Abstract
Pólya trees form a popular class of prior distributions used in Bayesian nonparametrics. For some choice of parameters, Pólya trees are prior distributions on density functions. In this paper we carry out a frequentist analysis of the induced posterior distributions in the density estimation model. We investigate the contraction rate of Pólya tree posterior densities in terms of the supremum loss and study the limiting shape distribution. A nonparametric Bernstein–von Mises theorem is established, as well as a Bayesian Donsker theorem for the posterior cumulative distribution function.
Les arbres de Pólya constituent une classe de lois a priori très utilisée en bayésien non-paramétrique. Pour certains choix de paramètres, les arbres de Pólya induisent des lois à densité. Nous menons une analyse fréquentiste des lois a posteriori bayésiennes correspondantes dans le modèle d’estimation de densité. La concentration a posteriori des densités–arbre de Pólya est étudiée en terme de la norme–sup et nous déterminons la loi a posteriori limite après renormalisation. Un théorème de Bernstein–von Mises non-paramétrique est établi, ainsi qu’un théorème de Donsker bayésien pour la fonction de répartition a posteriori.
Citation
Ismaël Castillo. "Pólya tree posterior distributions on densities." Ann. Inst. H. Poincaré Probab. Statist. 53 (4) 2074 - 2102, November 2017. https://doi.org/10.1214/16-AIHP784
Information