Open Access
May 2020 Parabolic Anderson model with a fractional Gaussian noise that is rough in time
Xia Chen
Ann. Inst. H. Poincaré Probab. Statist. 56(2): 792-825 (May 2020). DOI: 10.1214/19-AIHP983

Abstract

This paper concerns the parabolic Anderson equation \begin{equation*}\frac{\partial u}{\partial t}=\frac{1}{2}\Delta u+u\frac{\partial^{d+1}W^{\mathbf{H}}}{\partial t\,\partial x_{1}\cdots \,\partial x_{d}} \end{equation*} generated by a $(d+1)$-dimensional fractional noise with the Hurst parameter $\mathbf{H}=(H_{0},H_{1},\ldots ,H_{d})$ with special interest in the setting that some of $H_{0},\ldots ,H_{d}$ are less than half. In the recent work (Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019) 941–976), the case of the spatial roughness has been investigated. To put the last piece of the puzzle in place, this work investigates the case when $H_{0}<1/2$ with the concern on solvability, Feynman–Kac’s moment formula and intermittency of the system.

Cet article concerne l’équation d’Anderson parabolique \begin{equation*}\frac{\partial u}{\partial t}=\frac{1}{2}\Delta u+u\frac{\partial^{d+1}W^{\mathbf{H}}}{\partial t\,\partial x_{1}\cdots \,\partial x_{d}} \end{equation*} engendrée par un bruit fractionnaire de dimension $d+1$ avec un paramètre de Hurst $\mathbf{H}=(H_{0},H_{1},\ldots ,H_{d})$, en portant une attention particulière au cas où certains des paramètres $H_{0},\ldots ,H_{d}$ sont inférieurs à $1/2$. Le cas rugueux en espace avait fait l’objet du travail récent (Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019) 941–976). Pour mettre en place la dernière pièce du puzzle, cet article examine le cas $H_{0}<1/2$ en se penchant sur les problèmes de résolution, de la formule des moments de Feynman–Kac et de l’intermittence du système.

Citation

Download Citation

Xia Chen. "Parabolic Anderson model with a fractional Gaussian noise that is rough in time." Ann. Inst. H. Poincaré Probab. Statist. 56 (2) 792 - 825, May 2020. https://doi.org/10.1214/19-AIHP983

Information

Received: 20 August 2018; Revised: 8 March 2019; Accepted: 21 March 2019; Published: May 2020
First available in Project Euclid: 16 March 2020

zbMATH: 07199880
MathSciNet: MR4076766
Digital Object Identifier: 10.1214/19-AIHP983

Subjects:
Primary: 60F10 , 60H15 , 60H40 , 60J65 , 81U10

Keywords: Brownian motion , Dalang’s condition , Feynman–Kac’s representation , Fractional , Moment asymptotics , Parabolic Anderson equation , Rough and critical Gaussian noises

Rights: Copyright © 2020 Institut Henri Poincaré

Vol.56 • No. 2 • May 2020
Back to Top