣∣∣ ∑
|v|=n−k

L(v)
([Zk]v − ak

)∣∣∣∣
p∣∣∣∣Fn−k

]]
+ 2p−1|a|kpE[Wp

n−k

]

≤ 2p+1E

[ ∑
|v|=n−k

∣∣L(v)
∣∣pE[∣∣Zk − ak

∣∣p]]+ 2p−1qkE
[
Wp

]



Fluctuations of Biggins’ martingales at complex parameters 2477

≤ 2p+1E

[ ∑
|v|=n−k

∣∣L(v)
∣∣p]2p−1(E[|Zk|p

]+ |a|kp)+ 2p−1qkE
[
Wp

]

≤ (
2p+1(E[Wp

]+ 1
)+E

[
Wp

])
2p−1qk,

where we have repeatedly used that |z + w|p ≤ 2p−1(|z|p + |w|p) and Lemma A.1 for the third inequality. The bound
decays exponentially as n → ∞ giving Zn → 0 in Lp and also Zn → 0 a.s. by virtue of the Borel–Cantelli lemma and
Markov’s inequality.

(b) Let S := {Wn > 0 for all n ≥ 0} denote the survival set of the system. It is clear that the claimed convergence holds
on the set of extinction Sc. Therefore, in what follows we work under P∗(·) := P(·|S).

We first assume that (i) holds. Then

Wn → W P∗-a.s. (A.9)

Eq. (A.9) in combination with (3.2) gives

sup|v|=n |L(v)|
Wn

→ 0 P∗-a.s. (A.10)

If, on the other hand, assumption (ii) is satisfied, then [2, Theorem 1.1] gives

√
nWn → W ∗ in P∗-probability (A.11)

for some random variable W ∗ satisfying P∗(W ∗ > 0) = 1. As before, we need control over max|u|=n |L(u)|. A combina-
tion of (A.11) and Proposition A.3 gives

sup|v|=n |L(v)|∑
|v|=n |L(v)| = n3/2 sup|v|=n |L(v)|

n1/2Wn

1

n

P
∗→ 0 as n → ∞. (A.12)

From now on, we treat both cases, (i) and (ii), simultaneously. In view of (A.9) and (A.11), it remains to prove that

lim
n→∞

Zn

Wn

= 0 in P∗-probability. (A.13)

The last relation follows if we can show that, for any fixed positive integer k < n,

lim
n→∞

Zn − akZn−k

Wn

= 0 in P∗-probability (A.14)

and that, for all ε ∈ (0,1),

lim
k→∞ lim sup

n→∞
P∗
(∣∣∣∣akZn−k

Wn

∣∣∣∣> ε

)
= 0. (A.15)

Since, for any k ∈N, we have

lim
n→∞

Wn−k

Wn

= 1 in P∗-probability, (A.16)

for all k such that |a|k < ε/2, we have

P∗
(∣∣∣∣akZn−k

Wn

∣∣∣∣> ε

)
≤ P∗

(∣∣∣∣akWn−k

Wn

∣∣∣∣> ε

)
→ 0 as n → ∞.

Hence, (A.15) holds and it remains to check (A.14). In view of (A.16), relation (A.14) is equivalent to

lim
n→∞

Zn − akZn−k

Wn−k

= 0 in P∗-probability. (A.17)
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Setting Sj := {Wj > 0} for j ∈ N0, we have Sj ↓ S as j → ∞. Thus, for ε > 0, we infer

P

(∣∣∣∣Zn − akZn−k

Wn−k

∣∣∣∣> ε,S
)

≤ E

[
1Sn−k

P

(∣∣∣∣Zn − akZn−k

Wn−k

∣∣∣∣> ε

∣∣∣∣Fn−k

)]
,

so that it suffices to show that the right-hand side converges to zero. To this end, we work on Sn−k without further notice.
We use the representation

Zn − akZn−k

Wn−k

=
∑

|v|=n−k

L(v)

Wn−k

([Zk]v − ak
)
.

Given Fn−k , the right-hand side is a weighted sum of i.i.d. centered complex-valued random variables which satisfies
the assumptions of Corollary A.2 with cv = L(v)/Wn−k , |v| = n − k and Y = Zk − ak . Note that #{cv : cv �= 0, |v| =
n − k} < ∞ a.s. in view of (A.8), that

∑
|v|=n−k |cv| = 1 a.s. and that E[|Zk − ak|] ≤ E[|Zk|] + |a|k ≤ E[Wk] + |a|k ≤ 2.

With

cn−k := sup|v|=n−k |L(v)|∑
|v|=n−k |L(v)|

an application of Corollary A.2 yields

P

(∣∣∣∣Zn − akZn−k

Wn−k

∣∣∣∣> ε

∣∣∣∣Fn−k

)
≤ 8

ε2

(
cn−k

∫ cn−k
−1

0
xP
(∣∣Zk − ak

∣∣> x
)

dx +
∫ ∞

cn−k
−1

P
(∣∣Zk − ak

∣∣> x
)

dx

)
.

We claim that the right-hand side converges to zero in probability as n → ∞. Indeed, according to (A.10) and (A.12),
respectively, cn−k → 0 in P∗-probability. It remains to use the following simple fact. If h is a measurable function
satisfying limy→0 h(y) = 0 and if limn→∞ τn = 0 in probability, then limn→∞ h(τn) = 0 in probability. For instance,

apply this to h(y) = y
∫ 1/y

0 xP(|Zk − ak| > x)dx and τn = cn−k . It follows from Markov’s inequality and E[|Zk − ak|] <

∞ that limx→∞ xP(|Zk − ak| > x) = 0, which in turn implies h(y) → 0 as y → 0. The proof of (A.17), and hence of
(A.14), is complete. �
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