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Abstract. We establish bounds on the spectral radii for a large class of sparse random matrices, which includes the adjacency matrices
of inhomogeneous Erdős–Rényi graphs. Our error bounds are sharp for a large class of sparse random matrices. In particular, for the
Erdős–Rényi graph G(n,d/n), our results imply that the smallest and second-largest eigenvalues of the adjacency matrix converge
to the edges of the support of the asymptotic eigenvalue distribution provided that d/ logn → ∞. Together with the companion pa-
per (Benaych-Georges, Bordenave and Knowles (2017)), where we analyse the extreme eigenvalues in the complementary regime
d/ logn → 0, this establishes a crossover in the behaviour of the extreme eigenvalues at d � logn. Our results also apply to non-
Hermitian sparse random matrices, corresponding to adjacency matrices of directed graphs. The proof combines (i) a new inequality
between the spectral radius of a matrix and the spectral radius of its nonbacktracking version together with (ii) a new application of the
method of moments for nonbacktracking matrices.

Résumé. Nous établissons des bornes sur le rayon spectral pour une grande classe de matrices aléatoires creuses, qui inclut les matrices
d’adjacence des graphes Erdős–Rényi inhomogènes. Nos bornes d’erreur sont optimales pour une grande classe de matrices aléatoires.
En particulier, pour le graphe Erdős–Rényi G(n,d/n), nos résultats impliquent que la plus petite et la deuxième plus grande valeurs
propres de la matrice d’adjacence convergent vers les bords du support de la distribution asymptotique des valeurs propres sous la
condition d/ logn → ∞. Avec le papier (Benaych-Georges, Bordenave and Knowles (2017)), où nous analysons les valeurs propres
extrêmes dans le régime complémentaire d/ logn → 0, ceci établit une transition dans le comportement des valeurs propres dans le
régime d � logn. Nos résultats s’appliquent aussi aux matrices non-hermitiennes, correspondant à des matrices d’adjacence de graphes
dirigés. La démonstration combine (i) une nouvelle inégalité reliant le rayon spectral d’une matrice et le rayon spectral de sa version
nonbacktracking avec (ii) une nouvelle application de la méthode des moments pour les matrices nonbacktracking.
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1. Introduction

The goal of the present paper is to obtain bounds on the spectral radius of a sparse random matrix. Sparse random
matrices arise naturally as adjacency matrices of random graphs. In spectral graph theory, obtaining precise bounds on
the locations of the extreme eigenvalues, in particular on the spectral gap, is of fundamental importance and has attracted
much attention in the past thirty years. See for instance [1,11,16] for reviews.

The problem of estimating the spectral radius of a random matrix has a long history, starting with the seminal work of
Füredi and Komlós [15], subsequently improved by Vu [24]. For the simple case of the Erdős–Rényi graph G(n,d/n),
where each edge of the complete graph on n vertices is kept with probability d/n independently of the others, it is shown
in [15,24] that the smallest and second-largest eigenvalues of the adjacency matrix converge to the edges of the support of
the asymptotic eigenvalue distribution provided that d/(logn)4 → ∞. In this paper we derive quantitative bounds for the
extreme eigenvalues, which are sharp for a large class of sparse random matrices, including G(n,d/n) for small enough
expected degree d . An immediate corollary of these bounds is that the extreme eigenvalues converge to the edges of the
support of the asymptotic eigenvalue distribution provided that d/ logn → ∞. Together with the companion paper [4],

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/19-AIHP1033
mailto:florent.benaych-georges@parisdescartes.fr
mailto:charles.bordenave@univ-amu.fr
mailto:antti.knowles@unige.ch


2142 F. Benaych-Georges, C. Bordenave and A. Knowles

where we analyse the extreme eigenvalues in the complementary regime d/ logn → 0, this establishes a crossover in the
behaviour of the extreme eigenvalues of the Erdős–Rényi graph. The location d � logn of this crossover for the extreme
eigenvalues parallels the well-known crossover from connected to disconnected graphs.

Our results hold for a very general class of sparse random matrices with independent mean-zero entries. In particular,
we also obtain bounds for the extreme eigenvalues of inhomogeneous Erdős–Rényi graphs and stochastic block models.
They hold for Hermitian random matrices, corresponding to adjacency matrices of undirected random graphs, as well as
for non-Hermitian random matrices with independent entries, corresponding to adjacency matrices of directed random
graphs.

In their seminal work, Füredi and Komlós [15] bound the spectral radius of a random matrix by estimating the expected
trace of high powers of this matrix. The technical challenge of this strategy is to derive a sharp upper bound on the number
of simple walks with given combinatorial properties. The novelty of our approach lies in a new use of the nonbacktracking
matrix. Nonbacktracking matrices and combinatorial estimates on nonbacktracking walks have proved to be powerful
tools to study largest eigenvalues of some random matrices, see [7,14,23]. Indeed, counting non-backtracking walks turns
out to be significantly simpler than counting simple walks. Moreover, on regular graphs, the nonbacktracking walks are
counted by polynomials of the adjacency matrix, and the Ihara–Bass formula (see e.g. [19]) implies a simple relation
between the spectrum of the adjacency matrix and the nonbacktracking matrix. In this paper, we extend this strategy
beyond regular graphs. Let H denote the sparse random matrix we are interested in, and B its associated nonbacktracking
matrix (defined in Definition 2.1 below). Our proof consists of two main steps: a deterministic step (i) and a probabilistic
step (ii).

(i) The first step is an estimate of the spectral radius of H in terms of the spectral radius of B , summarized in Theo-
rem 2.2. This step also requires bounds on the �2 → �∞ and �1 → �∞ norms of H , which are typically very easy
to obtain by elementary concentration results. The main algebraic tool behind this step is an Ihara–Bass-type for-
mula given in Lemma 4.1 below. Using this lemma we obtain an estimate relating the eigenvalues of B and H ,
Proposition 4.2 below, from which Theorem 2.2 easily follows.

(ii) The second step is an estimate of the spectral radius of B , summarized in Theorem 2.5 below. Our starting point
is the classical Füredi–Komlós-approach of estimating ETrB�B∗� for �1 logn, which may be analysed by counting
walks on multigraphs. Our main result here is Proposition 5.1. The argument is based on a new soft combinatorial
argument which revisits a reduction of walks introduced in Friedman [14].

Our main result for Hermitian sparse matrices, Theorem 2.7, follows from Theorems 2.2 and 2.5 combined with
classical concentration estimates. The proof of our main result for non-Hermitian sparse matrices, Theorem 2.11, is
proved by an argument analogous to that used to prove Theorem 2.5; the key observation here is that the independence of
the entries of H automatically results in a nonbacktracking constraint in the graphical analysis of ETrH�H ∗�.

In [3], an approach to estimating spectral radii of random matrices is developed by comparison of the spectral radii
of general inhomogeneous random matrices to those of corresponding homogeneous random matrices. After our preprint
appeared online, this approach was significantly extended in [21] to cover, among other things, sparse random matrices.
For G(n,d/n) in the regime d/ logn → ∞, both our approach and that of [3,21] yield bounds that are sharp to leading
order, although our bound on the subleading error is better than that of [3,21]. In the complementary very sparse regime
d/ logn → 0 our bounds are sharp up to a universal constant while those of [3,21] are not. See Remark 2.8 below for
more details.

We conclude this introduction with a summary of the main contributions of our paper.

(i) We obtain bounds on the spectral radius of a large class of sparse random matrices. For G(n,d/n), our leading order
bound is sharp in the regime d/ logn → ∞ and sharp up to a universal constant in the regime d/ logn → 0.

(ii) We establish optimal bounds at leading order for the spectral radius of sparse non-Hermitian matrices that are of

mean-field type, which means that any |Hij | is a.s. much smaller than the �2 row norm
√

maxi

∑
j E|Hij |2.

(iii) We establish optimal bounds at leading order for the spectral radius of the nonbacktracking matrix in the regime
where the ratio of the �2 → �∞ and �1 → �∞ norms grows. Such bounds are of some independent interest notably
in view of recent applications of non-backtracking matrices in community detection; see [20]. Moreover, our estimate
on the spectral radius of the nonbacktracking matrix is a key ingredient in the subsequent analysis [2] of the crossover
at d � logn.

(iv) We establish a very simple and general relationship between the spectral radii of a Hermitian matrix and its non-
backtracking version, which we believe can be of some use in other contexts as well.

(v) Our proof is simple and fully self-contained, and in particular does not need a priori bounds on the spectral radius of
a reference matrix.
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2. Main results

For a positive integer n we abbreviate [n] := {1,2, . . . , n}. For a square matrix M we denote by σ(M) the spectrum of M

and by ρ(M) := maxλ∈σ(M)|λ| the spectral radius of M . Note that for Hermitian M we have ρ(M) = ‖M‖ := ‖M‖2→2,
the operator norm of M . In some heuristic discussions on the limit n → ∞, we use the usual little o notation, and write
x � y to mean x/y → 0.

Definition 2.1. Let H = (Hij )i,j∈[n] ∈ Mn(C) be a matrix with complex entries Hij ∈ C. The nonbacktracking matrix
associated with H is the matrix B = (Bef )e,f ∈[n]2 ∈ Mn2(C) defined for e = (i, j) ∈ [n]2 and f = (k, l) ∈ [n]2 by

Bef := Hkl1j=k1i 	=l . (2.1)

We shall need the �2 → �∞ and �1 → �∞ norms of a matrix H ∈ Mn(C), defined respectively as

‖H‖2→∞ := max
i

√∑
j

|Hij |2, ‖H‖1→∞ := max
i,j

|Hij |. (2.2)

The following deterministic result estimates the spectral radius of an arbitrary Hermitian matrix in terms of the spectral
radius of its nonbacktracking matrix.

Theorem 2.2. For x ≥ 0 define f (x) through f (x) = x + x−1 if x ≥ 1 and f (x) = 2 if 0 ≤ x ≤ 1. Let H ∈ Mn(C) be a
Hermitian matrix with associated nonbacktracking matrix B . Then

‖H‖ ≤ ‖H‖2→∞f

(
ρ(B)

‖H‖2→∞

)
+ 7‖H‖1→∞.

Using f (x) ≤ 2 + (x − 1)2+ we immediately deduce the following result.

Corollary 2.3. If H is Hermitian with associated nonbacktracking matrix B then

‖H‖ ≤ 2‖H‖2→∞ + (ρ(B) − ‖H‖2→∞)2+
‖H‖2→∞

+ 7‖H‖1→∞.

We shall study the spectral radius ρ(B) for the following class of random matrices.

Assumption 2.4. Let H ∈ Mn(C) be a Hermitian random matrix whose upper triangular entries (Hij )1≤i≤j≤n are inde-
pendent mean-zero random variables. Moreover, suppose that there exist q > 0 and κ ≥ 1 such that

max
i

∑
j

E|Hij |2 ≤ 1, max
i,j

E|Hij |2 ≤ κ

n
, max

i,j
|Hij | ≤ 1

q
a.s. (2.3)

For the interpretation of these parameters, consider first the simple case where A is the adjacency matrix of the ho-
mogeneous Erdős–Rényi graph G(n,d/n) with 1 ≤ d ≤ n. Define H := d−1/2(A − EA). Then it is easy to check that
Assumption 2.4 holds with q = √

d and κ = 1. Thus, the parameter q controls the sparsity of A (the smaller it is, the
sparser A may be). Moreover, if the graph associated with A is inhomogeneous, the variances E|Hij |2 depend on i and
j , and κ has to be chosen larger than 1. Thus, κ controls the structure or inhomogeneity of A (the closer to 1 it is, the less
structured, or more homogeneous, A is).

Theorem 2.5. There are universal constants C,c > 0 such that the following holds. Suppose that H satisfies Assump-
tion 2.4 and that B is the nonbacktracking matrix associated with H . Then for 1 ∨ q ≤ n1/10κ−1/9 and ε ≥ 0 we have

P
(
ρ(B) ≥ 1 + ε

) ≤ Cn3−cq log(1+ε).

Remark 2.6. Note that if Assumption 2.4 holds for some q > 0 then it also holds for any 0 < q̂ ≤ q . Hence, if κ1/9 ≤
n1/10, we may apply Theorem 2.5 to q̂ = q ∧ (n1/10κ−1/9).
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From Theorems 2.2 and 2.5 it is not hard to conclude an upper bound on the norm of H . We first note that general
concentration inequalities imply that there exists a universal constant c > 0 such that, if H satisfies Assumption 2.4 then
for all t ≥ 0 we have

P
(∣∣‖H‖ −E‖H‖∣∣ ≥ t

) ≤ 2e−cq2t2
. (2.4)

See for instance [9, Examples 3.14 and 6.8]; the concentration inequality in [9, Example 6.8] is given for the largest
eigenvalue λmax(H) = sup‖x‖2=1〈x,Hx〉, but the same argument applies to ‖H‖ = sup‖x‖2=‖y‖2=1〈y,Hx〉.

The estimate (2.4) shows that, up to subgaussian fluctuations of order 1/q , it is sufficient to control the expectation of
the norm of H . Our main result in this direction is the following.

Theorem 2.7. There is a universal constant C > 0 such that the following holds. Suppose that H satisfies Assumption 2.4.
Then for 1 ∨ q ≤ n1/10κ−1/9, we have

E‖H‖ ≤ 2 + C
η√

1 ∨ logη
, with η :=

√
logn

q
. (2.5)

In particular,

E‖H‖ ≤ 2 + C

√
logn

q
. (2.6)

Moreover, under the same hypotheses, if in addition q ≥ C and maxi

∑
j E|Hij |2 = 1 then

E‖H‖ ≤ E‖H‖2→∞
(

2 + C

q

)
. (2.7)

Theorem 2.7 shows that with high probability, ‖H‖ ≤ 2 + o(1) as soon as q2 � logn and κ � n12/13 (See also
Remark 2.13 below). As illustrated in [17, Theorem 2.2] and [4, Corollary 1.4], this statement is sharp. We remark that
for entries with symmetric distributions, a related bound (without sharp error bounds) was obtained in [17, Theorem 2.1].
(However, the assumption of symmetric distributions rules out random graphs.)

Remark 2.8. Theorem 2.7 also provides an estimate for the very sparse regime q2 ≤ logn. Writing q2 = η−2 logn for
η ≥ 1 we find from Theorem 2.7 and (2.4) that

‖H‖ ≤ C
η√

logη

with high probability. On the other hand, in [4] we proved that for A the adjacency matrix of G(n,d/n) with d = η−2 logn

and H = (A −EA)/q we have

‖H‖ ∼ η√
2 logη

with high probability for η � 1 (where a ∼ b denotes that a/b → 1 as n → ∞). Thus, in the very sparse regime q2 ≤ logn

and for general sparse random matrices, Theorem 2.7 yields bounds whose dependence on n and d is optimal up to a
universal constant for the example of the Erdős–Rényi graph.

Remark 2.9. For any Hermitian matrix H we always have ‖H‖2→∞ ≤ ‖H‖. The estimate (2.7) may be regarded as
a probabilistic counterpart to this statement, saying that with high probability the converse estimate is also true up to a
constant.

Remark 2.10. Stated explicitly without referring to Assumption 2.4, for instance the estimate (2.6) states that for any
Hermitian matrix H with independent centred entries, if

max
i,j

E|Hij |2 ·
(

max
i

∑
j

E|Hij |2
)7/2

≤ n−1/10
∥∥∥max

i,j
|Hij |

∥∥∥9

L∞



Spectral radii of sparse random matrices 2145

then

E‖H‖ ≤ 2
√

max
i

∑
j

E|Hij |2 + C

∥∥∥max
i,j

|Hij |
∥∥∥

L∞
√

logn.

The same remains valid if the quantity ‖maxi,j |Hij |‖L∞ is replaced by any larger number.

Our techniques also apply to non-Hermitian matrices with independent entries.

Theorem 2.11. Let H ∈ Mn(C) be a random matrix whose entries (Hij )1≤i,j≤n are independent mean-zero random
variables. Moreover, suppose that there exist q > 0 and κ ≥ 1 such that (2.3) holds. Then for 1 ∨ q ≤ n1/10κ−1/9 and
ε ≥ 0 we have

P
(
ρ(H) ≥ 1 + ε

) ≤ Cn2−cq log(1+ε),

for some universal positive constants C, c.

Remark 2.12. In Theorems 2.5, 2.7, and 2.11, the almost sure last condition of (2.3) can be easily relaxed by a truncation
argument of the entries of H (see for example [26]). We do not pursue this generalization any further.

Remark 2.13. It can easily be seen from the proofs that in Theorems 2.5, 2.7, and 2.11, the condition q ≤ n1/13κ−1/12 can
be relaxed to q ≤ n(1−δ0)/12κ−1/12 for any fixed δ0 ∈ (0,1). Then, the constants involved in the statements depend on δ0.
Consequently, our main results hold for κ ≤ n1−c for any fixed c > 0. The applications to inhomogeneous Erdős–Rényi
graphs in Section 3 can be slightly strengthened in this direction; we shall not pursue this direction further. Moreover,
since the parameter q only appears as an upper bound in (2.3), our results clearly apply without an upper bound on q; see
Remark 2.6.

2.1. Overview of proofs

We conclude this section by giving an overview of the proofs of our main results – Theorems 2.2, 2.5, 2.7, and 2.11.
Theorem 2.2 is proved in Section 4. The first main ingredient is a variant of the Ihara–Bass formula, Lemma 4.1, which
relates the spectra of H and B by characterizing the spectrum of B as the singularity set of an explicit matrix function,
denoted M(λ) − H(λ). The second main ingredient is an analysis of the matrix function M(λ) − H(λ), estimating its
singularities in terms of eigenvalues of H , hence concluding the proof of Theorem 2.2. The proof of Theorems 2.5 and
2.7 are given in Section 2.7, where we estimate the spectral radius of B . The main work is to estimate ETrB�B∗� for
large �, which is performed in Proposition 5.1. It is proved using a variant of the classical moment method, exploiting
the nonbacktracking property of B to significantly reduce the combinatorics of the resulting graphs. Theorem 2.5 then
easily follows using Markov’s inequality, and Theorem 2.7 follows by an elementary argument using Theorems 2.2 and
2.5. Finally, in Section 6 we prove Theorem 2.11. Its proof is remarkably similar to that of Proposition 5.1. Indeed, since
the entries Hij and Hji for i 	= j are independent, to leading order, the resulting walks on graphs do not backtrack. This
results in walks analogous to those of Section 2.7, and we may take over much of the arguments developed there to
conclude the proof of Theorem 2.11.

3. Application to inhomogeneous Erdős–Rényi graphs

3.1. Undirected graphs

An important example of a matrix H satisfying Assumption 2.4 is the (centred and rescaled) adjacency matrix of an inho-
mogeneous (undirected) Erdős–Rényi random graph, where each edge {i, j}, 1 ≤ i < j ≤ n, is included with probability
pij , independently of the others. Let A be its adjacency matrix and set

H := d−1/2(A −EA),

where

d := max
i

∑
j

pij (3.1)
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is the maximal expected degree. Then for each i, j and each k ≥ 2, we have |Hij | ≤ 1/
√

d and E|Hij |2 ≤ pij /d . We set

q := √
d ∧ n1/10κ−1/9, κ := maxi,j pij

d/n
. (3.2)

Remark 3.1. A scenario of particular interest is when the probabilities pij are all comparable (i.e. κ = O(1)) and the
typical expected degree d is not too large, in the sense that d � n1/5. In that case we have q = √

d .

We deduce the following immediate consequence of Theorem 2.7.

Theorem 3.2. Let A be the adjacency matrix of an inhomogeneous Erdős–Rényi graph, with d and q defined as in (3.1)
and (3.2). If q ≥ 1 then

E‖A −EA‖√
d

≤ 2 + C
η√

1 ∨ logη
, with η :=

√
logn

q
, (3.3)

for some universal constant C > 0. If the maximal expected degree is not too large in the sense that

d ≥ 1 and d7/2 max
i,j

pij ≤ n−1/10, (3.4)

which in particular includes the scenario of Remark 3.1, then

E‖A −EA‖ ≤ 2
√

d + C

√
logn

1 ∨ log(
logn

d
)
. (3.5)

In [10,13], it is proved that ‖H‖ ≤ C if d is at least of order logn. Theorem 3.2 retrieves this result and states also that
‖H‖ ≤ 2 + o(1) as soon as d � logn. In the homogenous case (i.e. when for all i, j , pij = d/n), it is well known [5,18]
that the empirical distribution of the eigenvalues of H converges weakly to the semi-circular law with support [−2,2] as
soon as d � 1. Theorem 3.2 then also gives the convergence of the extreme eigenvalues to the boundary of [−2,2] as
soon as d � logn. In the companion paper [4], we study the largest eigenvalues of H in the regime d � logn, showing
that a crossover occurs at d � logn. Interestingly, in at least the regime d � logn, [4, Corollary 1.4] implies that the
upper bound (3.5) is sharp up to the multiplicative constant C; see Remark 2.8.

Theorem 3.2 can be used in statistical inference on graphs, where one wishes to infer information about EA from
a single observation of A. Weyl’s inequality for eigenvalues implies that, for any integer 1 ≤ k ≤ n, the kth largest
eigenvalue (counting multiplicities) of EA and A differ by at most ‖A −EA‖ (see for example [6]). Hence, Theorem 3.2
shows that the location of an eigenvalue λ of EA can be effectively estimated from the spectrum of A as soon as |λ|/√d

is much larger than the right-hand side of (3.3). In particular, if |λ| is of order d , the condition reads

d �
√

logn

log logn
. (3.6)

As mentioned above, [10,13] require the stronger condition d � logn. We also recall that classical tools from perturbation
theory assert that also the corresponding eigenspaces of A and EA are close when ‖A − EA‖ is small compared to the
spectral gap around the eigenvalue of A under consideration (for instance, the Davis–Kahan Theorem [12] gives a precise
quantitative statement of this kind). We may summarize our discussion with the following corollary, which can be used
in statistical inference on graphs when (3.6) is satisfied. For simplicity of presentation, we focus on the case where the
expected maximal degree is not too large, that is when (3.4) holds.

Corollary 3.3. Let A be the adjacency matrix of an inhomogeneous Erdős–Rényi graph, with d defined as in (3.1).
Suppose that (3.4) holds and n ≥ 3. Then for some universal constant C > 0 and for any 0 < ε < 1, if

d ≥ C

ε2

√
logn

log logn
(3.7)

then

‖A −EA‖ ≤ εd,

with probability at least 1 − 2 exp(−ε2d3/C).
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Proof. This is an elementary argument using (3.5), the condition (3.7), and (2.4). We omit the details. �

3.2. Directed graphs

An important example of a matrix H satisfying the assumptions of Theorem 2.11 is the (centred and rescaled) adja-
cency matrix of an inhomogeneous directed Erdős–Rényi random graph, where each directed edge (i, j), 1 ≤ i, j ≤ n, is
included with probability pij , independently of the others. Let A be its adjacency matrix and set

H := d−1/2(A −EA),

with d given in (3.1). We deduce the following immediate consequence of Theorem 2.7.

Theorem 3.4. Let A be the adjacency matrix of an inhomogeneous directed Erdős–Rényi graph, with d and q defined as
in (3.1) and (3.2). If q ≥ 1 then

P
(
ρ
(
d−1/2(A −EA)

) ≥ 1 + ε
) ≤ Cn2−cq log(1+ε),

for any ε ≥ 0 and some universal positive constants C, c. If the maximal expected degree is not too large in the sense that
(3.4) holds, then we have

P
(
ρ
(
d−1/2(A −EA)

) ≥ 1 + ε
) ≤ Cn2−c

√
d log(1+ε)

for all ε ≥ 0.

The following corollary can be deduced directly, using the version of the Bauer–Fike theorem given in [8].

Corollary 3.5. Suppose that the assumptions of Theorem 3.4 hold, and suppose moreover that for all i, j we have

pij = d/n where d ≤ n1/5. Then for any ε ≥ 0 such that 2(1 + ε) <
√

d , with probability at least 1 − Cn2−c
√

d log(1+ε),
A has exactly one eigenvalue at distance at most (1 + ε)

√
d from d and all other eigenvalues with modulus at most

(1 + ε)
√

d .

4. Comparison of spectra of H and B and proof of Theorem 2.2

The rest of this paper is devoted to the proofs of Theorems 2.2, 2.5, 2.7, and 2.11.

4.1. An Ihara–Bass-type formula

The following lemma is a variant of the Ihara–Bass formula. It is inspired by [22] and generalizes ideas from [20]. It is
essentially contained in Theorem 2 of [25]; for the convenience of the reader and to keep this paper self-contained, we
give the simple proof.

Lemma 4.1. Let H ∈ Mn(C) with associated nonbacktracking matrix B and let λ ∈ C satisfy λ2 	= HijHji for all
i, j ∈ [n]. Define the matrices H(λ) and M(λ) = diag(mi(λ))i∈[n] through

Hij (λ) := λHij

λ2 − HijHji

, mi(λ) := 1 +
∑

k

HikHki

λ2 − HikHki

. (4.1)

Then λ ∈ σ(B) if and only if det(M(λ) − H(λ)) = 0.

Proof. We abbreviate ij ≡ (i, j) ∈ [n]2. Let λ ∈ σ(B) be an eigenvalue of B with eigenvector x ∈ C
[n]2

, i.e. Bx = λx,
which reads in components

λxji =
∑
k 	=j

Hikxik (4.2)
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for all i, j ∈ [n]. We define y ∈C
n by, for each i,

yi :=
∑

k

Hikxik.

The eigenvalue equation λx = Bx reads

λxji = yi − Hijxij .

Exchanging i and j , we obtain

λxij = yj − Hjixji,

from which we deduce

λ2xji = λyi − Hijλxij = λyi − Hijyj + HijHjixji .

Hence, because λ2 	= HijHji ,

xji = λyi − Hijyj

λ2 − HijHji

. (4.3)

We see from this last expression that y 	= 0 if x 	= 0. We plug this last expression into (4.2) and get

λ2yi

λ2 − HijHji

− λHijyj

λ2 − HijHji

=
∑
k 	=j

λHikyk

λ2 − HikHki

−
∑
k 	=j

HikHkiyi

λ2 − HikHki

,

i.e.

λ2yi

λ2 − HijHji

=
∑

k

λHikyk

λ2 − HikHki

−
∑
k 	=j

HikHkiyi

λ2 − HikHki

.

We conclude that

yi = λ2yi

λ2 − HijHji

− HijHjiyi

λ2 − HijHji

=
∑

k

λHikyk

λ2 − HikHki

−
∑

k

HikHkiyi

λ2 − HikHki

.

Hence,

yi

(
1 +

∑
k

HikHki

λ2 − HikHki

)
−

∑
k

λHikyk

λ2 − HikHki

= 0,

which proves that 0 is an eigenvalue of M(λ) − H(λ).
Conversely, if 0 is an eigenvalue of M(λ) − H(λ) with eigenvector y, we define x through (4.3). Then the above

computation also implies that x satisfies (4.2), i.e. Bx = λx, so that λ ∈ σ(B). �

4.2. Comparison of spectra and proof of Theorem 2.2

We use the notation M � N for Hermitian matrices M and N to mean that N − M is a positive matrix. The key estimate
behind the proof of Theorem 2.2 is the following result. We thank Sasha Sodin for his help in simplifying its proof.

Proposition 4.2. Let H ∈ Mn(C) be a Hermitian matrix with associated nonbacktracking matrix B . Suppose that there
exists δ ∈ [0,1] such that

max
i,j

|Hij | ≤ δ and max
i

∑
j

|Hij |2 ≤ 1 + δ. (4.4)

Let

λ0 := max
{
1 + √

δ,max
(
σ(B) ∩R

)}
. (4.5)
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Then

H � λ0 + 1

λ0
+ 6δ.

Proof. Let H(λ) and M(λ) be the matrices defined in Lemma 4.1. First note that 0 � M(λ0) − H(λ0). Indeed, as
λ → +∞,

M(λ) − H(λ) = I + O
(
λ−1),

so that for λ large enough M(λ)− H(λ) is positive definite. But by Lemma 4.1, the real zeros of λ �→ det(M(λ)− H(λ))

are the real eigenvalues of B , which implies that for λ > λ0, det(M(λ) − H(λ)) > 0. By continuity, we conclude that
M(λ) − H(λ) is positive definite for any λ > λ0.

Next, a direct computation shows that for any λ ≥ 1 + √
δ, we have

∣∣λHij (λ) − Hij

∣∣ = |Hij |3 1

λ2 − |Hij |2 ≤ δ|Hij |2 1

λ2 − δ2
≤ δ|Hij |2 1

1 + δ + 2
√

δ − δ2
≤ δ|Hij |2.

We deduce (by the Schur test or the Gershgorin circle theorem) that ‖λH(λ) − H‖ ≤ δ maxi

∑
j |Hij |2 ≤ 2δ. Another

computation shows that for any λ ≥ 1 + √
δ, we have

λmi(λ) −
(

λ + 1

λ

)
= 1

λ

(∑
k

|Hik|2
1 − λ−2|Hik|2 − 1

)

≤ 1

λ

(
1 + δ

1 − λ−2δ2
− 1

)
= δ

λ(1 + λ−2δ)

λ2 − δ2
≤ δ

2λ

λ2 − δ2
≤ 4δ.

(In the last step, we considered separately the cases λ ≥ 2 and λ < 2, for which we use λ2 − δ2 ≥ 1.) From both previous
computations, we deduce that for any λ ≥ 1 + √

δ,

λ
(
M(λ) − H(λ)

) � λ + 1

λ
− H + 6δ.

To sum up, we have

0 � λ0
(
M(λ0) − H(λ0)

) � λ0 + 1

λ0
− H + 6δ,

from which the claim follows. �

We may now conclude the proof of Theorem 2.2.

Proof of Theorem 2.2. Set δ := ‖H‖1→∞. Note that δ ≤ 1 because ‖H‖2→∞ ≤ 1. By Proposition 4.2, for λ1 := max{1+√
δ,ρ(B)}, we have

‖H‖ ≤ f (λ1) + 6δ.

By considering the cases λ1 = ρ(B) and λ1 = 1 + √
δ separately, and using that 2 ≤ f (1 + x) ≤ 2 + x2, we easily find

that if ‖H‖2→∞ ≤ 1 then

‖H‖ ≤ f
(
ρ(B)

) + 7‖H‖1→∞.

The claim for arbitrary H now follows by homogeneity. �
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5. Estimate of ρ(B) and proof of Theorems 2.5 and 2.7

The main estimate of this section is the following result.

Proposition 5.1. Suppose that H satisfies Assumption 2.4 and that B is the nonbacktracking matrix associated with H .
There exist univeral constants c0,C0 > 0 such that the following holds. If � ≥ 1, q ≥ 1, and δ ∈ (0,1/3) satisfy

� ≤ c0 min

{
δq logn,

n1/3−δ

q2κ1/3

}
(5.1)

then

ETrB�B∗� ≤ C0n
2�4q2.

5.1. Proof of Proposition 5.1

Throughout the following we fix � and mostly omit it from our notation. For any e ∈ [n]2 and f ∈ [n]2 we have(
B�

)
ef

=
∑

a1,...,a�−1∈[n]2

Bea1Ba1a2 · · ·Ba�−1f .

By Definition 2.1, we therefore find(
B�

)
ef

=
∑
ξ

Hξ0ξ1Hξ1ξ2 · · ·Hξ�−1ξ�
,

where the sum runs over ξ = (ξ−1, ξ0, . . . , ξ�) ∈ [n]�+2 satisfying (ξ−1, ξ0) = e, (ξ�−1, ξ�) = f and ξi−1 	= ξi+1 for
i = 0, . . . , � − 1. Hence,

TrB�B�∗ =
∑

e,f ∈[n]2

∣∣(B�
)
ef

∣∣2

=
∑
ξ1,ξ2

Hξ1
0 ξ1

1
Hξ1

1 ξ1
2
· · ·Hξ1

�−1ξ
1
�
H ξ2

0 ξ2
1
Hξ2

1 ξ2
2
· · ·Hξ2

�−1ξ
2
�
,

where the sum runs over ξ1 = (ξ1−1, . . . , ξ
1
� ), ξ2 = (ξ2−1, . . . , ξ

2
� ) ∈ [n]�+2 such that (ξ1−1, ξ

1
0 ) = (ξ2−1, ξ

2
0 ), (ξ1

�−1, ξ
1
� ) =

(ξ2
�−1, ξ

2
� ) and ξ1

i−1 	= ξ1
i+1 and ξ2

i−1 	= ξ2
i+1 for i = 0, . . . , �−1. Note that ξ1−1 does not appear as an index of H . Fixing all

indices except ξ1−1 = ξ2−1, we find that the sum over ξ1−1 = ξ2−1 is bounded by n. The remaining sum over ξ1
0 , ξ2

0 , . . . , ξ1
� , ξ2

�

is nonnegative. This yields the estimate

TrB�B�∗ ≤ n
∑
ξ1,ξ2

Hξ1
0 ξ1

1
Hξ1

1 ξ1
2
· · ·Hξ1

�−1ξ
1
�
H ξ2

0 ξ2
1
Hξ2

1 ξ2
2
· · ·Hξ2

�−1ξ
2
�

= n
∑
ξ1,ξ2

Hξ1
0 ξ1

1
Hξ1

1 ξ1
2
· · ·Hξ1

�−1ξ
1
�
Hξ2

� ξ2
�−1

Hξ2
�−1ξ

2
�−2

· · ·Hξ2
1 ξ2

0
,

where the sum runs over ξ1 = (ξ1
0 , . . . , ξ1

� ), ξ2 = (ξ2
0 , . . . , ξ2

� ) ∈ [n]�+1 such that (ξ1
0 , ξ1

�−1, ξ
1
� ) = (ξ2

0 , ξ2
�−1, ξ

2
� ) and

ξ1
i−1 	= ξ1

i+1 and ξ2
i−1 	= ξ2

i+1 for i = 1, . . . , � − 1. In the second step we used that H is Hermitian. Renaming the summa-
tion variables, we have

TrB�B�∗ ≤ n
∑
ξ∈C̃

Hξ0ξ1Hξ1ξ2 · · ·Hξ2�−1ξ2�
,

where

C̃ := {
ξ = (ξ0, . . . , ξ2�) ∈ [n]2�+1 : ξ0 = ξ2�, ξ�−1 = ξ�+1, ξi−1 	= ξi+1 for i ∈ [2� − 1]\{�}}.
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Because the entries of H are independent and have mean zero, we find

ETrB�B�∗ ≤ nE
∑
ξ∈C

Hξ0ξ1Hξ1ξ2 · · ·Hξ2�−1ξ2�
, (5.2)

where we defined C as the set of ξ ∈ C̃ such that |{i ∈ [2�] : {ξi−1, ξi} = {a, b}}| 	= 1 for all a, b ∈ [n]. In words, for ξ ∈ C
every unordered edge cannot be crossed only once by ξ .

In the following we shall need several basic graph-theoretic notions. Since they involve paths on multigraphs, it is im-
portant to introduce them with some care. By definition, a (vertex-labelled undirected) multigraph G = (V (G),E(G),φ)

consists of two finite sets, the set of vertices V (G) and the set of edges E(G), and a map φ from E(G) to the un-
ordered sets of one or two elements of V (G). For e ∈ E(G), the set φ(e) is the set of vertices incident to e. The edge
e ∈ E(G) is a loop if |φ(e)| = 1. The degree deg(v) of a vertex v ∈ V (G) is the number of edges to which it is inci-
dent, whereby a loop incident to v counts twice. The genus of G is g(G) := |E(G)| − |V (G)| + 1. A path of length
l ≥ 1 in G is a word w = w0w01w1w12 . . .wl−1lwl such that w0,w1, . . . ,wl ∈ V (G), w01,w12, . . . ,wl−1l ∈ E(G), and
φ(wi−1i ) = {wi−1,wi} for i = 1, . . . , l. We denote the length l of w by |w| := l. The path w is closed if w0 = wl .
For e ∈ E(G) we define the number of crossings of e by w to be me(w) := ∑l

i=1 1wi−1i=e . In particular, we have∑
e∈E(G) me(w) = |w|.
Moreover, the multigraph G is called simply a graph if φ is injective, i.e. there are no multiple edges. (Note that in

our convention a graph may have loops.) For a graph G we may and shall identify E(G) with a set of unordered pairs of
V (G), simply identifying e and φ(e). Similarly, we identify a path w with the reduced word w0w1 . . .wl only containing
the vertices, since we must have wi−1i = {wi−1,wi} for i = 1, . . . , l.

Definition 5.2. For ξ ∈ C we define the graph Gξ as

V (Gξ ) := {ξi : i = 0, . . . ,2�}, E(Gξ ) := {{ξi−1, ξi} : i = 1, . . . ,2�
}
.

Thus, ξ ≡ ξ0ξ1 · · · ξ2� is a closed path in the graph Gξ .

Next, we introduce an equivalence relation on C by saying that two paths ξ, ξ̃ ∈ C are equivalent, denoted ξ ∼ ξ̃ , if and
only if there exists a permutation τ of [n] such that τ(ξi) = ξ̃i for all i = 0, . . . ,2�. Clearly, the numbers |E(Gξ )| and
|V (Gξ )|, and hence also g(Gξ ), only depend on the equivalence class of ξ . We denote by [ξ ] ⊂ C the equivalence class
of a path ξ ∈ C in the set C.

Lemma 5.3. For any ξ̄ ∈ C we have

E

∑
ξ∈[ξ̄ ]

Hξ0ξ1Hξ1ξ2 · · ·Hξ2�−1ξ2�
≤ n

1−g(Gξ̄ )
κ

g(Gξ̄ )
q

2|E(Gξ̄ )|−2�
.

Proof. Abbreviate g := g(Gξ̄ ), a := |E(Gξ̄ )|, and s := |V (Gξ̄ )|, so that g = a − s + 1. Since the claim only depends

on ξ̄ through its equivalence class [ξ̄ ], we may replace ξ̄ with any equivalent path of [ξ̄ ] obtained by relabelling the
vertices. Thus, we may suppose that V (Gξ̄ ) = [s] and that there is a spanning tree T of Gξ̄ such that for all t ∈ 2, . . . , s

the subgraph T |[t] is a spanning tree of [t]. (This amounts to the requirement that the vertices [s] are first explored in
increasing order by the path ξ̄ .) Moreover, we enumerate the edges of Gξ̄ as e1, . . . , ea , where for t = 1, . . . , s − 1 the
edge et is the unique edge of T |[t+1] that is not an edge of T |[t], and the edges es, . . . , ea are the remaining g edges in
some arbitrary order.

For t = 1, . . . , a we abbreviate mt := met (ξ̄ ) for the number of crossings of et by ξ̄ . Moreover, we denote by Is,n the
set of injective maps from [s] to [n]. Then we have

E

∑
ξ∈[ξ̄ ]

Hξ0ξ1Hξ1ξ2 · · ·Hξ2�−1ξ2�
=

∑
τ∈Is,n

EHτ(ξ̄0)τ (ξ̄1)
Hτ(ξ̄1)τ (ξ̄2)

· · ·Hτ(ξ̄2�−1)τ (ξ̄2�)

≤
∑

τ∈Is,n

a∏
t=1

E
∣∣Hmt

τ(et )

∣∣,
where we used the independence of the entries and the convention τ({x, y}) := {τ(x), τ (y)}. We use the estimate

max
i

∑
j

E|Hij |k ≤ 1

qk−2
(k = 2,3, . . . ) (5.3)
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for the edges e1, . . . , es−1 and the estimate

max
i,j

E|Hij |k ≤ κ

nqk−2
(k = 2,3, . . . ) (5.4)

for the edges es, . . . , ea ; both of these estimates follow immediately from (2.3). Thus we find

E

∑
ξ∈[ξ̄ ]

Hξ0ξ1Hξ1ξ2 · · ·Hξ2�−1ξ2�
≤

a∏
t=s

κ

nqmt−2

∑
τ∈Is,n

s−1∏
t=1

E
∣∣Hmt

τ(et )

∣∣
≤

a∏
t=s

κ

nqmt−2

∑
τ∈Is−1,n

s−2∏
t=1

E
∣∣Hmt

τ(et )

∣∣ × 1

qms−1−2

≤
a∏

t=s

κ

nqmt−2

∑
τ∈Is−2,n

s−3∏
t=1

E
∣∣Hmt

τ(et )

∣∣ × 1

qms−2−2

1

qms−1−2

≤ · · ·

≤
a∏

t=s

κ

nqmt−2

∑
τ∈I1,n

1

qm1−2
· · · 1

qms−2−2

1

qms−1−2

= nq2a−∑a
t=1 mt (κ/n)a−s+1.

We conclude the proof noting that g = a − s + 1 and
∑a

t=1 mt = 2�. �

Definition 5.4. We say that a pair (G,w) formed by a multigraph G and a path w = w0w01w1w12 . . .wl−1lwl is normal
if

(i) V (G) = {w0, . . . ,wl} = [s] where s := |V (G)|;
(ii) the vertices of V (G) are visited in increasing order by w, i.e. if wi /∈ {w0, . . . ,wi−1} then wi > w1, . . . ,wi−1.

Clearly, each equivalence class of ∼ in C has a unique representative ξ such that (Gξ , ξ) is normal. We denote C0 :=
{ξ ∈ C : (Gξ , ξ) normal}. Thus, from (5.2) and Lemma 5.3 we deduce that

ETrB�B�∗ ≤ n2
∑
ξ∈C0

n−g(Gξ )κg(Gξ )q2|E(Gξ )|−2�. (5.5)

Next, we introduce a parametrization of C0 obtained by deleting vertices of the graph Gξ that have degree two. In this
process the two exceptional vertices {ξ0, ξ�} are not collapsed. This process will result in a multigraph, denoted by U(ξ)

below. A similar construction appears in [14]. We refer to Figure 1 for an illustration of the following construction.

Definition 5.5. Let G be a graph and V ⊂ V (G). Define the set

IV (G) := {
v ∈ V (G) \ V : deg(v) = 2

}
.

Define the set V (G) to be the set of paths w = w0 · · ·wl in G such that w1, . . . ,wl−1 are pairwise distinct and belong to
IV (G) and w0, wl /∈ IV (G). We introduce an equivalence relation on V (G) by saying that w0 · · ·wl and wl · · ·w0 are
equivalent, and denote by ′

V (G) := {[w] : w ∈ V (G)} the set of equivalence classes.

The next definition constructs a multigraph Ĝξ from Gξ , obtained by replacing every [w] ∈ ′{ξ0,ξ�}(G) with an edge

of E(Ĝξ ).

Definition 5.6. Let ξ ∈ C0. Set V (Ĝξ ) := V (Gξ ) \ I{ξ0,ξ�}(Gξ ) and E(Ĝξ ) := ′{ξ0,ξ�}(G) with φ([w]) := {w0,wl} for

each [w] ∈ ′{ξ0,ξ�}(G). We also assign to each edge [w] ∈ E(Ĝξ ) the weight k̂w to be the length of the path w.
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Fig. 1. In the top diagram we draw the graph Gξ associated with the path ξ = 1,2,3,4,5,6,7,8,9,9,8,10,4,5,6,7,8,9,9,8,11,12,13,12,11,14,

15,16,14,17,18,4,10,8,11,14,16,15,14,17,18,4,3,2,1. Here � = 22. Note that Gξ has a loop but no multiple edges. The number of cross-
ings of each edge by ξ is 2, except for {8,9} for which it is 4. Note also that (Gξ , ξ) is normal. In the bottom diagram we draw the multi-
graph U associated with ξ . We label the vertices of U by 1, . . . ,7 and the edges of U by a, . . . , j . The path in U associated with ξ is
ζ = 1a2b3c4d4c3e2b3c4d4c3f 5g6g5h7i7j2e3f 5h7i7j2a1. The number of crossings of each edge by ζ is 2, except for c for which it is 4. Note
that ζ is normal in U . Here γ = 6 and the weights k of the edges of U are given by ka = 3, kb = 4, kc = 1, kd = 1, kf = 1, kg = 2, kh = 1, ki = 3,
kj = 3.

Let now ξ ∈ C0, which is a closed path ξ0ξ1 · · · ξ2� of length 2� in the graph Gξ . Because of the nonbacktracking
condition in the definition of C at all vertices of Gξ except ξ0 and ξ�, we find that every pair ξi−1ξi must be contained
in a word w ∈ {ξ0,ξ�}(Gξ ). By writing ξ as a concatenation of words from {ξ0,ξ�}(Gξ ), we therefore conclude that the
closed path ξ = ξ0ξ1 · · · ξ2� in the graph Gξ gives rise to a closed path ξ̂ = ξ̂0ξ̂01ξ̂1ξ̂12 · · · ξ̂r−1r ξ̂r on the multigraph Ĝξ .
We stress the fundamental role of the nonbacktracking condition in the definition of C in the construction of ξ̂ ; without it
such a construction fails.

Summarizing, for any given ξ ∈ C0 we have constructed a triple (Ĝξ , ξ̂ , k̂), where Ĝξ is a multigraph, ξ̂ is a closed
path in Ĝξ , and k̂ = (k̂e)e∈E(Ĝξ )

is the family of weights of the edges of Ĝξ .

Note that ξ̂ and Ĝξ are in general not normal in the sense of Defintion 5.4. We remedy this by setting τ to be the unique
increasing bijection from V (Ĝξ ) to {1, . . . , |V (Ĝξ )|}. Denote by (U, ζ, k) ≡ (U(ξ), ζ(ξ), k(ξ)) the triple obtained from
the triple (Ĝξ , ξ̂ , k̂) by relabelling the vertices using τ . By definition, ξ0 = τ(ξ0) = 1. Moreover, we set γ ≡ γ (ξ) :=
τ(ξ�).

We refer to Figure 1 for an illustration of the construction of (U, ζ, k). We now collect several basic properties of the
mapping ξ �→ (U, ζ, k).

Lemma 5.7. The mapping ξ �→ (U, ζ, k) satisfies the following properties.

(i) The mapping ξ �→ (U, ζ, k) is injective on C0.
(ii) g(U) = g(Gξ ).

(iii) ζ is a closed path in the multigraph U . It is normal in U in the sense of Definition 5.4. In particular, ζ0 = ζ|ζ | = 1.
(iv) Every vertex of V (U) \ {1, γ } has degree at least three. The vertices 1 and γ have degree at least one.
(v) |E(Gξ )| = ∑

e∈E(U) ke.
(vi) me(ζ ) ≥ 2 for all e ∈ E(U) and 2� = ∑

e∈E(U) me(ζ )ke .
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Proof. All of these properties follow immediately from the construction of (U, ζ, k). For (i), we emphasize that the
requirement ξ ∈ C0 is crucial, for a relabelling of the vertices of Gξ will not change the resulting triple (U, ζ, k). �

Having constructed the triple (U, ζ, k), we may now use it to estimate the right-hand side of (5.5). By property (i)
above, it suffices to sum over (U, ζ, k) instead of ξ . We find

ETrB�B�∗ ≤ n2
∑

(U,ζ,k)

n−g(U)q−∑
e∈E(U) me(ζ )ke+2

∑
e∈E(U) keκg(U)

= n2
∑

(U,ζ,k)

n−g(U)q−∑
e∈E(U) ke(me(ζ )−2)κg(U),

where the sum ranges over all triples (U, ζ, k) obtained from all ξ ∈ C0. Since ke ≥ 1 and me(ζ ) ≥ 2 for all e ∈ E(U), we
find ∑

e∈E(U)

ke

(
me(ζ ) − 2

) ≥
∑

e∈E(U)

(
me(ζ ) − 2

) = |ζ | − 2
∣∣E(U)

∣∣.
Since q ≥ 1, we therefore get

ETrB�B�∗ ≤ n2
∑

(U,ζ,k)

n−g(U)q2|E(U)|−|ζ |κg(U).

Note that the summand does not depend on k. For fixed (U, ζ ), we may therefore estimate the sum over k by estimating
from above the number of families k = (ke)e∈E(U) such that ke ≥ 1 for all e ∈ E(U) and

∑
e∈E(U) keme(ζ ) = 2�. Since

me(ζ ) ≥ 2 ≥ 1, this is certainly bounded by the number of families k = (ke)e∈E(U) such that ke ≥ 1 for all e ∈ E(U) and∑
e∈E(U) ke = 2�, which is equal to(

2� − 1
|E(U)| − 1

)
≤

(
6�

|E(U)|
)|E(U)|

.

We conclude that

ETrB�B�∗ ≤ n2
∑
(U,ζ )

(
6�

|E(U)|
)|E(U)|

n−g(U)q2|E(U)|−|ζ |κg(U),

where the sum ranges over pairs (U, ζ ) obtained from all ξ ∈ C0. We estimate this sum using the following bounds on
|E(U)|.

Lemma 5.8. For U as above we have∣∣E(U)
∣∣ ≤ 3g(U) + 1,

and ∣∣V (U)
∣∣ ≤ 2g(U) + 2.

Proof. In order to prove the upper bound on |E(U)|, we write

2
∣∣E(U)

∣∣ =
∑

v∈V (U)

deg(v) ≥ 2 + 3
(∣∣V (U)

∣∣ − 2
)
,

where we used the fact that each vertex in V (U) \ {1, γ } has degree at least 3, and {1, γ } have degree at least one. This
gives ∣∣V (U)

∣∣ ≤ 2

3

∣∣E(U)
∣∣ + 4

3
,

which implies that g(U) ≥ |E(U)|−1
3 and g(U) ≥ |V (U)|

2 − 1. �
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Using Lemma 5.8 we conclude

ETrB�B�∗ ≤ n2�q2
∑
(U,ζ )

(
12�

g(U) + 1

)3g(U)

n−g(U)q6g(U)−|ζ |κg(U),

where we used that g(U) ≤ �.
Next, we claim that the number of pairs (U, ζ ) such that |E(U)| ≤ e, |V (U)| ≤ v and ζ has lenght m is at most

emve.

Indeed, we may build the path ζ directly as follows: at each of the m steps of the path ζ , we choose an edge numbered
from one to e and, for each newly visited edge, we attribute an end vertex among v possible choices. Since (U, ζ ) is
normal and ζ visits all edges of U , this characterizes uniquely the pair (U, ζ ). Using Lemma 5.8, we therefore find that
the number of pairs (U, ζ ) such that U has genus g and ζ has length m is bounded by

(3g + 1)m(2g + 2)3g+1.

Putting everything together, we find

ETrB�B�∗ ≤ n2�q2
�∑

g=0

2�∑
m=1

(3g + 1)m(2g + 2)3g+1
(

24�

2g + 2

)3g

n−gq6g−mκg

≤ Cn2�q2
2�∑

m=1

(
1

q

)m

+ Cn2�2q2
�∑

g=1

(
Cκ�3q6

n

)g 2�∑
m=1

(
4g

q

)m

, (5.6)

where we used that g ≤ �. Since q ≥ 1, the first term of (5.6) is bounded by Cn2�2q2. For any x > 0 we have
∑2�

m=1 xm ≤
2�(1 + x�). Thus, the second term of (5.6) is estimated by

Cn2�3q2
�∑

g=1

(
Cκ�3q6

n

)g

+ Cn2�3q2
�∑

g=1

(
Cκ�3q6

n

)g(4g

q

)2�

. (5.7)

Now, assume that

n ≥ 2Cκ�3q6, � ≤ q

8
log

n

Cκ�3q6
(5.8)

(we will then check that (5.1) implies (5.8)). By the assumption (5.8), the first term of (5.7) is estimated by Cn2�3q2. The
second term of (5.7) may be written as

Cn2�3q2
�∑

g=1

exp

[
−g log

n

Cκ�3q6
+ 2� log

4g

q

]
.

The argument of the exponential is maximized for

g = 2�
/

log
n

Cκ�3q6
.

Plugging this back in, we find that if (5.8) holds then this maximum is reached for g ≤ 4q and we deduce that
ETrB�B∗� ≤ Cn2�4q2.

What remains, therefore, is to show that (5.1) with large enough C0 and small enough c0 implies (5.8). From (5.1) we
find

n ≥
(

κ�3q6

c3
0

) 1
1−3δ

, (5.9)
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which implies the first estimate of (5.8) for small enough c0. Moreover, (5.9) yields

n3δ ≤ c3
0n

κ�3q6
.

We conclude from (5.1) that

� ≤ c0δq logn = c0q

3
logn3δ ≤ c0q

3
log

(
c3

0n

κ�3q6

)
,

which implies the second estimate of (5.8) for small enough c0. This concludes the proof of Proposition 5.1.

5.2. Proof of Theorem 2.5

This is a simple application of Proposition 5.1 and Markov’s inequality. We have

ρ(B) = ρ
(
B�

)1/� ≤ ∥∥B�
∥∥1/� = ∥∥B�B∗�

∥∥1/(2�) ≤ (
Tr

(
B�B∗�))1/(2�)

. (5.10)

Thus we get

P
(
ρ(B) > 1 + ε

) ≤ P
(
TrB�B∗� > (1 + ε)2�

) ≤ ETrB�B∗�

(1 + ε)2�
.

Choosing δ := 1
30 in Proposition 5.1, we find by assumption of Theorem 2.5 that (5.1) holds with � := � c

2q logn�, with
some universal constant c > 0. We therefore find from Proposition 5.1

P
(
ρ(B) > 1 + ε

) ≤ Cn2q6(logn)4(1 + ε)−cq logn ≤ Cn3−cq log(1+ε),

as claimed. This concludes the proof of Theorem 2.5.

5.3. Proof of Theorem 2.7

We start by proving the following intermediate result.

Proposition 5.9. There are universal constants C,c > 0 such that the following holds. Suppose that H satisfies Assump-
tion 2.4. Then for 1 ≤ q ≤ n1/10κ−1/9 and δ ≥ 0, we have

P

(
‖H‖ ≥ 2 + Cδ + C

q

)
≤ Cn3−cq log(1+√

δ) + ne−q2h(δ∨δ2), (5.11)

where h(δ) := (1 + δ) log(1 + δ) − δ.

Proof. The proof is a combination of Corollary 2.3 and Theorem 2.5. By assumption, we have ‖H‖1→∞ ≤ 1/q . We
estimate ‖H‖2→∞ using Bennett’s inequality [9, Theorem 2.9]. Fix i ∈ [n] and define the independent random variables
X1, . . . ,Xn, where Xj := |Hij |2. By assumption on H we have Xj ≤ 1/q2 and

∑
j EX2

j ≤ 1/q2. Since
∑

j EXj ≤ 1, we
conclude from Bennett’s inequality that

P

(∑
j

|Hij |2 ≥ 1 + t

)
≤ e−q2h(t). (5.12)

By a union bound, we therefore deduce that P(‖H‖2→∞ ≥ 1 + t) ≤ P(‖H‖2→∞ ≥ √
1 + t ∨ t2) ≤ ne−q2h(t∨t2). We

apply this last statement to t = δ. The claim now follows from Corollary 2.3 and Theorem 2.5 applied to ε2 = δ/C. �

We are now ready to prove Theorem 2.7. We begin by noting that without loss of generality we can assume q ≥ 1.
Indeed, if Theorem 2.7 is already established for q ≥ 1 then in the case q < 1 we can apply it to H ′ = H/(1/q), with
corresponding parameters q ′ = 1 and κ ′ = κq2 ≤ κ , and the claim follows easily.
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From now on we therefore assume that q ≥ 1. Let us first prove (2.5). We claim that for large enough K and any n, q ,
κ satisfying

1 ≤ q ≤ n1/10κ−1/9 and κ ≥ 1, (5.13)

we have

P
(∣∣‖H‖ −E‖H‖∣∣ ≤ δ

) + P
(‖H‖ ≤ 2 + 2Cδ

)
> 1, (5.14)

where C is the constant in Proposition 5.9 and

δ := Kη√
1 ∨ logη

, η :=
√

logn

q
.

Supposing for now that (5.14) has been proved, we find that the intersection of both events from the left-hand side of
(5.14) is nonempty, and hence E‖H‖ ≤ 2 + (2C + 1)δ, which concludes the proof of (2.5).

What remains, therefore, is to prove (5.14). We first remark that, with c0 = 2/e,

qδ = K
√

logn√
1 ∨ logη

= Kηq√
1 ∨ logη

≥ c0K (5.15)

uniformly over all n ≥ 2 and q ≥ 1 (distinguish η ≤ e and η ≥ e). We shall assume that c0K ≥ 1. By (2.4) and (5.11), it
suffices to prove that, by choosing K large enough, the three numbers

a1 := q2δ2, a2 := q log(1 + √
δ), a3 := q2h

(
δ ∨ δ2) − logn (5.16)

can be made arbitrarily large, uniformly under the conditions (5.13). Indeed, the term C/q from the left-hand side of
(5.11) is bounded by Cδ/(c0K) ≤ Cδ by (5.15).

First, from (5.15), a1 ≥ (c0K)2. Hence, a1 can be chosen arbitrarily large if K is large enough. Similarly, to prove that
a2 can be chosen arbitrarily large, we note that the function f (x) = log(1 + √

x)/x is positive and decreasing on (0,1).
Hence, from (5.15), we have

a2 ≥ (c0K)f (c0K/q) ≥ (c0K)f (c0K) = log(1 + √
c0K),

as desired.
To prove that a3 can be chosen arbitrarily large, we consider the cases η ≤ e and η ≥ e separately. For η ≤ e, we use

h(x) ≥ c(x2 ∧ x) for all x ≥ 0 and for some universal constant c > 0. Hence h(δ ∨ δ2) ≥ cδ2 and

a3 ≥ cq2δ2 − logn = (
cK2 − 1

)
logn,

as desired. For η ≥ e, we use the refined bound h(x) ≥ c(x2 ∧ x)(1 ∨ logx) for all x ≥ 0. Hence h(δ ∨ δ2) ≥ cδ2 log δ2

and, since log δ2 ≥ c′ logη for some constant c′ > 0,

a3 ≥ cc′q2δ2 logη − logn = (
cc′K2 − 1

)
logn,

as desired. This concludes the proof of (2.5).
Finally, we prove (2.7). First, Jensen’s inequality implies that E‖H‖2→∞ ≥ 1. Note also the triangle inequality gives

|‖X‖2→∞ − ‖Y‖2→∞| ≤ ‖X − Y‖2→∞ ≤
√∑

ij |Xij − Yij |2, and the function X �→ ‖X‖2→∞ is separately convex in

the entries of X (as a maximum (2.2) of separately convex functions). Hence, we may apply Talagrand’s concentration
inequality in the form of [9, Theorem 6.10]. We find that there exists a universal constant c > 0 such that for any t > 0,

P
(∣∣‖H‖2→∞ −E‖H‖2→∞

∣∣ ≥ t/q
) ≤ 2e−ct2

. (5.17)

This last inequality and (2.4) implies that if we prove that the event{
‖H‖ ≤ ‖H‖2→∞

(
2 + C

q

)}
(5.18)
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has probability at least 1/2, then

E‖H‖ ≤ E‖H‖2→∞
(

2 + C

q

)
+ 2t

q
≤ E‖H‖2→∞

(
2 + C + 2t

q

)
,

where t is such that 4e−ct2
< 1/2, the constant c is as in (2.4)–(5.17), and we used that E‖H‖2→∞ ≥ 1. Therefore, it

suffice to prove that (5.18) holds with probability at least 1/2. With probability at least 3/4, for some universal constant
t > 0, we have

ρ(B) ≤ 1 + t

q

and, from (5.17) with probability at least 3/4,

‖H‖2→∞ ≥ E‖H‖2→∞ − t

q
≥ 1 − t

q
.

We deduce from Corollary 2.3 that with probability at least 1/2, if q ≥ 2t ,

E‖H‖ ≤ 2‖H‖2→∞ + C

(
(2t/q)2

1 − t/q
+ 1

q

)
≤ 2‖H‖2→∞ + C′

q
≤ 2‖H‖2→∞ + ‖H‖2→∞

1 − C/q

C′

q
.

Adjusting the constant C, we obtain (5.18). This concludes the proof of (2.7), and hence also of Theorem 2.7.

6. Non-Hermitian matrices: Proof of Theorem 2.11

The main estimate of this section is the following result.

Proposition 6.1. Let H ∈ Mn(C) be a random matrix whose entries (Hij )1≤i,j≤n are independent mean-zero random
variables. Moreover, suppose that there exist q ≥ 3 and κ ≥ 1 such that (2.3) holds. There exist universal constants
c0,C0 > 0 such that the following holds. If � ≥ 1, q ≥ 1, and δ ∈ (0,1/3) satisfy (5.1) then ETrH�H ∗� ≤ C0n�4q2.

Once Proposition 6.1 is proved, Theorem 2.11 follows by the argument of Section 5.2.
The rest of this section is devoted to the proof of Proposition 6.1. The proof of Proposition 6.1 is similar to that of

Proposition 5.1. Essentially, the nonbacktracking condition in the definition of B is replaced by the independence of the
entries of H . We compute

TrH�H ∗� =
∑
ξ

Hξ1
0 ξ1

1
Hξ1

1 ξ1
2
· · ·Hξ1

�−1ξ
1
�
H ξ2

0 ξ2
1
Hξ2

1 ξ2
2
· · ·Hξ2

�−1ξ
2
�
,

where the sum ranges over all ξ = (ξν
i : i ∈ {0,1, . . . , �}, ν ∈ {1,2}) ∈ [n]2�+2 such that (ξ1

0 , ξ1
� ) = (ξ2

0 , ξ2
� ).

Because the entries of H are independent and have mean zero, we find

ETrH�H ∗� = E

∑
ξ∈C

Hξ1
0 ξ1

1
Hξ1

1 ξ1
2
· · ·Hξ1

�−1ξ
1
�
H ξ2

0 ξ2
1
Hξ2

1 ξ2
2
· · ·Hξ2

�−1ξ
2
�
, (6.1)

where C is the set of pairs ξ = (ξ1, ξ2) ∈ [n]2�+2 satisfying (ξ1
0 , ξ1

� ) = (ξ2
0 , ξ2

� ) and

2∑
ν=1

�−1∑
i=1

1(ξν
i−1,ξ

ν
i )=(a,b) 	= 1

for all a, b ∈ [n].
As in Section 5.1, we estimate the right-hand side of (6.1) using graphs. In contrast to Section 5.1, in this section

we always use directed graphs and multigraphs. The following definitions closely mirror those from Section 5.1. By
definition, a (vertex-labelled) directed multigraph G = (V (G),E(G),φ) consists of two finite sets, the set of vertices
V (G) and the set of edges E(G), and a map φ = (φ+, φ−) from E(G) to the ordered pairs of elements of V (G).
The edge e ∈ E(G) is a loop if φ+(e) = φ−(e). We define the outdegree deg+(v) := ∑

e∈E(G) 1φ+(e)=v , the indegree
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deg−(v) := ∑
e∈E(G) 1φ−(e)=v , and the degree deg(v) := deg+(v) + deg−(v) of a vertex v ∈ V (G). As always, the genus

of G is g(G) := |E(G)| − |V (G)| + 1. A path of length l ≥ 1 in G is a word w = w0w01w1w12 . . .wl−1lwl such that
w0,w1, . . . ,wl ∈ V (G), w01,w12, . . . ,wl−1l ∈ E(G), and φ(wi−1i ) = (wi−1,wi) for i = 1, . . . , l. We denote the length
l of w by |w| := l. For e ∈ E(G) we define the number of crossings of e by w to be me(w) := ∑l

i=1 1wi−1i=e .
Moreover, the directed multigraph G is called simply a directed graph if φ is injective, i.e. there are no multiple edges.

(Note that in our convention a directed graph may have loops.) For a directed graph G we may and shall identify E(G)

with a set of ordered pairs of V (G), simply identifying e and φ(e). Similarly, we identify a path w with the reduced word
w0w1 . . .wl only containing the vertices, since we must have wi−1i = (wi−1,wi) for i = 1, . . . , l.

The following definition is analogous to Definition 5.2.

Definition 6.2. For ξ ∈ C we define the directed graph Gξ as

V (Gξ ) := {
ξν
i : i ∈ {0, . . . , �}, ν ∈ {1,2}}, E(Gξ ) := {(

ξν
i−1, ξ

ν
i

) : i ∈ {1, . . . , �}, ν ∈ {1,2}}.
Thus, ξ1 ≡ ξ1

0 ξ1
1 · · · ξ1

� and ξ2 ≡ ξ2
0 ξ2

1 · · · ξ2
� are paths in Gξ .

As in Section 5.1, we introduce an equivalence relation on C by saying that ξ, ξ̃ ∈ C are equivalent if and only if there
exists a permutation τ of [n] such that τ(ξν

i ) = ξ̃ ν
i for all i = 0, . . . ,2� and ν = 1,2. The following result is analogous to

Lemma 5.3.

Lemma 6.3. For any ξ̄ ∈ C we have

E

∑
ξ∈[ξ̄ ]

Hξ1
0 ξ1

1
Hξ1

1 ξ1
2
· · ·Hξ1

�−1ξ
1
�
H ξ2

0 ξ2
1
Hξ2

1 ξ2
2
· · ·Hξ2

�−1ξ
2
�

≤ n
1−g(Gξ̄ )

κ
g(Gξ̄ )

q
2|E(Gξ̄ )|−2�

.

Proof. The proof is almost identical to that of Lemma 5.3. Using its notations, we suppose without loss of generality that
V (Gξ̄ ) = [s] and pick a (directed) spanning tree T of Gξ such that, for all t = 2, . . . , s the subgraph T |[t] is a spanning
tree of [t], and enumerate the edges e1, . . . , es−1 of T so that for all t = 1, . . . , s − 2, the edge et is an edge of T |[t+1] that
is not an edge of T |[s] and φ−(et ) = t . Then the argument from the proof of Lemma 5.3 carries over verbatim, using the
estimates (5.3) and (5.4), which also hold under the assumptions of Proposition 6.1. �

Next, we define normal paths in analogy to Definition 5.4.

Definition 6.4. For ν = 1,2, let wν = wν
0wν

01w
ν
1wν

12 . . .wν
lν−1lν w

ν
lν be a path in a directed multigraph G. We say that

(w1,w2) is normal in G if

(i) V (G) = {w1
0, . . . ,w

1
l1
,w2

0, . . . ,w
2
l2
} = [s] where s := |V (G)|;

(ii) the vertices of V (G) are visited in increasing order first by w1 and then by w2, i.e. if w1
i /∈ {w1

0, . . . ,w
1
i−1} then

w1
i > w1

1, . . . ,w
1
i−1, and if w2

i /∈ {w1
0, . . . ,w

1
l1
,w2

0, . . . ,w
2
i−1} then w1

i > w1
0, . . . ,w

1
l1
,w2

0, . . . ,w
2
i−1.

Each equivalence class of ∼ in C has a unique representative ξ = (ξ1, ξ2) that is normal in Gξ . We denote C0 :=
{ξ ∈ C : ξ normal in Gξ }. Thus, from (6.1) and Lemma 6.3 we deduce that

ETrH�H�∗ ≤ n
∑
ξ∈C0

n−g(Gξ )κg(Gξ )q2|E(Gξ )|−2�. (6.2)

We now introduce a parametrization (U, ζ, k) of C0 obtained by deleting vertices of Gξ that have degree two, except
the vertices 1 = ξ1

0 = ξ2
0 and ξ1

� = ξ2
� . The construction follows verbatim that of Section 5.1, whereby all graphs and

multigraphs are directed. Note that every vertex of the directed graph Gξ that is not 1 or ξ1
� = ξ2

� and has degree two has
indegree one and outdegree one. More formally, we define I(ξ) := {v ∈ V (Gξ ) \ {1, ξ1

� = ξ2
� }} as well as (ξ) to be the

set of directed paths w = w0 . . .wl in Gξ such that w1, . . . ,wl−1 ∈ I(ξ) and w0,wl ∈ I(ξ). Then we define Ĝξ to be
the directed multigraph obtained from Gξ by replacing each directed path w ∈ (ξ) by a directed edge from w0 to wl .
We denote the resulting paths in Ĝξ associated with ξ1, ξ2 by ξ̂1, ξ̂2, and the length of the path w associated with e ∈
E(Ĝξ ) by k̂e. Applying a suitable bijection τ : V (Ĝξ ) → [|V (Ĝξ )|], we obtain the triple (U, ζ, k), where U is a directed
multigraph, ζ = (ζ 1, ζ 2) is a pair of paths normal in U of lengths r1, r2 satisfying 1 = ζ 1

0 = ζ 2
0 and γ := ζ 1

r1 = ζ 2
r2 , and

k = (ke)e∈E(U) is the family of weights of the edges of U . See Figure 2 for an illustration of the construction of (U, ζ, k).
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Fig. 2. In the top diagram we draw the graph Gξ associated with the pair ξ = (ξ1, ξ2), where ξ1 = 1,2,3,4,5,6,7,8,9,8,9,8,10,11,10,7,8,10,

11,10,7,6,7,6,12,13,14 and ξ2 = 1,2,3,4,15,4,5,6,12,2,3,4,15,4,15,4,5,6,12,2,3,4,5,6,12,13,14. Here � = 26. The total number of
crossings by ξ1 and ξ2 of the edges (2,3), (3,4), (4,5), (5,6), (6,12), (12,2), (4,15), (15,4) is three, and of all other edges two. Note that ξ is
normal in Gξ . In the bottom diagram we draw the directed multigraph U associated with ξ , which in this example is just a directed graph (i.e. it has no

multiple edges). The paths ζ 1, ζ 2 in U associated with ξ are ζ 1 = 12345666775677545489 and ζ 2 = 12334823334823489. The pair (ζ 1, ζ 2) is also
normal in U . Here γ = 9.

As in Section 5.1 every vertex in V (U) \ {1, γ } has degree at least three. The remainder of the proof now follows to the
letter the argument from Section 5.1 starting on page 2154. This concludes the proof of Proposition 6.1.
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