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Abstract. Let {Wt }∞t=1 be a finite state stationary Markov chain, and suppose that f is a real-valued function on the state space. If
f is bounded, then Gillman’s expander Chernoff bound (1993) provides concentration estimates for the random variable f (W1) +
· · · + f (Wn) that depend on the spectral gap of the Markov chain and the assumed bound on f . Here we obtain analogous inequalities
assuming only that the q’th moment of f is bounded for some q ≥ 2. Our proof relies on reasoning that differs substantially from the
proofs of Gillman’s theorem that are available in the literature, and it generalizes to yield dimension-independent bounds for mappings
f that take values in an Lp(μ) for some p ≥ 2, thus answering (even in the Hilbertian special case p = 2) a question of Kargin (Ann.
Appl. Probab. 17 (4) (2007) 1202–1221).

Résumé. Soit {Wt }∞t=1 une chaîne de Markov stationnaire à états finis, et supposons que f soit une fonction réelle définie sur l’espace
d’états. Si f est bornée, l’inégalité de Chernoff pour les graphes expanseurs (1993) de Gillman fournit des estimations de concentration
pour la variable aléatoire f (W1)+· · ·+f (Wn) qui dépendent du trou spectral de la chaîne de Markov et la borne sur f . Nous obtenons
ici des inégalités analogues en supposant seulement que le q-ème moment de f est borné pour un certain q ≥ 2. Notre démonstration
repose sur un raisonnement qui diffère substantiellement des démonstrations du théorème de Gillman disponibles dans la littérature, et
elle se généralise de façon à générer des bornes indépendantes de la dimension pour les applications f qui prennent des valeurs dans
un Lp(μ) pour p ≥ 2, répondant ainsi (même dans le cas spécial hilbertien p = 2) à une question de Kargin (Ann. Appl. Probab. 17
(4) (2007) 1202–1221).

MSC: 60J10; 60F10

Keywords: Markov chains; Concentration bounds; Expander graphs; Gillman’s theorem

1. Introduction

For N ∈ N, write [N ] def= {1, . . . ,N} and let �N−1 def= {π = (π1, . . . , πN) ∈ [0,1]N : ∑N
i=1 πi = 1} be the simplex of

probability measures on [N ]. Given π ∈ �N−1, denote by Eπ ∈ MN(R) the N -by-N matrix all of whose rows equal π ,
i.e., Eπu = (

∑N
j=1 πjuj , . . . ,

∑N
j=1 πjuj ) ∈R

N for every u = (u1, . . . , uN) ∈ R
N .

Given π ∈ �N−1, a stochastic matrix A = (aij ) ∈ MN(R) is π -stationary if πA = π , i.e., πi = ∑N
j=1 πjaji for all

i ∈ [N ]. We then define λπ(A) to be the norm of A − Eπ as an operator from L2(π) to L2(π), i.e.,

λπ(A)
def= ‖A − Eπ‖L2(π)→L2(π) = sup

{(
N∑

i=1

πi

(
N∑

j=1

aijuj −
N∑

k=1

πkuk

)2) 1
2

: u ∈R
N and

N∑
k=1

πku
2
k = 1

}
.
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Note that if A is diagonalizable over the Hilbert space L2(π), then we have λπ(A) = max{λ2(A), |λN(A)|}, where
1 = λ1(A) ≥ · · · ≥ λN(A) ≥ −1 are the eigenvalues of A. This would occur if A were π -reversible, i.e., πiaij = πjaji

for all i, j ∈ [N ], in which case A would be a self-adjoint operator on L2(π); the reversible setting is the main case of
interest in the ensuing discussion, but reversibility is not needed for our proofs.

Let W = {Wt }∞t=1 be a Markov chain with state space [N ] and transition matrix A ∈ MN(R). One says that W is
stationary if A is πW-stationary for πW = (Pr[W1 = 1], . . . ,Pr[W1 = N ]) ∈ �N−1. Write λW = λπW(A).

Theorem 1.1. Suppose that W = {Wt }∞t=1 is a stationary Markov chain whose state space is [N ] and with λW < 1. Then,
every f : [N ] → R satisfies the following inequality for every n ∈N and every q ≥ 2.

(
E

[∣∣∣∣f (W1) + · · · + f (Wn)

n
−E

[
f (W1)

]∣∣∣∣
q]) 1

q

�
√

q

(1 − λW)n
· (E[∣∣f (W1)

∣∣q]) 1
q . (1)

The (standard) asymptotic notation � that appears in (1) (as well as throughout the ensuing discussion) means the
following. Given two quantities α,β ∈ [0,∞), the notation α � β stands for the assertion that there exists a universal
constant C ∈ (0,∞) for which α ≤ Cβ; this is also denoted by β � α.

The conclusion (1) of Theorem 1.1 with the random variables f (W1), . . . , f (Wn) replaced by i.i.d. random variables
coincides with the classical Marcinkiewicz–Zygmund inequality [17]. Our contribution here is therefore to generalize this
statement to random variables that are (images of) stationary Markov chains with a spectral gap; the i.i.d. setting is the
special case A = Eπ of Theorem 1.1. The bound (1) is optimal; see Remark 4 below. A variant of Theorem 1.1 when
1 ≤ q ≤ 2 appears in Remark 3 below.

The precursor (and inspiration) of Theorem 1.1 is the following theorem of Gillman [9,10].

Theorem 1.2. Suppose that W = {Wt }∞t=1 is a stationary Markov chain whose state space is [N ] and with λW < 1. Then,
every f : [N ] → R satisfies the following inequality for every n ∈N and every q ≥ 2.

(
E

[∣∣∣∣f (W1) + · · · + f (Wn)

n
−E

[
f (W1)

]∣∣∣∣
q]) 1

q

�
√

q

(1 − λW)n
· max

{∣∣f (1)
∣∣, . . . , ∣∣f (N)

∣∣}. (2)

Note that Theorem 1.2 is typically stated in the literature as the following concentration inequality, which is commonly
called the expander Chernoff bound.

∀a > 0, Pr

[∣∣∣∣f (W1) + · · · + f (Wn)

n
−E

[
f (W1)

]∣∣∣∣≥ a max
j∈[N ]

∣∣f (j)
∣∣]� e−c(1−λW)na2

, (3)

where c > 0 is a universal constant. The equivalence of (2) and (3) is standard; (2) =⇒ (3) is checked by applying
Markov’s inequality and optimizing over q , and (3) =⇒ (2) follows by straightforward integration (both implications
appear in Proposition 2.5.2 of the textbook [24]). The same use of Markov’s inequality shows mutatis mutandis that
Theorem 1.1 implies the following concentration phenomenon.

Corollary 1.3. There is a universal constant c > 0 with the following property. Suppose that W = {Wt }∞t=1 is a stationary
Markov chain whose state space is [N ] and with λW < 1. Then, every f : [N ] → R satisfies the following inequality for
every n ∈N, every q ≥ 2 and every 0 < a ≤ √

q/((1 − λW)n).

Pr

[∣∣∣∣f (W1) + · · · + f (Wn)

n
−E

[
f (W1)

]∣∣∣∣≥ a
(
E
[∣∣f (W1)

∣∣q]) 1
q

]
� e−c(1−λW)na2

.

Remark 1. Kloeckner investigated in [14] the question of obtaining concentration bounds such as (3) with the L∞ norm
maxj∈[N ] |f (j)| replaced by other norms of f . As discussed in [14, Remark 2.2], the results of [14] hold in a setting that
imposes structural hypotheses on the aforementioned norm of the “observable” f which notably excludes its Lq(πW)

norm (which appears in the right-hand side of the bound (1) that we prove here), but it is noted in [14, Remark 2.2] that
“classically one only makes moment assumptions on the observable.” Corollary 1.3 addresses this question, though note
that [14] also covers settings that are not treated here.

The new bound (1) that we obtain differs from Gillman’s estimate (2) only in the replacement of the worst-case bound
on f in the right-hand side of (2) by an average-case bound. Rather than being merely a quantitative enhancement, this
improvement has conceptual significance which we achieve through a reasoning that differs substantially from the proof
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of (3) in [9,10], as well as the several other proofs of (3) and its variants that appeared in the literature [5–8,11,12,14–16,
19,25] (our approach was recently used in [20,21]).

Assuming a bound on the q’th moment of f is the appropriate setting for bounding the q’th moment of f (W1) +
· · · + f (Wn). This compatibility of the left-hand side of (1) and the right-hand side of (1) allows the resulting inequality
to tensorize so as to yield dimension-independent vector-valued statements. Specifically, for any measure space (�,μ),
if f : [N ] → Lq(μ), then by applying (1) to the real-valued mapping (i ∈ [N ]) �→ f (i)(ω) for each ω ∈ �, and then
integrating the (q’th power of) the resulting point-wise inequality, we see that (under the assumptions of Theorem 1.1),

(
E

[∥∥∥∥f (W1) + · · · + f (Wn)

n
−E

[
f (W1)

]∥∥∥∥
q

Lq(μ)

]) 1
q

�
√

q

(1 − λW)n
· (E[∥∥f (W1)

∥∥q

Lq(μ)

]) 1
q . (4)

The following Hilbertian statement is a consequence of (4) that deserves to be stated separately.

Corollary 1.4. Suppose that W = {Wt }∞t=1 is a stationary Markov chain whose state space is [N ] and with λW < 1. Let
(H,‖ · ‖H ) be a Hilbert space. The following bound holds for all n ∈ N, q ≥ 2 and f : [N ] → H .

(
E

[∥∥∥∥f (W1) + · · · + f (Wn)

n
−E

[
f (W1)

]∥∥∥∥
q

H

]) 1
q

�
√

q

(1 − λW)n
· (E[∥∥f (W1)

∥∥q

H

]) 1
q . (5)

Corollary 1.4 is nothing more than (4) applied to an isometric copy of H in Lq(μ), which is known to exist by [2,
Chapter 12] (see also the exposition in, e.g., the textbook [1, Proposition 6.4.12]).

Since E[‖f (W1)‖q
H ] ≤ maxj∈[N ] ‖f (j)‖q

H , the following corollary is a consequence Corollary 1.4 through the usual
application of Markov’s inequality and then an optimization over q .

Corollary 1.5 (Hilbert space-valued expander Chernoff bound). There is a universal constant c > 0 with the following
property. Suppose that W = {Wt }∞t=1 is a stationary Markov chain whose state space is [N ] and with λW < 1. Let
(H,‖ · ‖H ) be a Hilbert space. If f : [N ] → H , then for all n ∈N and a > 0 we have

Pr

[∥∥∥∥∥1

n

n∑
i=1

f (Wi) −E
[
f (W1)

]∥∥∥∥∥
H

≥ a max
j∈[N ]

∥∥f (j)
∥∥

H

]
� e−c(1−λW)na2

. (6)

Remark 2. Kargin studied [12] the vector-valued setting of Gillman’s theorem for functions that take values in the m-
dimensional Euclidean space �m

2 . The statement that is obtained in [12] is the same as that of Corollary 1.5, except that
it is dimension-dependent; specifically, with the implicit constant in (6) growing to ∞ exponentially with m. Thus, the
main new feature of Corollary 1.5 is that it is dimension-independent. Obtaining such a bound was a main question that
[12] left open; see [12, Section 4].

Observe that estimates such as (4) can be interpreted as bounds on the operator norm of a certain linear operator be-
tween vector-valued Lq -spaces. Specifically, suppose that (X,‖ · ‖X) is a Banach space. Let W = {Wt }∞t=1 be a stationary
Markov chain whose state space is [N ] and with λW < 1. Denote (as before) the stationary measure of W by πW and
let the transition matrix of W be A = (aij ) ∈ MN(R). For each n ∈ N denote the associated probability measure on the
trajectories of length n by τn

W : [N ]n → [0,1]. Thus, τn
W is the probability measure on [N ]n that is given by τ 1

W = πW if
n = 1, and for n ≥ 2,

∀(i1, . . . , in) ∈ [N ]n, τn
W(i1, . . . , in)

def= Pr
[
(W1, . . . ,Wn) = (i1, . . . , in)

]= πW(i1)ai1i2ai2i3 · · ·ain−1in .

Define a linear operator TX : Lq(πW;X) → Lq(τn
W;X) by setting for f : [N ] → X,

∀(i1, . . . , in) ∈ [N ]n, TXf (i1, . . . , in)
def= 1

n

n∑
k=1

f (ik) −
N∑

j=1

πW(j)f (j) ∈ X. (7)

Here, and in what follows, we are using standard notation for vector-valued Lebesgue–Bochner spaces, though throughout
we will need to consider only finitely supported measures, in which case measurability issues do not need to be discussed.
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So, if (S, σ ) is a probability space with |S| < ∞, then the Banach space Lq(σ ;X) is the vector space of all mapping
ψ : S → X, equipped with the norm

‖ψ‖Lq(σ ;X) =
(∑

s∈S

σ (s)
∥∥ψ(s)

∥∥q

X

) 1
q

.

The validity of (4) under the assumptions of Theorem 1.1 is the same as the operator norm bound

‖TLq(μ)‖Lq(πW;Lq(μ))→Lq(τn
W;Lq(μ)) �

√
q

(1 − λW)n
. (8)

In the same vein, Corollary 1.4 is (under the same assumptions) the same as

‖TL2(μ)‖Lq(πW;L2(μ))→Lq(τn
W;L2(μ)) �

√
q

(1 − λW)n
. (9)

By Calderón’s vector-valued extension [4] of the Riesz–Thorin [22,23] interpolation theorem (see the monograph [3] for
background on complex interpolation; the specific statement that we are using here is a combination of Theorem 4.1.2
and Theorem 5.1.2 in [3]), it follows from (8) and (9) that for every p ∈ [2, q] we have

‖TLp(μ)‖Lq(πW;Lp(μ))→Lq(τn
W;Lp(μ)) �

√
q

(1 − λW)n
.

We record this conclusion as the following generalization of Corollary 1.4 and Corollary 1.5.

Corollary 1.6. Suppose that p ≥ 2 and that (�,μ) is a measure space. Let W = {Wt }∞t=1 be a stationary Markov chain
whose state space is [N ] and with λW < 1. If f : [N ] → Lp(μ), then for all n ∈ N and q ≥ p,

(
E

[∥∥∥∥f (W1) + · · · + f (Wn)

n
−E

[
f (W1)

]∥∥∥∥
q

Lp(μ)

]) 1
q

�
√

q

(1 − λW)n
· (E[∥∥f (W1)

∥∥q

Lp(μ)

]) 1
q . (10)

Consequently, by the usual combination of (10) with Markov’s inequality, followed by optimization over q ≥ p, there
exists a universal constant c ∈ (0,∞) such that

∀a > 0, Pr

[∥∥∥∥f (W1) + · · · + f (Wn)

n
−E

[
f (W1)

]∥∥∥∥
Lp(μ)

≥ a max
j∈[N ]

∥∥f (j)
∥∥

Lp(μ)

]
� ep−c(1−λW)na2

. (11)

Remark 3. By convexity we have ‖TR‖L1(πW)→L1(τ
n
W) ≤ 2, since it is evident from (7) that the operator in question is the

difference of two averaging operators. By interpolating this (trivial) estimate with the case q = 2 of Theorem 1.1 using
the (scalar-valued) Riesz–Thorin interpolation theorem as above, we arrive at the following variant of Theorem 1.1 in the
range 1 ≤ q ≤ 2, which holds under the same assumptions.

(
E

[∣∣∣∣f (W1) + · · · + f (Wn)

n
−E

[
f (W1)

]∣∣∣∣
q]) 1

q

�
(

1

(1 − λW)n

)1− 1
q · (E[∣∣f (W1)

∣∣q]) 1
q . (12)

Observe that when the Markov chain W is reversible, the case q = 2 of (1) is a quadratic inequality that could be
directly verified in a straightforward manner by expanding both sides in an orhtonormal eigenbasis of the transition
matrix of W. The more substantial content of Theorem 1.1 is therefore the case q > 2, which does not lend itself to such
linear-algebraic reasoning.

Remark 4. Both (1) and (12) are sharp (up to the implicit universal constant factors) for large enough n ∈ N. This is
seen by examining the following family of Markov chains. For every ε,λ ∈ (0,1) consider the two-state Markov chain
W(λ, ε) whose transition matrix equals(

1 − (1 − λ)(1 − ε) (1 − λ)(1 − ε)

(1 − λ)ε 1 − (1 − λ)ε

)
= λI2 + (1 − λ)Eπ(ε) ∈ M2(R), (13)

where I2 is the 2-by-2 identity matrix and π(ε) = (ε,1 − ε) ∈ �1. Then πW(λ,ε) = π(ε) and λW(λ,ε) = λ.
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The optimality of (1) is exhibited by taking ε = 1
2 and f : {1,2} → R that is given by f (1) = 1 = −f (2). In this case,

it is elementary to check that if n ≥ q/(1 −λ), then both sides of (1) are within universal constant multiples of each other.
Next, the optimality of (12) is exhibited by considering f : {1,2} → R that is given by f (1) = 1 and f (2) = 0. In this
case, it is elementary to check that if n ≥ 1/(1 − λ), then for small enough ε > 0 both sides of (12) are within universal
constant multiples of each other. The routine computations that verify these assertions are omitted.

Remark 5. The above discussion raises the question of understanding what is required from a Banach space (X,‖ · ‖X)

so that the “Gillman phenomenon” for stationary Markov chains (or variants thereof) would hold for X-valued mappings.
The present work obtains the first examples (notably, Hilbert space) of such theorems in infinite dimensions (equivalently,
dimension-independent bounds). However, much more remains to be understood here. This matter is pursued in the
forthcoming work [18], where it is explained how it relates to central themes in Banach space theory. Further infinite
dimensional statements are derived in [18], including a treatment of (10) in the range 2 ≤ q < p which is not covered in
Corollary 1.6, through an approach that is entirely different from our reasoning here.

We end the Introduction by noting that the above results have an equivalent dual formulation that is worthwhile to work
out explicitly. Given a Banach space (X,‖ · ‖X), the operator TX that is given in (7) has norm K > 0 from Lq(πW;X)

to Lq(τn
W;X) if and only if its adjoint T ∗

X has norm K from Lq∗(τn
W;X∗) to Lq∗(πW;X∗), where q∗ = q/(q − 1). This

leads to the following dual formulation of Corollary 1.6, whose derivation is a mechanical unravelling of the definitions
(the straightforward details are omitted).

Corollary 1.7 (adjoint of (10)). Let W = {Wt }∞t=1 be a stationary Markov chain whose state space is [N ] and with
λW < 1. Fix n ∈ N and p,q ∈ (1,2] with q ≤ p. For every measure space (�,μ) and F : [N ]n → Lp(μ),

(
E

[∥∥∥∥∥1

n

n∑
i=1

E
[
F(W1, . . . ,Wn)|Wi

]−E
[
F(W1, . . . ,Wn)

]∥∥∥∥∥
q

Lp(μ)

]) 1
q

� 1√
(q − 1)(1 − λW)n

· (E[∥∥F(W1, . . . ,Wn)
∥∥q

Lp(μ)

]) 1
q .

2. Proof of Theorem 1.1

Suppose from now on that we are in the setting of Theorem 1.1. We will write for simplicity λ = λW < 1 and π = πW ∈
�N−1. We will also let A = (aij ) ∈ MN(R) be the transition matrix of W.

It suffices to prove (1) when f : [N ] → R satisfies E[f (W1)] = 0. Indeed, this could be then applied to the centered
function f −E[f (W1)] to yield the estimate

(
E

[∣∣∣∣f (W1) + · · · + f (Wn)

n
−E

[
f (W1)

]∣∣∣∣
q]) 1

q

�
√

q

(1 − λW)n
· (E[∣∣f (W1) −E

[
f (W1)

]∣∣q]) 1
q

≤ 2
√

q

(1 − λW)n
· (E[∣∣f (W1)

∣∣q]) 1
q , (14)

where the last step is the triangle inequality in Lq(π). So, assume from now on that E[f (W1)] = 0. It will be convenient
to define u ∈ R

N by setting ui = f (i) for all i ∈ [N ]. The assumption on f becomes
∑N

i=1 πiui = 0. Below, we will
denote the diagonal matrix whose diagonal is u by U ∈ MN(R), i.e.,

U
def=

⎛
⎜⎜⎜⎜⎝

u1 0 . . . 0

0 u2
. . .

...
...

. . .
. . . 0

0 . . . 0 uN

⎞
⎟⎟⎟⎟⎠

def=

⎛
⎜⎜⎜⎜⎝

f (1) 0 . . . 0

0 f (2)
. . .

...
...

. . .
. . . 0

0 . . . 0 f (N)

⎞
⎟⎟⎟⎟⎠ .

Lemma 2.1. For every m ∈N we have

E
[(

f (W1) + · · · + f (Wn)
)2m]≤ (2m)!

∑
v0,...,v2m−1∈N∪{0}
v0+···+v2m−1≤n−1

∥∥UAv1UAv2 · · ·UAv2m−1u
∥∥

L1(π)
.
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Proof. Let V2m be the set of all those vectors in w ∈ [n]2m that satisfy 1 ≤ w1 ≤ w2 ≤ · · · ≤ w2m ≤ n. Observe that by
the Markov property and stationarity, for every w ∈ V2m we have the following identity.

E

[
2m∏
i=1

f (Wwi
)

]
=

∑
j∈[N ]2m

πj1A
w2−w1
j1j2

A
w3−w2
j2j3

· · ·Aw2m−w2m−1
i2m−1i2m

2m∏
k=1

ujk

=
∑

j∈[N ]2m

πj1

(
UAw2−w1

)
j1j2

(
UAw3−w2

)
j2j3

· · · (UAw2m−w2m−1
)
j2m−1j2m

uj2m

=
∑
i∈[N ]

πi

(
UAw2−w1UAw3−w2 · · ·UAw2m−w2m−1u

)
i
.

So, by expanding the (2m)’th power of f (W1) + · · · + f (Wn) and arranging the indices in increasing order,

E
[(

f (W1) + · · · + f (Wn)
)2m]≤ (2m)!

∑
w∈V2m

∣∣∣∣∣E
[

2m∏
i=1

f (Wwi
)

]∣∣∣∣∣
≤ (2m)!

∑
w∈V2m

∥∥UAw2−w1UAw3−w2 · · ·UAw2m−w2m−1u
∥∥

L1(π)
.

�

Remark 6. It is worthwhile to note in passing that while the proof of Lemma 2.1 relies on what may seem to be innocuous
identities, the crucial step that rearranged the factors so that their indices are increasing is inherently commutative, and this
is what obstructs the direct use of the ensuing proof for matrix-valued functions, namely the setting of [8,26]; alternative
routes are taken in [8,18] but it would be interesting to investigate if a more careful reasoning along the lines of the present
work could be used to treat the setting of functions that take values in Schatten–von Neuman trace classes.

Towards bounding from above each of the terms ‖UAv1UAv2 · · ·UAv2m−1u‖L1(π) from Lemma 2.1, we record the
following iterative application of Hölder’s inequality and the definition of operator norms.

Lemma 2.2. Fix k ∈ N and q ≥ k + 1. Then, for every T1, . . . , Tk ∈ MN(R) we have

‖UT1UT2 · · ·UTku‖L1(π) ≤ ‖u‖k+1
Lq(π)

k∏
j=1

‖Tj‖L 2q
q+k+1−2j

(π)→L 2q
q+k+1−2j

(π).

Proof. Suppose that α(1), . . . , α(k + 1) ≥ 1 satisfy 1
α(1)

+ · · · + 1
α(k+1)

≤ 1. We claim that

‖UT1UT2 · · ·UTku‖Lβ(0)(π) ≤
(

k+1∏
i=1

‖u‖Lα(i)(π)

)
k∏

j=1

‖Tj‖Lβ(j)(π)→Lβ(j)(π), (15)

where β(0), . . . , β(k) ≥ 1 are defined by 1
β(j)

= 1
α(j+1)

+ · · · + 1
α(k+1)

. The proof of (15) is by induction on k.

The case k = 0 is tautological. For the induction step, since 1
β(0)

= 1
α(1)

+ 1
β(1)

, by Hölder’s inequality,

‖UT1UT2 · · ·UTku‖Lβ(0)(π) ≤ ‖u‖Lα(1)(π)‖T1UT2 · · ·UTku‖Lβ(1)(π). (16)

By the definition of the operator norm ‖T1‖Lβ(1)(π)→Lβ(1)(π) we have,

‖T1UT2 · · ·UTku‖Lβ(1)(π) ≤ ‖T1‖Lβ(1)(π)→Lβ(1)(π)‖UT2 · · ·UTku‖Lβ(1)(π). (17)

Now (15) follows by combining (16) and (17) with the inductive hypothesis.
Choose α(1) = α(k + 1) = 2q

q−k+1 and α(2) = · · · = α(k) = q . So,

∀j ∈ [k], β(j) = 1
1

α(j+1)
+ · · · + 1

α(k+1)

= 1
k−j
q

+ q−k+1
2q

= 2q

q + k + 1 − 2j
,
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and β(0) = 1. Hence, with this specific setting of the parameters the bound (15) becomes

‖UT1UT2 · · ·UTku‖L1(π) ≤ ‖u‖2
L 2q

q−k+1
(π)‖u‖k−1

Lq(π)

k∏
j=1

‖Tj‖L 2q
q+k+1−2j

(π)→L 2q
q+k+1−2j

(π).

It remains to note that since q ≥ k + 1 we have 2q
q−k+1 ≤ q , and therefore ‖u‖L 2q

q−k+1
(π) ≤ ‖u‖Lq(π). �

Fix m ∈N. Throughout what follows, it will be notationally convenient to consider each Boolean vector s ∈ {0,1}2m−1

as an infinite vector in {0,1}Z whose entries vanish on Z� [2m − 1], namely we use the convention si = sj = 0 for i ≤ 0
and j ≥ 2m. Let S2m−1 ⊆ {0,1}2m−1 be all those Boolean vectors of length 2m − 1 with no two consecutive 0s, and with
s2m−1 = 1, i.e.,

S2m−1
def=

2m−1⋂
j=1

{
s ∈ {0,1}2m−1 : (sj , sj+1) �= (0,0)

}
.

For each j ∈ [2m − 1] and s ∈ S2m−1 that satisfy sj = 1, we define a quantity p(s, j) ≥ 1 in the following way. Consider
the consecutive run of 1s in s to which j belongs, and let i1(s, j) and i2(s, j) be the first and last indices of this run,
respectively. Formally,

i1(s, j)
def= max

{
i ∈ {..., j − 2, j − 1} : si = 0

}+ 1 and i2(s, j)
def= min

{
i ∈ {j + 1, j + 2, . . .} : si = 0

}− 1. (18)

With this notation, write

p(s, j)
def= 4m

2m + i1(s, j) + i2(s, j) − 2j
. (19)

Lemma 2.3. For every T1, . . . , T2m−1 ∈ MN(R),∥∥U(T1 + Eπ)U(T2 + Eπ) · · ·U(T2m−1 + Eπ)u
∥∥

L1(π)
≤ ‖u‖2m

L2m(π)

∑
s∈S2m−1

∏
j∈[2m−1]

sj =1

‖Tj‖Lp(s,j)(π)→Lp(s,j)(π). (20)

Proof. For each j ∈ [2m − 1], write Tj,0 = Eπ and Tj,1 = Tj . Observe that

∀s ∈ {0,1}2m−1
� S2m−1, UT1,s1UT2,s2 · · ·UT2m−1,s2m−1u = 0. (21)

Indeed, if s ∈ {0,1}2m−1
� S2m−1, then either s2m−1 = 0, in which case T2m−1,s2m−1u = Eπu = 0 ∈ R

N , or sj = sj+1 = 0
for some j ∈ [2m − 2], in which case Tj,sj UTj+1,sj+1 = EπUEπ = 0 ∈ MN(R), where both identities are equivalent to

the assumption
∑N

i=1 πiui = 0. Now,

∥∥U(T1 + Eπ)U(T2 + Eπ) · · ·U(T2m−1 + Eπ)u
∥∥

L1(π)
=
∥∥∥∥ ∑

s∈{0,1}2m−1

UT1,s1UT2,s2 · · ·UT2m−1,s2m−1u

∥∥∥∥
L1(π)

≤
∑

s∈{0,1}2m−1

‖UT1,s1UT2,s2 · · ·UT2m−1,s2m−1u‖L1(π)

(21)=
∑

s∈S2m−1

‖UT1,s1UT2,s2 · · ·UT2m−1,s2m−1u‖L1(π). (22)

Fix s ∈ S2m−1 and let 1 ≤ r1 < r2 < · · · < r� < 2m−1 be all of the indices at which s vanishes. Define R1, . . . ,R�+1 ∈
MN(R) by setting

R1
def= (UT1)(UT2) · · · (UTr1−1), R�+1

def= (UTr�+1)(UTr�+2) · · · (UT2m−1),

and

Rκ
def= (UTrκ−1+1)(UTrκ−1+2) · · · (UTrκ−1)
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for κ ∈ {2, . . . , �}. Using the fact that UEπv = (
∑N

i=1 πivi)u for every v ∈R
N , we have the following identity.

UT1,s1UT2,s2 · · ·UT2m−1,s2m−1u = R1(UEπ)R2(UEπ)R3 · · · (UEπ)R�+1u =
(

�+1∏
κ=2

N∑
i=1

πi(Rκu)i

)
R1u.

Consequently,

‖UT1,s1UT2,s2 · · ·UT2m−1,s2m−1u‖L1(π) = ‖R1u‖L1(π)

�+1∏
κ=2

∣∣∣∣∣
N∑

i=1

πi(Rκu)i

∣∣∣∣∣≤
�+1∏
κ=1

‖Rκu‖L1(π). (23)

Next, by Lemma 2.2 with q = 2m and k = r1 − 1 we have

‖R1u‖L1(π) = ∥∥(UT1)(UT2) · · · (UTr1−1)u
∥∥

L1(π)

≤ ‖u‖r1
L2m(π)

r1−1∏
j=1

‖Tj‖L 4m
2m+r1−2j

(π)→L 4m
2m+r1−2j

(π)

(19)= ‖u‖r1
L2m(π)

r1−1∏
j=1

‖Tj‖Lp(s,j)(π)→Lp(s,j)(π).

In the same vein, for every k ∈ {2, . . . , �},

‖Rκu‖L1(π) ≤ ‖u‖rκ−rκ−1
L2m(π)

rκ−1∏
j=rκ−1+1

‖Tj‖Lp(s,j)(π)→Lp(s,j)(π),

and also

‖R�+1u‖L1(π) ≤ ‖u‖2m−r�
L2m(π)

2m−1∏
j=r�+1

‖Tj‖Lp(s,j)(π)→Lp(s,j)(π).

We therefore have

�+1∏
κ=1

‖Rκu‖L1(π) ≤ ‖u‖2m
L2m(π)

∏
j∈[2m−1]

sj =1

‖Tj‖Lp(s,j)(π)→Lp(s,j)(π). (24)

By substituting (24) into (23) and then substituting the resulting estimate into (22), we arrive at (20). �

In light of Lemma 2.1, the following lemma is highly relevant to our goal of proving Theorem 1.1.

Lemma 2.4. Suppose that m ∈ N satisfies em ≤ n(1 − λ). Then,

( ∑
v0,...,v2m−1∈N∪{0}
v0+···+v2m−1≤n−1

∥∥UAv1UAv2 · · ·UAv2m−1u
∥∥

L1(π)

) 1
2m

�
√

n/m√
1 − λ

‖u‖L2m(π). (25)

Proof. Fix v0, . . . , v2m−1 ∈N∪ {0} and denote Tj = Avj − Eπ for every j ∈ {0, . . . ,2m − 1}. Then,∥∥UAv1UAv2 · · ·UAv2m−1u
∥∥

L1(π)
= ∥∥U(T1 + Eπ)U(T2 + Eπ) · · ·U(T2m−1 + Eπ)u

∥∥
L1(π)

≤ ‖u‖2m
L2m(π)

∑
s∈S2m−1

∏
j∈[2m−1]

sj =1

‖Tj‖Lp(s,j)(π)→Lp(s,j)(π), (26)

where the last step of (26) is an application of Lemma 2.3.
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Fixing j ∈ {0, . . . ,2m − 1}, note that AEπ = Eπ since A is stochastic and the columns of Eπ are constant, and also
EπA = Eπ since A is π -stationary. Consequently Tj = Avj − Eπ = (A − Eπ)vj . So, for every p ≥ 1,

‖Tj‖Lp(π)→Lp(π) = ∥∥(A − Eπ)vj
∥∥

Lp(π)→Lp(π)
≤ ‖A − Eπ‖vj

Lp(π)→Lp(π). (27)

By definition, ‖A − Eπ‖L2(π)→L2(π) = λ. As A and Eπ are averaging operators, by convexity and the triangle inequal-
ity ‖A − Eπ‖Lr(π)→Lr(π) ≤ ‖A‖Lr(π)→Lr (π) + ‖Eπ‖Lr(π)→Lr(π) = 2 for all r ≥ 1. By the Riesz–Thorin interpolation
theorem [22,23] (see e.g. Chapter IV in the textbook [13]), this implies that

‖A − Eπ‖Lp(π)→Lp(π) ≤ 2λ
2 min{ 1

p
,1− 1

p
}
. (28)

A substitution of (28) into (27), followed by a substitution of the resulting bound into (26) shows that in order to prove
the desired inequality (25) it suffices to establish the following estimate.

( ∑
s∈S2m−1

∑
v0,...,v2m−1∈N∪{0}
v0+···+v2m−1≤n−1

∏
j∈[2m−1]

sj =1

λβ(s,j)vj

) 1
m

� n

m(1 − λ)
, (29)

where for every s ∈ S2m−1 and j ∈ [2m − 1] such that sj = 1, we denote

β(s, j)
def= 2 min

{
1

p(s, j)
,1 − 1

p(s, j)

}
(19)= 1 − |i1(s, j) + i2(s, j) − 2j |

2m
. (30)

Fix some s ∈ S2m−1. Denote Q0 = {j ∈ [2m − 1] : sj = 0} and Q1 = [2m − 1]�Q0. Thus |Q0| + |Q1| = 2m − 1 and
by the definition of S2m−1 we have |Q1| ≥ m. With this notation, we have the following bound.∑

v0,...,v2m−1∈N∪{0}
v0+···+v2m−1≤n−1

∏
j∈[2m−1]

sj =1

λβ(s,j)vj

=
∑

(vi )i∈{0}∪Q0∈(N∪{0}){0}∪Q0∑
i∈{0}∪Q0

vi≤n−1

∑
(vj )j∈Q1∈(N∪{0})Q1∑

j∈Q1
vj ≤n−1−∑i∈{0}∪Q0

vi

∏
j∈Q1

λβ(s,j)vj

≤
∣∣∣∣
{
(vi)i∈{0}∪Q0 ∈ (N∪ {0}){0}∪Q0 :

∑
i∈{0}∪Q0

vi ≤ n − 1

}∣∣∣∣ · ∑
(vj )j∈Q1∈(N∪{0})Q1

∏
j∈Q1

λβ(s,j)vj

=
n−1∑
�=0

(|Q0| + �

|Q0|
) ∏

j∈Q1

∞∑
i=0

λβ(s,j)i

=
(|Q0| + n

|Q0| + 1

) ∏
j∈Q1

1

1 − λβ(s,j)
.

By the elementary inequality 1 − λβ ≥ β(1 − λ), which holds for every λ,β ∈ [0,1], it follows from this that

∑
v0,...,v2m−1∈N∪{0}
v0+···+v2m−1≤n−1

∏
j∈[2m−1]

sj =1

λβ(s,j)vj ≤ 1

(1 − λ)|Q1|

(|Q0| + n

|Q0| + 1

) ∏
j∈Q1

1

β(s, j)

= (1 − λ)|Q0|+1

(1 − λ)2m

(|Q0| + n

|Q0| + 1

) ∏
j∈Q1

1

β(s, j)

� eO(m)

(1 − λ)2m

(
(1 − λ)n

|Q0| + 1

)|Q0|+1 ∏
j∈Q1

1

β(s, j)
, (31)

where the last step follows from a straightforward application of Stirling’s formula. Consider the function ψ : [0,∞) →
[0,∞) that is given by ψ(z) = ((1 − λ)n/z)z. Then (logψ(z))′ = log((1 − λ)n/(ez)). Hence, ψ is increasing on the
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interval [0, (1 − λ)n/e]. But |Q0| + 1 = 2m − |Q1| ≤ m ≤ (1 − λ)n/e, by the assumption on m in the statement of
Lemma 2.4. Hence ψ(|Q0| + 1) ≤ ψ(m), and therefore

1

(1 − λ)2m

(
(1 − λ)n

|Q0| + 1

)|Q0|+1

= ψ(|Q0| + 1)

(1 − λ)2m
≤ ψ(m)

(1 − λ)2m
= (n/m)m

(1 − λ)m
. (32)

We will show next that

∏
j∈Q1

1

β(s, j)

(30)=
∏

j∈Q1

(
1 − |i1(s, j) + i2(s, j) − 2j |

2m

)−1

≤ eO(m). (33)

In combination with (31) and (32), this would imply the desired inequality (29) because |S2m−1| ≤ eO(m).
For each j ∈ Q1 with i2(s, j) − i1(s, j) ≤ 3m

2 (i.e., the consecutive run of 1s in s to which j belongs is of length at
most 1 + 3m

2 ), we have |i1(s, j) + i2(s, j) − 2j | ≤ 3m
2 and therefore its contribution to the product in (33) is at most 4.

So, (33) holds if there are no runs of 1s in s of length greater than 3m
2 . Otherwise, there is exactly one run of 1s in s of

length d > 3m
2 , and its contribution to the product in (33) equals

� d−1
2 �∏

i=0

(
2m

2m − d + 1 + 2i

)2

≤
2� d−1

2 �∏
i=0

2m

2m − d + 1 + i
≤

2m∏
k=2

2m

k
= (2m)2m−1

(2m)! ≤ eO(m),

where the last step follows from Stirling’s formula. This proves our goal (33). �

Completion of the proof of Theorem 1.1. By the triangle inequality in Lq (and stationarity) we have

(
E
[∣∣f (W1) + · · · + f (Wn)

∣∣q]) 1
q ≤ (

E
[∣∣f (W1)

∣∣q]) 1
q + · · · + (

E
[∣∣f (Wn)

∣∣q]) 1
q = n

(
E
[∣∣f (W1)

∣∣q]) 1
q .

This bound implies the desired estimate (1) when q � (1 −λ)n, so we may assume from now on that q ≤ (1 −λ)n/e. Let
m ∈ N be the largest integer such that 2m ≤ q . Then, m,m + 1 ≤ q ≤ (1 − λ)n/e, so the conclusion of Lemma 2.4 holds
for both m and m + 1. By Lemma 2.1 (and Stirling’s formula), this gives

(
E
[(

f (W1) + · · · + f (Wn)
)2m]) 1

2m �
√

nm

1 − λ

(
E
[∣∣f (W1)

∣∣2m]) 1
2m ≤

√
nq

1 − λ

(
E
[∣∣f (W1)

∣∣2m]) 1
2m ,

and similarly

(
E
[(

f (W1) + · · · + f (Wn)
)2(m+1)]) 1

2(m+1) �
√

nq

1 − λ

(
E
[∣∣f (W1)

∣∣2(m+1)]) 1
2(m+1) .

As in (14), it follows from these bounds (which we derived under the assumption E[f (W1)] = 0) that the norm of
the operator TR that is given in (7) is bounded by a universal constant multiple of

√
q/((1 − λ)n) both from L2m(π) to

L2m(π) and from L2(m+1)(π) to L2(m+1)(π). Since 2m ≤ q ≤ 2(m+1), another application of the Riesz–Thorin theorem
gives that the norm of TR from Lq(π) to Lq(π) is also bounded by a universal constant multiple of

√
q/((1 − λ)n). This

is precisely the desired bound (1). �
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