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Abstract. We study the model of random permutations of n objects with polynomially growing cycle weights, which was recently
considered by Ercolani and Ueltschi, among others. Using saddle-point analysis, we prove that the total variation distance between
the process which counts the cycles of size 1,2, . . . , b and a process (Z1,Z2, . . . ,Zb) of independent Poisson random variables
converges to 0 if and only if b = o(�) where � denotes the length of a typical cycle in this model. By means of this result, we prove
a central limit theorem for the order of a permutation and thus extend the Erdős–Turán law to this measure. Furthermore, we prove
a Brownian motion limit theorem for the small cycles.

Résumé. Nous nous intéressons à un modèle de permutations aléatoires de n éléments, avec des poids polynomiaux en les lon-
gueurs des cycles, qui a été étudié notamment par Ercolani et Ueltschi. En utilisant l’analyse des points selles des transformées de
Fourier, nous montrons que la distance en variation totale entre la suite des nombres de cycles de tailles 1,2, . . . , b et une certaine
suite (Z1,Z2, . . . ,Zb) de variables de Poisson indépendantes, converge vers 0 quand n → ∞ si et seulement si b = o(�), où �

désigne la longueur d’un cycle typique de ce modèle. À l’aide de ce résultat, nous établissons ensuite un théorème central limite
pour l’ordre de la permutation, étendant ainsi la loi d’Erdős–Turán. Enfin, nous démontrons le caractère brownien pour la limite
des petits cycles.
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1. Introduction

Denote by Sn the permutation group on n objects. For a permutation σ ∈ Sn the order On = On(σ) is the smallest
integer k such that the k-fold application of σ to itself gives the identity. Landau [20] proved in 1909 that the maximum
of the order of all σ ∈Sn satisfies, for n → ∞, the asymptotic

max
σ∈Sn

(
log(On)

) ∼ √
n log(n). (1.1)

On the other hand, On(σ) can be computed as the least common multiple of the cycle length of σ . Thus, if σ is
a permutation that consists of only one cycle of length n, then log(On(σ )) = log(n), and (n − 1)! of all n! possible
permutations share this property. Considering these two extremal types of behavior, a famous result of Erdős and
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Turán [14] seems even more remarkable: they showed in 1965 that, choosing σ with respect to the uniform measure,
a Normal limit law

log(On) − (1/2) log2(n)√
(1/3) log3(n)

d−→ N (0,1) (1.2)

is satisfied as n → ∞.
Several authors gave probabilistic proofs of this result, among them those of Best [8] (1970), DeLaurentis and Pittel

[12] (1985), whose proof is based on a functional central limit theorem for the cycle counts, and Arratia and Tavaré
[6] (1992), who use the Feller coupling. This result was also extended to the Ewens measure and to A-permutations,
see for instance [6] and [28].

In this paper we extend the Erdős–Turán law to random permutations chosen according to a generalized weighted
measure with polynomially growing cycle weights, see Theorem 1.3. One of our motivations is to find weights such
that the order of a typical permutation with respect to this measure comes close to the maximum as in Landau’s result.

To define the generalized weighted measure, denote by Cm = Cm(σ) the number of cycles of length m in the
decomposition of the permutation σ as a product of disjoint cycles. The functions C1, C2, . . . are random variables
on Sn and we will call them cycle counts.

Definition 1.1. Let Θ = (θm)m≥1 be given with θm ≥ 0 for every m ≥ 1. We then define for σ ∈Sn

P
n
Θ [σ ] := 1

hnn!
n∏

m=1

θCm
m (1.3)

with hn = hn(Θ) a normalization constant and h0 := 1. If n is clear from the context, we will just write PΘ instead of
P

n
Θ .

Notice that special cases of this measure are the uniform measure (θm ≡ 1) and the Ewens measure (θm ≡ θ ).
These families of probability measures with weights depending on the length of the cycle recently appeared in

particular in the work of Betz, Ueltschi and Velenik [9] and Erconali and Ueltschi [13]. They studied a model of the
quantum gas in statistical mechanics and the parameters θm may depend on the density, the temperature or the particle
interaction and thus their structure might be complicated.

Subsequently, several properties of permutations have been studied under this measure by many authors and for
different classes of parameters, see for instance [17,22–26]. In this paper, the large n statistics of log(On) are con-
sidered for polynomially growing parameters Θ = (θm)m≥1 with θm = mγ , γ > 0. Only few results are known for
these parameters. Ercolani and Ueltschi [13] show that under this measure, a typical cycle has length of order n1/(1+γ )

and that the total number of cycles has order nγ/(1+γ ). They also prove that the component process converges in
distribution to mutually independent Poisson random variables Zm:(

Cn
1 ,Cn

2 , . . .
) d−→ (Z1,Z2, . . .), as n → ∞. (1.4)

For many purposes this convergence is not strong enough, since it only involves the convergence of the vectors
(Cn

1 ,Cn
2 , . . . ,Cn

b ) for fixed b. However, many natural properties of the component process jointly depend on all com-
ponents, including the large ones, even though their contribution is less relevant. Thus, estimates are needed where
b and n grow simultaneously. The quality of the approximation can conveniently be described in terms of the total
variation distance. For all 1 ≤ b ≤ n denote by db(n) the total variation distance

db(n) := dTV
(
L

(
Cn

1 ,Cn
2 , . . . ,Cn

b

)
,L(Z1,Z2, . . . ,Zb)

)
. (1.5)

For the uniform measure, where the Zm are independent Poisson random variables with mean 1/m, it was proved in
1990 by Barbour [7] that db(n) ≤ 2b/n. This bound may be improved significantly. In 1992 Arratia and Tavaré [6]
showed that

db(n) → 0 if and only if b = o(n). (1.6)
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In particular, if b = o(n), then db(n) → 0 superexponentially fast relative to n/b. The extension of these results to the
Ewens measure is straightforward (here each Zm has mean ϑ/m), but superexponential decay of db(n) is only attained
for ϑ = 1. For parameters ϑ 	= 1 we have db(n) = O(b/n), see Arratia et al. [4, Theorem 6]. For the uniform and the
Ewens measure, the Feller coupling is used to study db(n). When considering random permutations with respect to the
weighted measure PΘ , the Feller coupling is not available because of a lack of compatibility between the dimensions.
Another approach is needed and it will turn out that for θm = mγ the saddle point method is the right one to choose.
We will prove in Section 3 that for appropriately chosen Poisson random variables Zm the following holds:

Theorem 1.2. Let db(n) be defined as in (1.5) and assume θm = mγ ,γ > 0. Then, as n → ∞,

db(n) → 0 if and only if b = o
(
n1/(1+γ )

)
. (1.7)

Furthermore, if b = o(n1/(1+γ )), then db(n) = O(b2+γ n−(2+γ )/(1+γ ) + b−γ /6 + n−γ /(1+γ )).

For the Ewens measure several applications demonstrating the power of (1.6) are available. Estimates like these
unify and simplify proofs of limit theorems for a variety of functionals of the cycle counts, such as a Brownian motion
limit theorem for cycle counts and the Erdős–Turán law for the order of a permutation (see (1.2)), among others; see
[5] for a detailed account. The basic strategy is as follows. First, choose an appropriate b → ∞ and show that the
contribution of the cycles of size bigger than b is negligible. Second, approximate the distribution of the cycles of size
at most b by the independent limiting process, the error being controlled by the bound on the total variation distance.

Comparing (1.6) and (1.7) we notice that for polynomially growing parameters, the cycle counts exhibit a more
dependent structure. An intuitive explanation is the following. In the Ewens case, a typical cycle has length of order n,
and the numbers of cycles of length o(n) are asymptotically independent of each other. For polynomially growing
parameters θm = mγ , a typical cycle has length of order n1/(1+γ ) (see [13, Theorem 5.1]), providing an intuitive
justification for the bound on b in (1.7).

The condition b = o(n1/(1+γ )) in Theorem 1.2 is much more restrictive than the condition b = o(n) for the Ewens
measure. Thus, the study of random variables involving almost all cycle counts Cm is more difficult for weights
θm = mγ ,γ > 0. The reason is that in many cases the cycles with length longer than n1/(1+γ ) have a non-negligible
contribution (see also Remark 4.3). However, in Section 4.2 we will show that (1.7) is useful to prove an analogue of
the Erdős–Turán law (1.2) for our setting. We will prove:

Theorem 1.3. Assume θm = mγ with 0 < γ < 1. Then, as n → ∞,

log(On) − G(n)√
F(n)

d−→ N (0,1),

where N (0,1) denotes the standard Gaussian distribution and

F(n) = K(γ )

(1 + γ )3
nγ/(1+γ ) log2(n),

G(n) = K(γ )

1 + γ
nγ/(1+γ ) log(n) + nγ/(1+γ )H(γ ) with

H(γ ) = K(γ )

(
�′(γ )

�(γ )
− log(�(1 + γ ))

1 + γ

)
;

here �′ denotes the derivative of the gamma function and

K(γ ) = �(γ )�(1 + γ )−γ /(1+γ ).

In particular, notice that for 0 < γ < 1 there exists constants c,C > 0 such that

cnγ/(1+γ ) log(n) ≤ EΘ

[
log(On)

] ≤ Cnγ/(1+γ ) log(n).
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Thus, for our choice of parameters the mean of log(On) is in fact very close to Landau’s result (1.1). Unfortunately, our
approach does not work for γ ≥ 1, see Remark 4.5, and thus the behavior in this situation is currently unknown. We
only have been able to show for γ ≥ 1 with the current methods that EΘ [log(On)] ≥ k(γ )n1/2 with some k(γ ) > 0.
However, we believe that a version of the Erdős–Turán law is still valid in this situation.

Furthermore, though the bound in (1.7) is too small to investigate the whole cycle count process via the independent
Poisson process, we will present in Section 4.3 how (1.7) may be used to study the small components by proving a
functional version of the Erdős–Turán law. For x > 0 define x∗ := 
xnγ/(1+γ )� and

Bn(x) := log(Ox∗) − (1/(1 + γ ))xγ log(n)nγ 2/(1+γ )√
(γ /(1 + γ )2) log2(n)nγ 2/(1+γ )

, (1.8)

where Ox∗(σ ) := lcm{m ≤ x∗;Cm > 0}. We will prove the following:

Theorem 1.4. Assume θm = mγ with 0 < γ < 1, take Bn(x) as in (1.8) and denote by W a standard Brownian
motion. Then, as n → ∞ and for x > 0, Bn(x) converges weakly to W(xγ ).

Apart from the behavior of the small cycle counts and the Erdős–Turán law, it might be interesting to study further
properties of log(On). We refer the reader to [27] for more results on the order of random permutations with poly-
nomially growing cycle weights, such as large deviation estimates and local limit theorems, that are new even for the
Ewens measure.

2. Generalities

We present in this section some facts about the symmetric group Sn, partitions and generating functions. In particular,
two useful lemmas, which identify averages over Sn with generating functions, are recalled. We give only a short
overview and refer to [1,2] and [21] for more details. At the end of this section we present some basic facts about the
saddle-point method, which is the main tool we will apply to get our results.

2.1. The symmetric group

All probability measures and functions considered in this paper are invariant under conjugation and it is well known
that the conjugation classes of Sn can be parametrized with partitions of n. This can be seen as follows: Let σ ∈ Sn

be an arbitrary permutation and write σ = σ1 · · ·σ� with σi disjoint cycles of length λi . Since disjoint cycles commute,
we can assume that λ1 ≥ λ2 ≥ · · · ≥ λ�. We call the partition λ = (λ1, λ2, . . . , λ�) the cycle-type of σ and � = �(λ) its
length. Then two elements σ, τ ∈ Sn are conjugate if and only if σ and τ have the same cycle-type. Further details
can be found for instance in [21]. For σ ∈ Sn with cycle-type λ we define Cm, the number of cycles of size m, that is

Cm := #{i;λi = m}. (2.1)

Recall that u is a class function when it satisfies u(σ) = u(τ−1στ) for all σ, τ ∈ Sn. It will turn out that all expecta-
tions of interest have the form 1

n!
∑

σ∈Sn
u(σ ) for a certain class function u. Since u is constant on conjugacy classes,

it is more natural to sum over all conjugacy classes. This is the subject of the following lemma.

Lemma 2.1. Let u : Sn → C be a class function, Cm be as in (2.1) and Cλ the conjugacy class corresponding to the
partition λ. We then have

1

n!
∑

σ∈Sn

u(σ ) =
∑
λ�n

1

zλ

u(Cλ)

with zλ := ∏n
m=1 mCmCm! and

∑
λ�n the sum over all partitions of n.
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2.2. Generating functions

Given a sequence (an)n∈N of numbers, one can encode important information about this sequence into a formal power
series called the generating series.

Definition 2.2. Let (an)n∈N be a sequence of complex numbers. We then define the generating function of (an)n∈N as
the formal power series

G(t) = G(an, t) =
∞∑

n=0

ant
n.

We define [tn][G(t)] to be the coefficient of tn of G(t), that is[
tn

][
G(t)

] := an.

The reason why generating functions are powerful is the possibility of recognizing them without knowing the
coefficients an explicitly. In this case one can try to use tools from analysis to extract information about an, for large
n, from the generating function.

The following lemma goes back to Pólya and is sometimes called cycle index theorem. It links generating functions
and averages over Sn.

Lemma 2.3. Let (am)m∈N be a sequence of complex numbers. Then

∞∑
n=0

tn

n!
∑

σ∈Sn

∞∏
m=1

aCm
m =

∑
λ

1

zλ

( ∞∏
m=1

(
amtm

)Cm

)
= exp

( ∞∑
m=1

am

m
tm

)

with the same zλ as in Lemma 2.1. If one of the sums above is absolutely convergent then so are the others.

Proof. The proof can be found in [21] or can be directly verified using the definitions of zλ and the exponential
function. The last statement follows from the dominated convergence theorem. �

The previous lemma implies:

Corollary 2.4. Define the generating function

gΘ(t) :=
∞∑

m=1

θm

m
tm,

and let hn be as in Definition 1.1. Then the following holds

∞∑
n=0

hnt
n = exp

(
gΘ(t)

)
. (2.2)

Proof. This follows immediately from the definition of hn in (1.3) together with Lemma 2.3. �

The generating function (2.2) yields expressions for the factorial moments of the cycle counts.

Lemma 2.5. We have for all m,k ∈N,

EΘ

[
(Cm)k

] =
(

θm

m

)k
hn−mk

hn

,
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where (c)k := c(c − 1) · · · (c − k + 1) denotes the Pochhammer symbol. Furthermore, for m1 	= m2,

EΘ [Cm1Cm2] = θm1

m1

θm2

m2

hn−m1−m2

hn

.

Proof. Recall Lemma 2.3 and set am = θm, then differentiate the sum k times with respect to θm and obtain

∞∑
n=0

hnEΘ

[
(Cm)k

]
tn =

∞∑
n=0

tn

n!
∑

σ∈Sn

(Cm)k

∞∏
m=1

θCm
m =

(
θm

m
tm

)k

exp
(
gΘ(t)

)
. (2.3)

Taking [tn][·] on the left- and right-hand side completes the proof of the first assertion in Lemma 2.5. The proof of
the second assertion is similar and we thus omit it. �

Remark 2.6. It is now easy to see that under the mild condition hn−1
hn

→ r the convergence (1.4) holds with EΘ [Zm] =
θm

m
rm; see for instance [13].

Typically, Lemma 2.5 is used in cases where one can express the quantity of interest in terms of the factorial
moments of Cm. However, in our case it proves simpler to take a different approach, which was in particular applied
by Hansen [16].

Assume for t > 0 that GΘ(t) := exp(gΘ(t)) < ∞ with gΘ(t) as in Corollary 2.4. Then set

Ωt :=
⋃̇
n∈N

Sn

and define for σ ∈Sn

P
t
Θ [σ ] := 1

GΘ(t)

tn

n!
n∏

m=1

θCm
m .

Lemma 2.3 shows that Pt
Θ defines a probability measure on Ωt . Furthermore, the Cm are independent and Poisson

distributed with E
t
Θ [Cm] = θm

m
tm. This follows easily with a calculation similar to the proof of Lemma 2.5. The

following conditioning relation holds:

P
t
Θ [·|Sn] = P

n
Θ [·]. (2.4)

We also have

P
t
Θ [Sn] = tnhn exp

(−gΘ(t)
)
,

which follows immediately from the definition of hn in (1.3). Then the law of total probability yields:

Lemma 2.7. Let t > 0 be given so that GΘ(t) < 0. Suppose that Ψ : Ωt → C is a random variable with E
t
Θ [|Ψ |] < ∞

and that Ψ only depends on the cycle counts, i.e. Ψ = Ψ (C1,C2, . . .). We then have with Ψn := Ψ |Sn

exp
(
gΘ(t)

)
E

t
Θ [Ψ ] =

∞∑
n=1

hnE
n
Θ [Ψn]tn + Ψ (0).

The previous equation is stated only for fixed t , but if both sides are complex analytic functions in t , then the
equation is also valid as formal power series. If one chooses for instance Ψ = (Cm)k , one gets Et

Θ [Ψ ] = (θm/m)ktmk

and thus obtains (2.3).
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In Section 3 we will compare the distribution of the cycle counts Cm under Pn
Θ and under Pt

Θ . To avoid confusion,
we will write Zm instead of Cm if we consider the measure P

t
Θ . Then the Zm are independent Poisson random

variables with mean θm

m
tm. Notice that (2.4) implies the so-called Conditioning Relation

L
(
(C1, . . . ,Cn)

) = L
(

(Z1, . . . ,Zn)

∣∣∣∣ n∑
k=1

kZk = n

)
. (2.5)

This important relation is necessary for the proof of Theorem 1.2.
To demonstrate how to further use the randomization method, let us compute the generating series of a functional

of the cycle counts that we will need in Section 4. Define on Sn

log(Yn) :=
n∑

m=1

Cm log(m).

We then have on Ωt with the above convention

log(Yn) =
n∑

m=1

Zm log(m).

Since Z1,Z2, . . . ,Zn are independent Poisson random variables with respective parameters θm

m
tm, we obtain

E
t
Θ

[
es log(Yn)

] = E
t
Θ

[
es

∑n
m=1 Zm log(m)

] = exp

(
n∑

m=1

θm

m
tm

(
es log(m) − 1

))

and then Lemma 2.7 yields

∞∑
n=0

hnEΘ

[
exp

(
s log(Yn)

)]
tn = exp

( ∞∑
m=1

θm

m1−s
tm

)
. (2.6)

2.3. Saddle point analysis

The asymptotic behavior of random variables on the symmetric group Sn strongly depends on the analytic properties
of gΘ as defined in Corrolary 2.4. Thus, the appropriate method for studying generating functions involving gΘ

depends on the parameters θm.
For our choice θm = mγ , the function gΘ belongs to the class of so-called log-admissible functions as defined

in [24, Definition 2.1]. Thus, a suitable method to investigate the behavior of functionals we are interested in is the
saddle-point method.

Consider the generating series

exp
(
g(t, s)

) =
∞∑

n=0

Gn,s t
n.

If g(t, s) is log-admissible, then the asymptotics of the coefficients Gn,s can be computed explicitly, see Lemma 2.9
below.

Definition 2.8. Let g(t) = ∑
n≥0 gnt

n be given with radius of convergence ρ > 0 and gn ≥ 0 for all n. Then g(t)

is called log-admissible if there exist functions α,β, δ : [0, ρ) → R
+ and R : [0, ρ) × (−π/2,π/2) → R

+ with the
following properties:
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Approximation: For all |φ| ≤ δ(r) the expansion

g
(
reiφ

) = g(r) + iφα(r) − φ2

2
β(r) + R(r,φ)

holds, where R(r,φ) = o(φ3δ(r)−3) as r → ρ.
Divergence: α(r) → ∞, β(r) → ∞ and δ(r) → 0 as r → ρ.
Width of convergence: We have εδ2(r)β(r) − logβ(r) → ∞ for all ε > 0 as r → ρ.
Monotonicity: Re(g(reiφ)) ≤ Re(g(re±iδ(r))) holds for all |φ| > δ(r).

In Section 4 we will need to study functions g with an additional dependence on a parameter s. In this case we will
use

Lemma 2.9. Let I ⊂ R be an interval and suppose that g(t, s) is a smooth function for s ∈ I and |t | ≤ ρ. Suppose
further that g(t, s) is log-admissible in t for all s ∈ I with associated functions αs , βs . Let further rxs be the unique
solution of αs(r) = x. If the requirements of Definition 2.8 are fulfilled uniformly in s for s bounded, then, as n → ∞,
the following asymptotic expansion holds:

Gn,s = 1√
2π

(rns)
−nβs(rns)

−1/2 exp
(
g(rns, s)

)(
1 + o(1)

)
uniformly in s for s bounded.

The proof of Lemma 2.9 is analogue to the proof of Proposition 2.2 in [24]; one simply has to verify that all
involved expression are uniform in s. This is straightforward and we thus omit the details.

Remark 2.10. It is often difficult to find the exact solution of αs(r) = x, fortunately it is enough to find rns with

αs(rns) = n + o
(√

βs(rns)
)
, (2.7)

since then the contribution of the error term is negligible in the limit.

Let us apply this method to study the asymptotic behavior of hn as defined in Definition 1.1. Recall Corollary 2.4,
which states that

hn = [
tn

]
exp

(
gΘ(t)

)
.

We have to show that gΘ is log-admissible. This will be proved in a more general way in Lemma 4.1 in Section 4.1.
Then Lemma 2.9 yields:

Corollary 2.11. Let gΘ be as in Corollary 2.4 with θm = mγ , γ > 0. Then

hn = (
2π�(2 + γ )

)−1/2
(

�(1 + γ )

n

)(2+γ )/(2(1+γ ))

× exp

(
1 + γ

γ
�(1 + γ )1/(1+γ )nγ/(1+γ ) + ζ(1 − γ )

)(
1 + o(1)

)
. (2.8)

Proof. This is a special case of the proof of Theorem 4.2 in Section 4.1. �

Remark 2.12. We will need for the proof of the rate of convergence in Theorem 1.2 a more precise asymptotic ex-
pansion for Gn,s than the one in Lemma 2.9. This can be obtained by taking into account more error terms in the
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φ-expansion of g(t, s) at t = r . Often one can indeed obtain a complete asymptotic expansion. The details are ex-
plained for instance in [15, Chapter VIII]. For us this means that if

R(r,φ) = cn(r)φ
3 + O

(
dn(r)φ

4)
then the o(1) error-term in Theorem 1.2 is

O

(
dn(rns)

βs(rns)2
+ cn(rns)

2

βs(rns)3

)
.

Applying this to hn gives

hn = (
2π�(2 + γ )

)−1/2
(

�(1 + γ )

n

)(2+γ )/(2(1+γ ))

× exp

(
1 + γ

γ
�(1 + γ )1/(1+γ )nγ/(1+γ ) + ζ(1 − γ )

)(
1 + O

(
n−γ /(1+γ )

))
. (2.9)

2.4. Asymptotics

We recall the asymptotic behavior of several functions that we will encounter frequently throughout the paper. The
upper incomplete gamma function is defined as

�(a, y) :=
∫ ∞

y

xa−1e−x dx

and satisfies for Re(a) /∈ {0,−1,−2, . . .}

�(a, y) = �(a) − 1

a
ya + Σ2(a, y), (2.10)

with

Σj(a, y) =
∞∑

k=j

(−1)k
yk−1+a

(k − 1)!(k − 1 + a)
(2.11)

and

�(a, y) = e−yya−1(1 + O(1/y)
)
, as y → ∞. (2.12)

Furthermore, the Error function is defined as

erf(x) := 2√
π

∫ x

0
e−t2

dt

and satisfies

erf(x) = 1 + O
(
x−1e−x2)

as x → ∞ (2.13)

and

erf(x) = −1 + O
(
x−1e−x2)

as x → −∞. (2.14)

Recall that the polylogarithm Lia with parameter a is defined as

Lia(t) :=
∞∑

k=1

tk

ka
.
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Its radius of convergence is 1 and as t → 1 it satisfies the following asymptotic for a /∈ {1,2, . . .} (see [15, Theorem
VI.7]):

Lia(t) ∼ �(1 − a)
(− log(t)

)a−1 +
∑
j≥0

(−1)j

j ! ξ(a − j)
(− log(t)

)j
. (2.15)

In particular, for a < 1, (2.15) implies for t → 1

Lia(t) = �(1 − a)
(− log(t)

)a−1 + ζ(a) + O(t − 1). (2.16)

Finally, recall the Euler–Maclaurin formula

b∑
j=1

f (j) =
∫ b

0
f (x)dx +

∫ b

0

(
x − 
x�)f ′(x) dx + f (b)

(
b − 
b�). (2.17)

3. Total variation distance

This section is devoted to the proof of Theorem 1.2. Recall the randomization method we considered at the end of
Section 2.2, and the independent Poisson random variables Zm with mean θm

m
tm we introduced there. Define

T�k :=
k∑

m=�+1

mZm

and recall also that the Conditioning Relation (2.5) holds. We rewrite it as

L
((

Cn
1 ,Cn

2 , . . . ,Cn
n

)) = L
(
(Z1,Z2, . . . ,Zn)|T0n = n

)
. (3.1)

Recall that we denote by db(n) the total variation distance

db(n) = dTV
(
L

(
Cn

1 ,Cn
2 , . . . ,Cn

b

)
,L(Z1,Z2, . . . ,Zb)

)
. (3.2)

We have to prove that

db(n) → 0 if and only if b = o
(
n1/(1+γ )

)
.

Given the Conditioning Relation (3.1), Lemma 1 in [5] gives a formula that reduces the total variation distance of two
vectors to the distance of two one-dimensional random variables:

db(n) = dTV
(
L(T0b),L(T0b|T0n = n)

)
. (3.3)

Then db(n) → 0 implies that conditioning on the event {T0n = n} does not change the distribution of T0b very much,
which is indeed the case when {T0n = n} is relatively likely. Recall that for uniform random permutations (1.6)
holds; in this setting, one can compute that Pt

Θ [T0n = n] is approximately n−1 for n large enough. For polynomially
growing weights, Pt

Θ [T0n = n] with t as in (3.6) is approximately n−1+γ /(2(1+γ )) for n large enough, which means
that the event {T0n = n} is even more likely. Thus, at a first glance it seems promising to compare the distributions of
(Cn

1 ,Cn
2 , . . . ,Cn

b ) and (Z1,Z2, . . . ,Zb).
When Sn is equipped with the uniform or Ewens measure, not only the Conditioning Relation (3.1) holds, but

additionally the approximating random variables Zm satisfy the so-called Logarithmic Condition

mE[Zm] → ϑ, as m → ∞. (3.4)

Many well known combinatorial objects which decompose into elementary components (permutations decompose into
cycles, graphs into connected components, polynomials into irreducible factors) satisfy the Conditioning Relation and
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the Logarithmic Condition (see [2, Chapter 2] for a comprehensive overview of examples of logarithmic and non-
logarithmic combinatorial structures). For this class of objects, Arratia et al. [3] developed a unified approach to
study the total variation distance (3.2) only using the Conditioning Relation and the Logarithmic Condition. By the
independence of the random variables Zm, Arratia and Tavaré [5] rewrite the right-hand side of (3.3) as

db(n) =
∑
k≥0

(
P

t
Θ [T0b = k] − P

t
Θ [T0b = k|T0n = n])+

=
∑
k≥0

P
t
Θ [T0b = k]

(
1 − P

t
Θ [Tbn = n − k]
P

t
Θ [T0n = n]

)+
. (3.5)

The key to the analysis of the accuracy of the approximation is some local limit approximation of the distribution of
Tbn = ∑n

m=b+1 mZm. In [3] it is shown that the Logarithmic Condition ensures that n−1Tbn → Xϑ in distribution,
where Xϑ is a random variable only depending on ϑ and b = o(n). Via this limiting behavior they establish

kP[Tbn = k] ∼ ϑP[k − n ≤ Tbn ≤ k − b],
which provides the required local limit approximation. Then their main result ([3, Theorem 3.1]) is that for all combi-
natorial structures satisfying (3.1) and (3.4), considered with respect to the Ewens measure, the following holds:

db(n) = dTV
(
L

(
Cn

1 ,Cn
2 , . . . ,Cn

b

)
,L(Z1,Z2, . . . ,Zb)

) → 0 for b = o(n).

In this paper we consider random permutations with respect to a weighted measure with parameters θm = mγ . As
mentioned before, the Feller coupling is not available in this situation. Recall Remark 2.6 and the estimate for hn given
in (2.8). This implies that the convergence in (1.4) holds, where the Zm are independent Poisson random variables
with mean

E
t
Θ [Zm] = θm

m
tm = mγ−1tm,

and

t = exp(−ηγ ) with ηγ =
(

n

�(1 + γ )

)−1/(1+γ )

. (3.6)

Unfortunately, the Logarithmic Condition (3.4) is clearly not satisfied, and thus a different approach is needed to prove
Theorem 1.2. The starting point is equation (3.5). We will show that T0b , properly rescaled, can be approximated by
a Gaussian random variable G0b with appropriately chosen mean and variance. This enables us to prove that the sum∑

P
t
Θ [T0b = k] converges to zero outside a small interval around the mean of T0b . Within this interval, we will show

that the quotient Pt
Θ [Tbn = n − k]/Pt

Θ [T0n = n] converges to 1. Let us first compute

μ0b := E
t
Θ [T0b], μbn := E

t
Θ [Tbn], σ 2

0b := V
t
Θ [T0b] and σ 2

bn := V
t
Θ [Tbn].

Lemma 3.1. Recall Σ2 as in (2.11). For b = o(n1/(1+γ )) we have

(1) μ0b = 1
1+γ

b1+γ − n
�(1+γ )

Σ2(1 + γ, bηγ ) + O(bγ ),

(2) σ 2
0b = 1

2+γ
b2+γ − ( n

�(1+γ )
)(2+γ )/(1+γ )Σ2(2 + γ, bηγ ) + O(b1+γ ),

(3) μbn = n − 1
1+γ

b1+γ + n
�(1+γ )

Σ2(1 + γ, bηγ ) + O(nγ/(1+γ )),

(4) σ 2
bn = 1+γ

�(1+γ )1/(1+γ ) n
(2+γ )/(1+γ ) − 1

2+γ
b2+γ + ( n

�(1+γ )
)(2+γ )/(1+γ )Σ2(2 + γ, bηγ ) + O(n).

Proof. Recall (2.10), (2.12) and (2.17). Then μ0b = E
t
Θ [T0b] is given by

μ0b =
b∑

k=1

θkt
k =

b∑
k=1

kγ tk
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and (2.17) yields

b∑
k=1

kγ tk =
∫ b

1
xγ tx dx + γ

∫ b

1

(
x − 
x�)xγ−1tx dx

+ log(t)

∫ b

1

(
x − 
x�)xγ tx dx + bγ tb

(
b − 
b�).

For the first integral, set t = exp(−ηγ ) with ηγ as in (3.6). With a variable substitution y = xηγ , we obtain∫ b

1
xγ e−xηγ dx = n

�(1 + γ )

∫ bηγ

ηγ

yγ e−y dy

= n

�(1 + γ )

(
�(1 + γ,ηγ ) − �(1 + γ, bηγ )

)
= 1

1 + γ
b1+γ − n

�(1 + γ )
Σ2(1 + γ, bηγ ) + O(1),

where the last step follows from (2.10) and b = o(n1/(1+γ )). For the remaining terms one can show that they are of
order O(bγ ), which yields assertion (1). Similarly,

σ 2
0b =

b∑
k=1

kθkt
k =

b∑
k=1

k1+γ tk

and by (2.17)

σ 2
0b =

∫ b

1
xγ+1e−xηγ dx + O

(
b1+γ

)
=

(
n

�(1 + γ )

)(2+γ )/(1+γ )(
�(2 + γ,ηγ ) − �(2 + γ, bηγ )

) + O
(
b1+γ

)
= 1

2 + γ
b2+γ −

(
n

�(1 + γ )

)(2+γ )/(1+γ )

Σ2(2 + γ, bηγ ) + O
(
b1+γ

)
,

proving (2). The computations for Tbn are analogues. In particular, notice that

μ0b + μbn = μ0n = n + O(1). (3.7)

The proof is complete. �

For two real random variables X and Y with distributions μ and ν, recall that the Kolmogorov distance dK(X,Y )

is defined by

dK(X,Y ) := dK(μ, ν) := sup
x∈R

∣∣P(X ≤ x) − P(Y ≤ x)
∣∣.

Now define for x = 1 + γ
3

T x
0b := T0b

bx
, μ0bx := μ0b

bx
and σ0bx := σ0b

bx
. (3.8)

Lemma 3.2. Assume b = o(n1/(1+γ )) and let G0b be a Gaussian random variable with mean μ0bx and variance σ0bx .
Then

dK

(
T x

0b,G0b

) = O
(
σ−1

0bx

) = O
(
b−γ /6). (3.9)
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Proof. We will show that T x
0b is mod-Gaussian convergent with parameters μ0bx and σ0bx (see [18, Definition 1.1]

for the definition of mod-Gaussian convergence). Then the assertion of the lemma is a direct consequence of [19,
Remark 3].

The characteristic function of T0b is given by

E
t
Θ

[
eisT0b

] = exp

(
b∑

k=1

θk

k
tk

(
eisk − 1

))

= exp

(
is

b∑
k=1

θkt
k − s2

2

b∑
k=1

kθkt
k − is3

6

b∑
k=1

k2θkt
k + O

(
s4

b∑
k=1

k3θkt
k

))

and we need to find an appropriate scaling such that the third term converges to a constant and the error term converges
to zero. In Lemma 3.1 we have given

μ0b =
b∑

k=1

θkt
k and σ 2

0b =
b∑

k=1

kθkt
k.

Similarly, we compute

b∑
k=1

k2θkt
k =

∫ b

1
xγ+2e−xηγ dx + O

(
b2+γ

)
=

(
n

�(1 + γ )

)(3+γ )/(1+γ )(
�(3 + γ,ηγ ) − �(3 + γ, bηγ )

)
= 1

3 + γ
b3+γ −

(
n

�(1 + γ )

)(3+γ )/(1+γ )

Σ2(3 + γ, bηγ ) + O(1)

and

b∑
k=1

k3θkt
k = O

(
b4+γ

)
.

We therefore have to rescale by sx = s/bx such that b3+γ−3x converges to a constant. Thus, choose x = 1 + γ
3 , then

for T x
0b := T0b/b

x we get

E
t
Θ

[
eisT x

0b
] = exp

(
isμ0bx − s2

2
σ 2

0bx − is3

6
δ0bx + O

(
s4b−γ /3)),

where μ0bx = μ0b/b
x , σ 2

0bx = σ 2
0b/b

2x and

δ0bx = b−3(1+γ /3)
b∑

k=1

kγ+2tk = 1

3 + γ
+ O

(
bn−1/(1+γ )

)
.

This completes the proof. �

With these preliminary results at hand, we are prepared to prove Theorem 1.2.
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Proof of Theorem 1.2. Assume first b = o(n1/(1+γ )) and recall equation (3.5). Since the (·)+-term in (3.5) satisfies
(·)+ ≤ 1, we want to find α,β such that both sums

α∑
k=0

P
t
Θ [T0b = k] and

∞∑
k=β

P
t
Θ [T0b = k]

converge to zero. Recall the definition of T x
0b , μ0bx and σ0bx in (3.8). As in Lemma 3.2, denote by G0b a Gaussian

random variable with mean μ0bx and standard deviation σ0bx . Let g be any function with g(b) → ∞ as b → ∞ and
define

εb := σ0bg(b).

Then, as n → ∞, we have

P
t
Θ [μ0b − εb ≤ T0b ≤ μ0b + εb] → 1.

To see this, notice that for εx
b := εb/b

x ,

P
t
Θ [μ0b − εb ≤ T0b ≤ μ0b + εb]
= P

t
Θ

[
μ0bx − εx

b ≤ T x
0b ≤ μ0bx + εx

b

]
= P

t
Θ

[
μ0bx − εx

b ≤ G0b ≤ μ0bx + εx
b

] + O
(
dK

(
T x

0b,Gb

))
.

Now Lemma 3.2 yields dK(T x
0b,Gb) = O(b−γ /6). By basic properties of the Gaussian distribution,

P
t
Θ

[
μ0bx − εx

b ≤ G0b ≤ μ0bx + εx
b

] = 1

2

(
erf

(
εx
b√

2σ0bx

)
− erf

(
− εx

b√
2σ0bx

))
= 1

2

(
erf

(
g(b)√

2

)
− erf

(
−g(b)√

2

))
,

where erf(x) denotes the error function, which satisfies the asymptotics (2.13) and (2.14). Thus, as n → ∞, for all g

with g(b) → ∞,

P
t
Θ [μ0b − εb ≤ T0b ≤ μ0b + εb] = 1 + O

(
g−1(b)e−g2(b) + b−γ /6) (3.10)

and therefore both sums

μ0b−εb∑
k=0

P
t
Θ [T0b = k] and

∞∑
k=μ0b+εb

P
t
Θ [T0b = k]

are of order O(g−1(b)e−g2(b) + b−γ /6). Next, in view of (3.5), we have to show that the sum

μ0b+g(b)σ0b∑
k=μ0b−g(b)σ0b

P
t
Θ [T0b = k]

(
1 − P

t
Θ [Tbn = n − k]
P

t
Θ [T0n = n]

)+
(3.11)

converges to zero. Recall (3.7): μbn = n − μ0b + O(1), and denote Ib := [−g(b)σ0b, g(b)σ0b]. Then we can rewrite
the previous sum as

(3.11) =
∑
j∈Ib

P
t
Θ [T0b = μ0b − j ]

(
1 − P

t
Θ [Tbn = μbn + j + O(1)]

P
t
Θ [T0n = n]

)+

≤ sup
j∈Ib

(
1 − P

t
Θ [Tbn = μbn + j ]
P

t
Θ [T0n = n]

)+
(3.12)
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and we have to show that this term converges to 0. Notice that we have dropped the O(1) in the last equality since it
has no influence on our argumentation. One can for instance just replace g by 2g.

Let us first give an heuristic argument why this should be true. First, one can show that

P
t
Θ [Tbn = μbn + j ]
P

t
Θ [T0n = n] → 1 if and only if

P
t
Θ [Tbn = μbn + j ]
P

t
Θ [Tbn = μbn] → 1.

Similarly to (3.8) and Lemma 3.2, we can show that T
y
bn := Tbn/ny with y = 3+γ

3(1+γ )
is approximately Gaussian with

mean μ
y
bn := μbn/ny and standard deviation σ

y
bn := σbn/ny . Thus, vaguely, let us consider for a moment that Tbn is

approximately (a discrete version of a) Gaussian random variable Gbn with mean μbn and variance σ 2
bn. Then, for

δ = o(j), the question is for which j the following holds:

P
t
Θ [μbn + j ≤ Gbn ≤ μbn + j + δ] ∼ P

t
Θ [μbn ≤ Gbn ≤ μbn + δ].

By the standard properties of the Gaussian distribution, this holds for any j = o(σbn). Thus, the crucial point why
(3.12) should converge to zero is that

|j | ≤ g(b)σ0b = o(σbn). (3.13)

We have σ0b = o(σbn) and since g(b) → ∞ may be chosen arbitrarily this implies g(b)σ0b = o(σbn):

g(b)σ0b

σbn

= O
(
b(2+γ )/2n−(2+γ )/(2(1+γ ))g(b)

)
and now choose

g(b) := (
n1/(1+γ )b−1)γ /2 (3.14)

to get

g(b)σ0b

σbn

= O
(
bn−1/(1+γ )

) → 0.

For the rigorous proof that (3.12) converges to 0, we compute P
t
Θ [Tbn = μbn + j ] explicitly by means of saddle-

point analysis. We have,

E
t
Θ

[
uTbn

] =
n∏

k=b+1

E
t
Θ

[
ukZk

] = exp

(
n∑

k=b+1

θk

k
tk

(
uk − 1

))
,

where t is as in (3.6). Now, for m ≤ n,

P
t
Θ [Tbn = m] = e−Sb(t)tm

[
um

]
exp

(
n∑

k=b+1

kγ−1uk

)

= e−Sb(t)tm
[
um

]
exp

( ∞∑
k=b+1

kγ−1uk

)
,

where Sb(t) := ∑n
k=b+1 kγ−1tk . Notice that μbn + j ≤ n for n large with the above chosen g(n). In particular, for

b = 0 and m = n, we get

P
t
Θ [T0n = n] = e−S0(t)tn

[
un

]
exp

(
gΘ(u)

) = e−S0(t)tnhn,
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where hn is as in (2.8). For b 	= 0, to prove that gΘ,b(u) := ∑∞
k=b+1 kγ−1uk is log-admissible one proceeds along the

same lines as in the proof of Lemma 4.1. The leading term of the saddle point solution

α(rm) = m + o
(√

β(rm)
)

is given by rm = exp(−vm) with

vm =
(

m + μ0b

�(1 + γ )

)−1/(1+γ )

.

Lemma 2.9 together with Remark 2.12 yields

[
um

]
exp

( ∞∑
k=b+1

kγ−1uk

)
= 1√

2πβ(rm)
exp

(
gΘ,b(rm) + mvm

)(
1 + O

(
n−γ /(1+γ )

))
.

Thus we have

P
t
Θ [Tbn = m]
P

t
Θ [T0n = n]

= tm−n

hn

√
2πβ(rm)

exp

(
gΘ,b(rm) + mvm +

b∑
k=1

kγ−1tk

)(
1 + O

(
n−γ /(1+γ )

))
.

Recall t = exp(−ηγ ) with ηγ = ( n
�(1+γ )

)−1/(1+γ ). Let us first compute β(rm). Similarly as in the proof of Lemma 3.1,
we have

β(rm) =
∞∑

k=b+1

kγ+1rk
m =

∞∑
k=1

kγ+1rk
m −

b∑
k=1

kγ+1rk
m

= Li−γ−1(rm) −
∫ b

1
xγ+1e−xvm̃ dx + O

(
b1+γ

)
= �(2 + γ )v

−(2+γ )
m + O

(
b2+γ

)
.

Together with hn as in (2.8) we get

P
t
Θ [Tbn = m]
P

t
Θ [T0n = n] = HΘ,b(rm, t) exp

(
GΘ,b(rm, t)

)(
1 + O

(
n−γ /(1+γ )

))
, (3.15)

with

HΘ,b(rm, t) = (
v

−(2+γ )
m + O

(
b2+γ

))−1/2
(

n

�(1 + γ )

)(2+γ )/(2(1+γ ))

and

GΘ,b(rm, t) = gΘ,b(rm) + m(vm − ηγ ) +
b∑

k=1

kγ−1tk − nηγ

γ
− ζ(1 − γ ).

Recall that we are interested in m̃ := μbn + j with j ∈ Ib so that

vm̃ =
(

n + j

�(1 + γ )

)−1/(1+γ )

= ηγ − �(1 + γ )1/(1+γ )

1 + γ
jn−(2+γ )/(1+γ ) + O

(
j2n−(3+2γ )/(1+γ )

)
.
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Thus,

HΘ,b(rm̃, t) =
((

n + j

�(1 + γ )

)−(2+γ )/(2(1+γ ))

+ O
(
n−(3(2+γ ))/(2(1+γ ))b2+γ

))(
n

�(1 + γ )

)(2+γ )/(2(1+γ ))

= 1 + O
(
jn−1 + n−(2(2+γ ))/(2(1+γ ))b2+γ

)
, (3.16)

and the error term converges to zero since for g(b) as in (3.14) we have |j | ≤ g(b)σ0b = o(n). It remains to compute
GΘ,b(rm̃, t). First notice that

m̃(vm̃ − ηγ ) = −μbn

�(1 + γ )1/(1+γ )

1 + γ
jn−(2+γ )/(1+γ ) + O

(
j2n−(2+γ )/(1+γ )

)
,

and μbn = n − μ0b. Furthermore,

gΘ,b(rm) =
∞∑

k=b+1

kγ−1rk
m =

∞∑
k=1

kγ−1rk
m −

b∑
k=1

kγ−1rk
m

= Li1−γ (rm) −
b∑

k=1

kγ−1rk
m,

where Li denotes the polylogarithm as in (2.15) and

tk − rk
m̃ = e−kηγ

(
1 − exp

(
�(1 + γ )1/(1+γ )

1 + γ
kjn−(2+γ )/(1+γ ) + O

(
j2n−(3+2γ )/(1+γ )

)))
.

Then for k ≤ b we have kjn−1−1/(1+γ ) = o(1) and this yields

tk − rk
m̃ = e−kηγ

(
−�(1 + γ )1/(1+γ )

1 + γ
kjn−(2+γ )/(1+γ ) + O

(
kj2n−(3+2γ )/(1+γ )

))
.

Thus,

b∑
k=1

kγ−1(tk − rk
m̃

) = −�(1 + γ )1/(1+γ )

1 + γ
jn−(2+γ )/(1+γ )

b∑
k=1

kγ tk

+ O

(
j2n−(3+2γ )/(1+γ )

b∑
k=1

kγ tk

)

= −�(1 + γ )1/(1+γ )

1 + γ
jn−(2+γ )/(1+γ )μ0b + O

(
j2n−(3+2γ )/(1+γ )μ0b

)
,

and notice that the error term converges to zero. Altogether, we have proved so far

GΘ,b(rm̃, t) = gΘ,b(rm̃) + m̃(vm̃ − ηγ ) +
b∑

k=1

kγ−1tk − nηγ

γ
− ζ(1 − γ )

= Li1−γ (rm̃) + m̃(vm̃ − ηγ ) +
b∑

k=1

kγ−1(tk − rk
m̃

) − nηγ

γ
− ζ(1 − γ )

= Li1−γ (rm̃) − �(1 + γ )1/(1+γ )

1 + γ
jn−1/(1+γ ) − nηγ

γ
− ζ(1 − γ ) + O

(
j2n−(2+γ )/(1+γ )

)
.



The Erdős–Turán law for weighted random permutations 1631

Finally, we have

Li1−γ (rm) = �(γ )v
−γ
m + ζ(1 − γ ) + O(vm)

= �(γ )

�(1 + γ )γ/(1+γ )

(
nγ/(1+γ ) + γ

1 + γ
jn−1/(1+γ ) + O

(
j2n−(2+γ )/(1+γ )

)) + ζ(1 − γ )

which yields

GΘ,b(rm̃, t) = O
(
j2n−(2+γ )/(1+γ )

) = O

(
g2(b)σ 2

0b

σ 2
bn

)
, (3.17)

and this converges to zero because of (3.13). Using this together with (3.16) in (3.15) then gives

P
t
Θ [Tbn = m]
P

t
Θ [T0n = n] = 1 + O

(
g(b)σ0bn

−1 + n−(2(2+γ ))/(2(1+γ ))b2+γ
) + O

(
g2(b)σ 2

0b

σ 2
bn

)
. (3.18)

As next, we substitute this into (3.11). Altogether, we have proved that if b = o(n1/(1+γ )) then

db(n) = O
(
b2+γ n−(2+γ )/(1+γ ) + b−γ /6 + O

(
n−γ /(1+γ )

))
.

To complete the proof of Theorem 1.2, we assume now b 	= o(n1/(1+γ )) and show that in this case lim infn→∞ db(n) >

0. Recall from (3.5) that

db(n) ≥ P
t
Θ [T0b > n].

For bn−1/(1+γ ) → ∞ the mean of T0b is n+O(1) and the variance is of order n(2+γ )/(1+γ ). Thus Pt
Θ [T0b > n] > 0

for all n. But if b = cn1/(1+γ ), then E
t
Θ [T0b] = Cn + O(1) where C = C(c) can be very small when c is very small.

In particular, if C < 1, then P
t
Θ [T0b > n] → 0, thus a more elaborate argument is needed.

A crucial point in the proof above is equation (3.13). Notice that for b = cn1/(1+γ ) the usual computations give

μ′
0b := E

t
Θ [T0b] = O(n) and σ ′

0b :=
√
V

t
Θ [T0b] = O

(
n(2+γ )/(2(1+γ ))

)
as well as

μ′
bn := E

t
Θ [Tbn] = O(n) and σ ′

bn :=
√
V

t
Θ [Tbn] = O

(
n(2+γ )/(2(1+γ ))

)
.

Thus, unlike as in (3.13), here σ ′
0b = o(σ ′

bn) does not hold, but we have σ ′
0b = O(σ ′

bn). Therefore, Pt
Θ [Tbn = μ′

bn −
k]/Pt

Θ [T0n = n] will not converge to 1 implying that db(n) will not converge to 0. Notice that the details of this
computations are as the previous very technical. However, we don’t have to do this computations due a result in [11].
Suppose that db(n) → 0 for b = cn1/(1+γ ) with c some non-negative constant. Then the random variables

cn1/(1+γ )∑
m=(c/2)n1/(1+γ )

Cm and
cn1/(1+γ )∑

m=(c/2)n1/(1+γ )

Zm

would have same asymptotic behaviour as n → ∞, in particular both would follow the same central limit theorem
(after centring and normalising). However, it was shown in [11, Theorem 3.6, Theorem 4.6 and Remark 4.4] that for
all c > 0 these two random variables satisfy two different central limit theorems. �

Remark 3.3. Notice that the term b−γ /6 in the order of db(n) in Theorem 1.2 comes from the Kolmogorov distance
dK(T x

0b,Gb). Instead of using the Gaussian approximation, one could prove the first part of the theorem also using
saddle point analysis to compute P

t
Θ [T0b = m] explicitly. This would give the same result but without the b−γ /6 term.

However, we decided to state the proof using the Gaussian approximation since it allows an intuitive understanding
of what is going on.
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4. The Erdős–Turán law

Recall that the order On(σ) of a permutation σ ∈ Sn is the smallest integer k such that the k-fold application of σ to
itself gives the identity. Assume that σ = σ1 · · ·σ� with σi disjoint cycles of length λi , then On(σ) can be computed
as

On(σ) = lcm(λ1, λ2, . . . λ�).

In Section 4.1 an approximating random variable Yn is introduced which shares many properties with On but is much
easier to handle. Then Section 4.2 is devoted to the proof of Theorem 1.3 and Section 4.3 to the proof of Theorem 1.4.

4.1. Preliminaries

A common approach to investigate the asymptotic behavior of log(On) is to introduce the random variable

Yn :=
n∏

m=1

mCm,

where the Cm denote the cycle counts, and to show that log(On) and log(Yn) are relatively close in a certain sense. To
give explicit expressions for On and Yn involving the cycle counts Cm, introduce

Dnk :=
n∑

m=1

Cm1{k|m} and D∗
nk := min{1,Dnk}.

Now let p1,p2, . . . be the prime numbers and qm,i be the multiplicity of a prime number pi in the number m. Then

Yn =
n∏

m=1

mCm =
n∏

m=1

(
p

qm,1
1 p

qm,2
2 · · ·pqm,n

n

)Cm

=
n∏

i=1

p
C1·q1,i+C2·q2,i+···+Cn·qn,i

i =
∏
p≤n

p

∑n
j=1 D

npj , (4.1)

where
∏

p≤n denotes the product over all prime numbers that are less or equal to n. The last equality can be understood
as follows: let p be fixed and define m = pqm,i ·a where a and p are coprime (meaning that their least common divisor
is 1). Then Cm occurs exactly once in the sum Dnpj if j ≤ qm,i and does not occur in Dnpj if j > qm,i . Thus Cm

occurs qm,i times in the sum
∑n

j=1 Dnpj . Furthermore, we have also used that Dnk = 0 for k > n. Analogously, we
have

On =
∏
p≤n

p

∑n
j=1 D∗

npj . (4.2)

To simplify the logarithm of the expressions (4.1) and (4.2), we introduce the von Mangoldt function Λ, which is
defined as

Λ(n) =
{

log(p) if n = pk for some prime p and k ≥ 1,
0 otherwise.

Then we obtain

logYn =
∑
k≤n

Λ(k)Dnk and logOn =
∑
k≤n

Λ(k)D∗
nk. (4.3)
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Now define

Δn := log(Yn) − log(On) =
∑
k≤n

Λ(k)
(
Dnk − D∗

nk

)
. (4.4)

Typically, in order to prove properties of log(On), one first establishes them for log(Yn) and then one needs to show
that Δn is approximately small enough to transfer the result to log(On), see Lemma 4.6 below.

Recall (2.6). For θm = mγ one obtains the generating series

∞∑
n=0

hnEΘ

[
exp

(
s log(Yn)

)]
tn = exp

( ∞∑
m=1

1

m1−s−γ
tm

)
=: exp

(
ĝΘ(t, s)

)
. (4.5)

As we consider s fixed for the moment, we may write ĝΘ(t) instead of ĝΘ(t, s). The function ĝΘ(t) is known to be
the polylogarithm Lia(t) with parameter

a = 1 − s − γ.

For γ > 0 and as t → 1 it satisfies the asymptotic (2.16). We will show that ĝΘ(t, s) is log-admissible (see Defini-
tion 2.8) in order to apply Lemma 2.9 to compute EΘ [exp(s log(Yn))].

Lemma 4.1. ĝΘ(t, s) is log-admissible for γ > 0, s > −α.

Proof. For k ≥ 1 as t → 1 the following holds:

ĝ
(k)
Θ (t) = t−k Lia−k(t) = �(1 + k − a)

(− log(t)
)a−k−1

t−k + O(1). (4.6)

The proof that ĝΘ(t, s) satisfies the properties given in Definition 2.8 is analogous to the proof of Proposition 3.7 in
[24]; one simply has to verify that all involved expressions are uniform in s for −γ + ε ≤ s ≤ C for some constant C.
This is straightforward and we thus omit the details. �

Let us now compute the generating function of log(Yn) by means of Lemma 2.9.

Theorem 4.2. Let ĝΘ be as in (4.5) with γ > 0. Then we have

EΘ

[
exp

(
s log(Yn)

)]
= (√

γ̃2,sn
(1/2)(1/(1+γ )−1/(1+γ+s))

)
exp

(
γ̃1,sn

1−1/(1+γ+s) − γ̃1,0n
1−1/(1+γ )

)
× exp

(
ζ(1 − s − γ ) − ζ(1 − γ )

)(
1 + o(1)

)
with

γ̃1,s = (1 + γ + s)�(γ + s)

�(1 + γ + s)1−1/(1+γ+s)
, γ̃2,s = (1 + γ )�(1 + γ + s)1/(1+γ+s)

(1 + γ + s)�(1 + γ )1/(1+γ )
,

where the error bounds are uniform in s for bounded s, s > −γ + ε.

Proof. We first compute rns . This should satisfy

αs(rns) = n

but as stated in Remark 2.10 it actually suffices that

αs(rns) − n = o
(√

βs(rns)
)

(4.7)
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holds. We set for a = 1 − s − γ

rns = exp

(
−

(
n

�(2 − a)

)1/(a−2))
and obtain

αs(rns) = n + O(1) and βs(rns) = �(3 − a)

(
n

�(2 − a)

)1+1/(2−a)

+ O(1),

so that (4.7) holds. Furthermore,

ĝΘ(rns, s) = �(1 − a)

(
n

�(2 − a)

)1−1/(2−a)

+ ζ(1 − s − γ ) + o(1).

We now have

Gn,s = [t]n exp
(
ĝΘ(t, s)

) = hnEΘ

[
exp

(
s log(Yn)

)]
.

Therefore,

hn = Gn,0 = 1√
2π

(rn0)
−nβ0(rn0)

−1/2 exp
(
ĝΘ(rn0,0)

)(
1 + o(1)

)
= (

2π�(2 + γ )
)−1/2

(
�(1 + γ )

n

)(2+γ )/(2(1+γ ))

× exp

(
1 + γ

γ
�(1 + γ )1/(1+γ )nγ/(1+γ ) + ζ(1 − γ )

)(
1 + o(1)

)
and

EΘ

[
exp

(
s log(Yn)

)]
=

(
rn0

rns

)n(
β0(rn0)

βs(rns)

)1/2

exp
(
ĝΘ(rns, s) − ĝΘ(rn0,0)

)(
1 + o(1)

)
.

This gives the result. �

Remark 4.3. Given Theorem 1.2, a natural way to investigate further properties of log(On), for example to prove the
central limit theorem, would be to work with the functional log(Pn) := ∑n

m=1 log(m)Zm instead of with log(Yn) =∑n
m=1 log(m)Cm and to show that the contribution of the large components Cb+1, . . . ,Cn is negligible. However, in

the current setting, the large cycle counts actually do contribute to the behavior of log(On). To see this, one may easily
compute the moment generating function of log(Pn) to show that it satisfies the central limit theorem

log(Pn) − G̃(n)√
F(n)

d−→ N (0,1)

where F(n) is as in Theorem 1.3 but

G̃(n) = K(γ )

1 + γ
nγ/(1+γ ) log(n) + nγ/(1+γ )H̃ (γ ) (4.8)

with

H̃ (γ ) = −K(γ )
log(�(1 + γ ))

1 + γ
.
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Thus, even rescaled by F(n), the discrepancy between G(n) and G̃(n) is too large to prove the central limit theorem
for log(On) via the independent approximating process. More generally, it seems that the bound b = o(n1/(1+γ )) is
too small to exploit Theorem 1.2 to study the whole cycle count process. Nonetheless, in Section 4.3 we will explain
how to use Theorem 1.2 in order to investigate properties of the small cycles.

4.2. Proof of Theorem 1.3

With Theorem 4.2 at hand, we will first show the Erdős–Turán law for log(Yn). The complicated part is to transfer the
result to log(On), see Lemma 4.6, where we will need Theorem 1.2.

The proof of Theorem 1.3 is a direct consequence of the following two lemmas.

Lemma 4.4. Let ĝΘ be as in (4.5) with γ > 0. Then we have, as n → ∞,

log(Yn) − G(n)√
F(n)

d−→ N (0,1)

where N (0,1) denotes the standard Gaussian distribution and F(n) and G(n) are as in Theorem 1.3.

Remark 4.5. Notice that we have the trivial bound

E
[
log(On)

] ≤ max
σ∈Sn

(
log(On)

)
. (4.9)

Using Landau’s result (1.1), we obtain for large n

E
[
log(On)

] ≤ 2
√

n log(n) (4.10)

for each probability measure on Sn. Lemma 4.4 then shows that an analogous approximation result to Lemma 4.4 for
log(On) by log(Yn) can only be valid for 0 < γ < 1 since

E
[
log(Yn)

]
> 2

√
n log(n)

for γ ≥ 1 and n large. This means that log(Yn) is a good approximation for log(On) when 0 < γ < 1 but for γ ≥ 1
the behavior of the two random variables is indeed different.

Proof of Lemma 4.4. We write the expansion in Theorem 4.2 as

EΘ

[
exp

(
s log(Yn)

)] = exp
(
f (n, s)

)
and expand the function f (n, s) around s = 0. Now set F(n) as in Lemma 4.4. Since the error terms in Theorem 4.2
are uniform in s we can apply it for s/

√
F(n). This gives, as n → ∞,

EΘ

[
exp

(
s

log(Yn)√
F(n)

)]
∼ exp

(
s2

2
+ Ḡ(n)H(γ )s

)
,

where H(γ ) is defined as in Theorem 1.3 and

Ḡ(n) = √
�(γ ) + �(1 + γ )

(
n

�(1 + γ )

)γ /(2(1+γ ))

log

(
n

�(1 + γ )

)
.

By means of Lévy’s continuity theorem the result follows. �

To transfer the result from log(Yn) to log(On) we need to show that they are close in a certain sense. We will prove
the following lemma.
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Lemma 4.6. For θm = mγ with 0 < γ < 1 the following holds as n → ∞:

PΘ

(
log(Yn) − log(On) ≥ log(n) log log(n)

) → 0.

Proof. First, recall (4.3) and notice that

log(On) = ψ(n) − R(n),

where

ψ(n) =
n∑

k=1

Λ(k) and R(n) =
n∑

k=1

Λ(k)1{Dnk=0}.

Recall that ψ is the so-called Chebyshev function which satisfies the asymptotic ψ(n) = n(1 + o(1)) (where the error
term has a positive sign). We need to identify the smallest b such that for g(n) = log(n) log log(n)

PΘ

(
log(Yn) − ψ(b) ≥ g(n)

2

)
→ 0. (4.11)

Lemma 4.4 implies that

PΘ

(
log(Yn) − h(n) ≥ ε

) → 0

for any ε > 0 and functions h such that h(n)/nγ/(1+γ ) log(n) → ∞. Therefore, choose b = nγ/(1+γ ) log2(n), then
(4.11) is satisfied (actually, it holds for any positive function g(n)). It remains to prove

PΘ

(
R(n) −

n∑
k=b+1

Λ(k) ≥ g(n)

2

)
→ 0. (4.12)

Notice that

R(n) −
n∑

k=b+1

Λ(k) ≤ R(b) ≤
b∑

k=1

Λ(k)1{Ck=0} =: S(b)

and thus it suffices to show

PΘ

(
S(b) ≥ g(n)

2

)
→ 0.

To prove this we will approximate S(b) by the functional

S′(b) :=
b∑

k=1

Λ(k)1{Zk=0},

where the Zk are independent Poisson random variables with parameter kγ−1tk as in (3.2). Then

PΘ

(
S(b) ≥ g(n)

2

)
= P

t
Θ

(
S′(b) ≥ g(n)

2

)
+ O

(
dK

(
S(b), S′(b)

))
,

where dK(X,Y ) denotes again the Kolmogorov distance of the random variables X and Y . Clearly,

dK

(
S(b), S′(b)

) ≤ dTV
(
S(b), S′(b)

) ≤ db(n),
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and Theorem 1.2 shows that db(n) → 0 if and only if b = o(n1/(1+γ )). For 0 < γ < 1 we have b = nγ/(1+γ ) log2(n) =
o(n1/(1+γ )). Therefore, it suffices to show

P
t
Θ

(
S′(b) ≥ g(n)

2

)
→ 0,

which is equivalent to

logPt
Θ

(
esS′(b) ≥ esg(n)/2) → −∞, (4.13)

for s ≥ 0. The moment generating function of S′(b) is given by

E
t
Θ

[
esS′(b)

] =
b∏

k=1

(
1 + e−kγ−1tk

(
esΛ(k) − 1

))
,

where tk = exp(−kn−1/(1+γ )). By Markov’s inequality and with log(1 + z) ≤ z we get

logPt
Θ

(
esS′(b) ≥ esg(n)/2) ≤ − sg(n)

2
+

b∑
k=1

log
(
1 + e−tkkγ−1(

esΛ(k) − 1
))

≤ − sg(n)

2
+

b∑
k=1

e−tkkγ−1(
esΛ(k) − 1

)

≤ − sg(n)

2
+ (

es log(n) − 1
) b∑

k=1

e−tkkγ−1
.

Since b = o(n1/(1+γ )), there is a constant c > 0 such that

b∑
k=1

exp
(−tkkγ−1) ≤

b∑
k=1

exp
(−kγ−1 exp

(−bn−1/(1+γ )
))

=
b∑

k=1

exp
(−ckγ−1)

≤
∫ b

1
exp

(−cxγ−1)dx

= O

(
�

(
1

1 − γ
, bγ−1

)
− �

(
1

1 − γ
,1

))
= O(1).

Thus for g(n) = log(n) log log(n) and s := √
log log(n)/g(n) this yields

logPt
Θ

(
esS′(b) ≥ es/2) ≤ −

√
log log(n)

2
+ O

(
log log(n)−1/2).

The proof is complete. �

4.3. Proof of Theorem 1.4

In Remark 4.3 was mentioned that the bound b = o(n1/(1+γ )) is too small to study properties of the whole cycle
count process via the independent approximating Poisson random variables. However, Theorem 1.4 gives an example



1638 J. Storm and D. Zeindler

of how to exploit Theorem 1.2 in order to study the behavior of the small cycles. Recall that for x > 0 we define
x∗ := 
xnγ/(1+γ )� and

Bn(x) := log(Ox∗) − (1/(1 + γ ))xγ log(n)nγ 2/(1+γ )√
(γ /(1 + γ )2) log2(n)nγ 2/(1+γ )

.

Proof of Theorem 1.4. First notice that

log(Yx∗) − log(Ox∗) ≤ log(Yn) − log(On)

and thus by means of Lemma 4.6 it is sufficient to show that

log(Yx∗) − (1/(1 + γ ))xγ log(n)nγ 2/(1+γ )√
(γ /(1 + γ )2) log2(n)nγ 2/(1+γ )

satisfies the required convergence. Since x∗ = o(n1/(1+γ )) and in a discrete probability space db(n) → 0 is equivalent
to convergence in distribution of (C1, . . . ,Cb) to (Z1, . . . ,Zb), Theorem 1.2 yields

EΘ

[
es log(Yx∗ )

] = E
t
Θ

[
es log(Px∗ )

](
1 + o(1)

)
,

where log(Px∗) = ∑x∗
m=1 log(m)Zm. Thus we have to show

log(Px∗) − (1/(1 + γ ))xγ log(n)nγ 2/(1+γ )√
(γ /(1 + γ )2) log2(n)nγ 2/(1+γ )

d−→ W
(
xγ

)
.

The convergence of the finite dimensional distributions is easily established. By independence, the characteristic
function of log(Px∗) is given by

E
t
Θ

[
eis log(Px∗ )

] = exp

(
x∗∑

m=1

mγ−1tm
(
eis log(m) − 1

))

= exp

(
isα

(
x∗) − s2

2
β
(
x∗) + δ

(
s, x∗)),

where

α
(
x∗) =

x∗∑
m=1

mγ−1tm log(m), β
(
x∗) =

x∗∑
m=1

mγ−1tm log2(m),

and

δ
(
s, x∗) =

∞∑
j=3

x∗∑
m=1

mγ−1tm
(is)j logj (m)

j ! .

With computations similar to those in the proof of Lemma 3.1 we get

α
(
x∗) = 1

1 + γ
xγ nγ 2/(1+γ ) log(n) + O

(
nγ 2/(1+γ )

)
,

β
(
x∗) = γ

(1 + γ )2
xγ nγ 2/(1+γ ) log2(n) + O

(
nγ 2/(1+γ ) log(n)

)
,
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x∗∑
m=1

mγ−1tm log3(m) = O
(
nγ 2/(1+γ ) log(n)

)
.

This proves that for every fixed x we have

B̃n(x)
d−→N

(
0, xγ

)
.

It remains to prove that the process B̃n(·) is tight. We use the moment condition given in [10, Theorem 15.6], that is
we have to show that for any n ≥ 0 and 0 ≤ x1 < x < x2

EΘ(x1, x2) := EΘ

[(
B̃n(x) − B̃n(x1)

)2(
B̃n(x2) − B̃n(x)

)2] = O
(
(x2 − x1)

2).
To prove this we use the independence of the Zm. Denote

log
(
P

y∗
x∗

) =
y∗∑

m=x∗+1

log(m)Zm.

Then

EΘ(x1, x2) = O
((

xγ nγ 2/(1+γ ) log2(n)
)−2

VΘ

(
log

(
P x∗

x∗
1

))
VΘ

(
log

(
P

x∗
2

x∗
)))

= O
((

xγ nγ 2/(1+γ ) log2(n)
)−2(

β
(
x∗) − β

(
x∗

1

))(
β
(
x∗

2

) − β
(
x∗)))

= O
((

xγ − x
γ

1

)(
x

γ

2 − xγ
)) = O

(
(x2 − x1)

2).
This completes the proof. �
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