Translator Disclaimer
August 2017 The simple exclusion process on the circle has a diffusive cutoff window
Hubert Lacoin
Ann. Inst. H. Poincaré Probab. Statist. 53(3): 1402-1437 (August 2017). DOI: 10.1214/16-AIHP759

Abstract

In this paper, we investigate the mixing time of the simple exclusion process on the circle with $N$ sites, with a number of particle $k(N)$ tending to infinity, both from the worst initial condition and from a typical initial condition. We show that the worst-case mixing time is asymptotically equivalent to $(8\pi^{2})^{-1}N^{2}\log k$, while the cutoff window is identified to be $N^{2}$. Starting from a typical condition, we show that there is no cutoff and that the mixing time is of order $N^{2}$.

Nous analysons temps de mélange pour le processus d’exclusion simple sur un cercle de $N$ sommets, avec un nombre de particules $k(N)$ qui tend vers l’infini avec $N$, et partant de la pire configuration initiale possible. Nous étudions également le cas d’une configuration initiale typique. Nous montrons que le temps de mélange est asymptotiquement équivalent $(8\pi^{2})^{-1}N^{2}\log k$, pour la pire condition initiale, et que la fenêtre de cutoff est d’ordre $N^{2}$. Dans le cas d’une condition initiale typique nous montrons qu’il n’y a pas de cutoff et que le temps de mélange est d’ordre $N^{2}$.

Citation

Download Citation

Hubert Lacoin. "The simple exclusion process on the circle has a diffusive cutoff window." Ann. Inst. H. Poincaré Probab. Statist. 53 (3) 1402 - 1437, August 2017. https://doi.org/10.1214/16-AIHP759

Information

Received: 4 January 2016; Revised: 6 April 2016; Accepted: 14 April 2016; Published: August 2017
First available in Project Euclid: 21 July 2017

zbMATH: 1379.82023
MathSciNet: MR3689972
Digital Object Identifier: 10.1214/16-AIHP759

Subjects:
Primary: 60K37, 82B44, 82D60

Rights: Copyright © 2017 Institut Henri Poincaré

JOURNAL ARTICLE
36 PAGES


SHARE
Vol.53 • No. 3 • August 2017
Back to Top