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Abstract. This article analyses a new class of advanced particle Markov chain Monte Carlo algorithms recently introduced by
Andrieu, Doucet and Holenstein (J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (2010) 1–269). We present a natural interpretation
of these methods in terms of well known unbiasedness properties of Feynman–Kac particle measures, and a new duality with
Feynman–Kac models.

This perspective sheds new light on the foundations and the mathematical analysis of this class of methods. A key consequence
is their equivalence with the Gibbs sampling of a many-body Feynman–Kac target distribution. Our approach also presents a new
stochastic differential calculus based on geometric combinatorial techniques. These techniques allow us to derive non-asymptotic
Taylor type series for the semigroup of a class of particle Markov chain Monte Carlo models around their invariant measures with
respect to the population size of the auxiliary particle sampler.

These results provide sharp quantitative estimates of the convergence rate to equilibrium of the models with respect to the time
horizon and the size of the systems. We illustrate the direct implication of these results with sharp estimates of the contraction coef-
ficient and the Lyapunov exponent of the corresponding samplers, and explicit and non-asymptotic Lp-mean error decompositions
of the law of the random states around the limiting invariant measure. The abstract framework developed in the article also allows
the design of natural extensions to island (also called SMC2) type particle methodologies.

We illustrate this general framework and results in the context of nonlinear filtering, hidden Markov chain problems with fixed
unknown parameters, and Feynman–Kac path-integration models arising in computational quantum physics and molecular chem-
istry.

Résumé. Cet article analyse une classe de méthodes de Monte Carlo avancées de type particulaire introduites par Andrieu, Doucet,
et Holenstein (J. R. Stat. Soc. Ser. B Stat. Methodol. 72 (2010) 1–269). Nous présentons une interprétation naturelle de ces méthodes
en termes de mesures de Feynman–Kac particulaires non biaisées classiques et d’une nouvelle formule de dualité entre modèles de
Feynman–Kac.

Ce cadre d’étude apporte un nouvel éclairage sur les fondations et l’analyse mathématique de ces méthodes. Une conséquence
importante est l’équivalence de ces dernières avec la méthode d’échantillonnage de Gibbs d’une distribution de Feynman–Kac
multi-corps. Notre étude développe aussi un nouveau calcul différentiel stochastique fondé sur des techniques géométriques et
combinatoires. Ces techniques permettent d’obtenir des développements non asymptotiques des semigroupes de modèles de Monte
Carlo par Chaînes de Markov particulaires autour de leur mesure invariante, en fonction de la taille des systèmes de particules en
interaction auxiliaires.

Cette analyse conduit à des estimations quantitatives précises de la convergence à l’équilibre de ces modèles par rapport
à l’horizon temporel et la taille des systèmes. Nous illustrons ces résultats avec quelques implications directes, notamment
l’estimation précise des coefficients de contraction et des exposants de Lyapunov de ces algorithmes de simulation, ainsi que
l’estimation fine de l’erreur en norme Lp entre la loi des états aléatoires de ces chaînes de Markov et leur mesure d’équilibre. Le
cadre abstrait de l’article permet d’élaborer et d’étendre de façon naturelle ces méthodes à des classes d’algorithmes fondés sur des
évolutions d’ilôts particulaires (aussi connus sous le nom SMC2).
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Nous montrons enfin comment ce cadre général et les résultats de l’article s’appliquent à l’étude de problèmes de filtrage non
linéaire, l’estimation de paramètres fixes dans des modèles de chaînes de Markov cachées, et dans des problèmes d’integration
trajectorielle rencontrés en physique quantique et en chimie moléculaire.

MSC: 60J22; 65C05

Keywords: Particle Gibbs sampling; Markov chain Monte Carlo methods; Sequential Monte Carlo methods; Feynman–Kac models

1. Introduction

In the last two decades particle simulation and Sequential Monte Carlo (SMC) methodologies (see e.g., [16,20,29])
have become one of the most active contact points between Bayesian statistical inference and applied probability.
In contrast to conventional Markov chain Monte Carlo methodologies (MCMC), particle methods are not based on
sampling long runs of a judiciously chosen Markov chain with a prescribed target probability measure, but on the
mean field particle simulation of nonlinear Markov chain models.

The seminal article [2] by Andrieu, Doucet and Holenstein introduced a new way to combine MCMC with SMC
methods. A variant of the method, where ancestors are resampled in a forward pass, was developed by Lindsten, Schön
and Jordan in [46], and Lindsten and Schön [47]. This new class of Monte Carlo samplers is called particle Markov
chain Monte Carlo methods (PMCMC). These emerging particle sampling technologies are particularly important in
signal processing and in Bayesian statistics where they are used to estimate posterior distributions of the unknown pa-
rameters when the likelihood functions are unknown or are computationally intractable. These methods have recently
attracted considerable attention in a variety of application domains, including statistical machine leaning [5,39,46,57],
finance and econometrics [15,28,35,48,51], biology [36,44,52], computer science [37], environmental statistics [31,
32,50], social networks analysis [34], signal processing [47,49], forecasting and data assimilation [43,45,56].

The convergence analysis of the PMCMC methods was initiated in a series of articles [3,12,42,46,47]. The φ-
irreducibility and aperiodicity of PMCMC models was already discussed in the pioneering article [2]. Uniform er-
godicity results with quantitative estimates of the convergence properties of particle Gibbs methods are presented by
Chopin and Singh in [12], using a coupling technology of ancestral particle paths. More refined contraction estimates
are obtained by Andrieu, Lee and Vihola [3] using a conditional type analysis of the normalizing particle constants,
and in Lindsten, Douc and Moulines [42] which provides similar quantitative estimates using lower bound estimates
of PMCMC transition probabilities based on the stability of Feynman–Kac semigroups. In all of these studies, the
validity of PMCMC samplers is assessed by interpreting these models as a traditional MCMC sampler on a sophisti-
cated and extended state space. The more recent article [11] also proposes a first order analysis of the bias estimates
of forward and backward particle approximations of Feynman–Kac models. For a time horizon n and particle systems
of size N , these first order expansions allow us to consider the bias estimates (both upper and lower bounds) for pos-
sibly unbounded functions; these estimates are of order n/N . As a by-product of their analysis, the authors provide
convergence rates to equilibrium of order n/N for forward and backward type particle Gibbs samplers.

Our article is concerned with an alternative probabilistic foundation of PMCMC methodology. It is known that
Metropolis–Hasting type PMCMC methods reduce to standard Metropolis–Hastings with a target Feynman–Kac
distribution that encapsulates the distribution of the auxiliary particle model (see, for instance, the article [1], and
Section 2.2.5 in [25], in the context of Hidden Markov Chain problems with fixed unknown parameters).

The first part of our article shows that the PMCMC sampler based on the sampling of a particle model with a frozen
trajectory (refered to as a particle Gibbs sampler or PG sampler from now on, see Section 3.1) reduces to a standard
Gibbs sampler described in Section 3.2. The proof of this result is based on a new duality relation (Theorem 3.1)
that can be seen as an extension of known unbiasedness properties of Feynman–Kac models to their many-body
version (henceforth, the many-body Feynman–Kac models refers to the extension of the usual Feynman–Kac models
to collective motions of particles; see Section 2.6 for precise definitions).

This natural point of view considerably simplifies the design and the convergence analysis of PG samplers, see
e.g., Section 4.4. Finally, the new formulation also allows the design of new and natural classes of PMCMC samplers
based on island type models and particle Gibbs methodology, see Section 6.1.

The last part of the article is concerned with the propagation of chaos properties of PG samplers. We design explicit
Taylor type expansions of the law of a finite block of particles in terms of the population size of the particle model
(Theorem 5.21). These expansions are naturally parametrized by decorated (“infected”) forests. Their accuracy at any
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order is related naturally to the number of coalescent edges and the number of infections. To the best of our knowledge,
these propagation of chaos series are the first results of this type for this class of PMCMC methods.

The convergence rate n/N to equilibrium for PG samplers follows from the propagation of chaos expansion as
soon as the Feynman–Kac semigroup of the marginal target measures forgets its initial value (see, for example, The-
orem 3.2, and the regularity condition (2.6)). We note that similar decay rates to equilibrium with linear scaling
are also derived in [3,42], but under stronger mixing conditions on the reference Markov chain, and using different
lower bound estimation techniques on the minorizing constant for the particle Gibbs kernel. Using partially heuristic
arguments, the linear scaling of the number of particles with respect to the time horizon is also discussed in [30,51].

These expansions also provide Taylor decompositions of the semigroup of PG chains around their invariant target
measures with respect to the precision parameter 1/N , where N represents the size of the particle system (see, e.g.,
Theorem 4.14). Subject to some stability properties on Feynman–Kac semigroups, a direct consequence of these
Taylor series expansions is that the Dobrushin contraction coefficient is of order n/N , where n stands for the length
of the trajectories (Proposition 4.11).

The article [11] shows that the linear dependence of the convergence rate with respect to the time horizon n is
not surprising: the same type of linear scaling arises in the propagation of chaos and the fluctuation analysis of
Feynman–Kac particle models on path spaces (see, for instance, Corollary 8.5.1 in [16], as well as Corollary 15.2.5
and Theorem 16.5.1 in [20]; see also Theorem 3.3 in [11]).

The impact of the Taylor series expansions developed in the present article is also illustrated with sharp and non-
asymptotic expansions of the Dobrushin contraction coefficient of iterated PG transitions. We also provide an explicit
decomposition of the Lp-distance between the law of the random states of a class of PMCMC methods around the
limiting invariant measure. These results can also be used to estimate the bias and the variance of the random states of
the occupation measures of the particle systems. The duality phenomenon allows us to apply these Taylor expansions
to the original Feynman–Kac particle models.

The article is organized as follows. Section 2 reviews some well known results on Feynman–Kac models and their
mean field particle interpretation, including path space models and backward particle Markov chain measures. We
illustrate the results with applications to nonlinear filtering and physics. Section 2.6 introduces many-body Feynman–
Kac models aimed at describing the collective motion of particles in the usual Feynman–Kac models. These models
are particularly well suited to the analysis of PMCMC samplers.

Section 3 briefly describes particle Gibbs models and states some of the main results of the article.
Section 4 studies these models in depth and proves that PG samplers reduce to Gibbs samplers of a many-body

Feynman–Kac target measure. Section 4.1 provides a transport equation and a new duality relation between many-
body Feynman–Kac models and Feynman–Kac particle models with a frozen trajectory. Section 4.2 considers histor-
ical particle methods and their dual frozen particle methods. For instance, we show that the conditional distribution of
the ancestral lines of the Feynman–Kac particle model with respect to the complete history of its populations coin-
cides with the backward particle method. Section 4.3 studies the behaviour (reversibility, Dobrushin coefficient, etc.)
of the Markov transitions of two PG samplers (the one based on the selection of an ancestral line in a genealogical
tree and the one based on a backward sampling method). Section 4.4 describes the Taylor expansions of PG transi-
tions around their invariant measures. We also derive some important consequences of these expansions, including
quantitative estimates of the stability properties of these methods, and sharp estimates of the bias and variance of the
random states of the PG Markov chain.

Section 5 considers the propagation of chaos properties of these models. Section 5.1 collects some preliminary
combinatorial results on tensor products of empirical measures. Section 5.2 considers non-asymptotic Taylor series of
q-tensor products of unnormalized particle measures. Section 5.3 discusses the propagation of chaos properties and
related Taylor expansions of frozen particle models. Section 5.4 describes the Taylor series decompositions in terms
of infected and coalescent forest expansions.

Section 6 presents a new class of island PMCMC samplers, and discusses some extensions and open questions.

2. From mean field to many-body Feynman–Kac models

This section first collects some basic notation used in this article and then recalls the definition and main properties of
Feynman–Kac measures on their usual state and path spaces. The last paragraph introduces a particular Feynman–Kac
model that is well-suited to the mathematical analysis of PMCMC samplers (see also [55]). We refer to [16] for further
details on Feynman–Kac models and their standard properties.
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2.1. Notation

Given some measurable space S, we denote by M(S), P(S) and B(S), respectively, the set of finite signed measures
on S, the convex subset of probability measures, and the Banach space of bounded measurable functions equipped
with the uniform norm ‖f ‖ = supx∈S |f (x)|.

The total variation norm on measures μ ∈M(S) is defined by

‖μ‖tv := sup
f∈B(S):‖f ‖≤1

∣∣μ(f )
∣∣ with the Lebesgue integral μ(f ) :=

∫
μ(dx)f (x).

We also denote by δa the Dirac measure at some state a, so that δa(f ) = f (a). We say that ν ≤ μ if ν(f ) ≤ μ(f ) for
any non-negative function f .

A bounded integral operator Q(x, dy) between the measurable spaces S and S′ maps any f ∈ B(S′) to the measur-
able function Q(f ) ∈ B(S) defined by

Q(f )(x) :=
∫

Q(x, dy)f (y).

The operator Q generates a dual operator μ ∈M(S) �→ μQ ∈M(S ′) by the dual formula (μQ)(f ) = μ(Q(f )).
When a bounded integral operator M from a state space S into a possibly different state space S′ has a constant

mass, that is, when M(1)(x) = M(1)(y) for any x,y ∈ S, the operator μ �→ μM maps the set M0(S) of measures μ

on S with null mass μ(1) = 0 into M0(S
′). In this situation, we let β(M) be the Dobrushin coefficient of a bounded

integral operator M defined by the formula

β(M) := sup
{
osc
(
M(f )
);f s.t. osc(f ) ≤ 1

}
,

where osc(f ) := supx,y |f (x) − f (y)| stands for the oscillation of some function.
When M is a Markov transition operator, β(M) coincides with the Dobrushin contraction parameter, also known

as the Dobrushin ergodic coefficient, which is defined by

β(M) = sup
μ,ν

(‖μM − νM‖tv/‖μ − ν‖tv
)= 2−1 sup

x,y

∥∥M(x, ·) − M(y, ·)∥∥tv.
The q-tensor product of Q is the integral operator defined for any f ∈ B(Sq) by

Q⊗q(f )
(
x1, . . . ,xq

) := ∫ { ∏
1≤i≤q

Q
(
xi , dyi

)}
f
(
y1, . . . ,yq

)
.

We also denote by Q1Q2 the composition of two operators defined by

(Q1Q2)(x, dz) :=
∫

Q1(x, dy)Q2(y, dz).

The Boltzmann–Gibbs transformation ΨG : η ∈ P(S) �→ ΨG(η) ∈ P(S) associated with some positive function G on
some state space S is defined by

ΨG(η)(dx) := 1

η(G)
G(x)η(dx).

We also denote by #(E) the cardinality of a finite set and we use the standard conventions (sup∅, inf∅) = (−∞,+∞),
and (
∑

∅
,
∏

∅
) = (0,1).

Finally, we recall the notion of the differential for sequences of measures introduced in [21]. We let μN be a
uniformly bounded sequence of measures on some measurable state space S in the sense that supN≥1 ‖μN‖tv < ∞.



On particle Gibbs samplers 1691

The sequence μN is said to converge strongly to some measure μ, as N ↑ ∞, if limN↑∞ μN(f ) = μ(f ) for any
bounded measurable function f . In this case, the discrete derivative of μN is defined by

∂μN := N
(
μN − μ

)
.

We say that μN is differentiable whenever ∂μN is uniformly bounded and strongly converges to some signed measure
d(1)μ as N ↑ ∞. When ∂μN is differentiable, with a discrete derivative written as ∂(2)μN , we can define its derivative,
denoted by d(2)μ, etc. A mapping N �→ μN that is differentiable up to some order l can be written as

μN =
∑

0≤k≤l

1

Nk
d(k)μ + 1

Nl+1
∂(l+1)μN,

with the convention d(0)μ = μ. We can easily extend these definitions to a sequence of integral operators QN and a
sequence of functions f N , where we denote the corresponding differentials by d(l)Q and d(l)f .

2.2. Feynman–Kac measures and their mean field interpretation

We now consider a collection of non-negative bounded potential functions Gn on some measurable state spaces Sn,
with n ∈N. We also let Xn be a Markov chain on Sn with initial distribution η0 ∈P(S0) and some Markov transitions
Mn from Sn−1 into Sn. The Feynman–Kac measures (ηn, γn) associated with the parameters (Gn,Mn) are defined for
any fn ∈ B(Sn) by ηn(fn) := γn(fn)/γn(1) with

γn(fn) = E
(
fn(Xn)Zn(X)

)
and Zn(X) =

∏
0≤p<n

Gp(Xp). (2.1)

We implicitly assume that γn(1) > 0. The evolution equations associated with these measures are

γn+1 = γnQn+1 and ηn+1 = Φn+1(ηn) := ΨGn(ηn)Mn+1, (2.2)

with the integral operators

Qn+1(xn, dxn+1) = Gn(xn)Mn+1(xn, dxn+1).

We will often assume below that Xn = (X′
0, . . . ,X

′
n) is the chain of trajectories associated with an auxiliary Markov

chain X′
n with Markov transitions M ′

n from S′
n−1 to S′

n (so that Sn = S′
0 × · · · × S′

n). In this context we will al-
ways assume that Gn(Xn) only depends on the terminal state of the trajectory (Gn(Xn) = G′

n(X
′
n)). All the quanti-

ties, measure, operators, etc. associated with the Markov chain X′
n are written with a prime. For example, η′

n is the
Feynman–Kac measure defined recursively by

η′
n+1 = ΨG′

n

(
η′

n

)
M ′

n+1, (2.3)

or, equivalently, as the nth marginal of ηn.
The unnormalized measures γn can be expressed in terms of the normalized ones using the well known product

formula

γn(fn) = ηn(fn)
∏

0≤p<n

ηp(Gp).

We also recall the semigroup decompositions

∀0 ≤ p ≤ n γn = γpQp,n and ηn = ηpQp,n

with the integral operators Qp,n = Qp+1 · · ·Qn, and the normalized semigroups

Qp,n(fn)(xp) = Qp,n(fn)(xp)/ηpQp,n(1) = (Qp+1 · · ·Qn)(fn)(xp).
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In the above equation, Qp+1 stands for the collection of integral operators defined as Qp+1 by replacing Gp with the
normalized potential functions Gp = Gp/ηp(Gp). We will also often assume that

(G) gn = sup
0≤p≤q≤n

∥∥Qp,q(1)
∥∥< ∞. (2.4)

This condition is clearly met when g̃n =: supx,y(Gn(x)/Gn(y)) < ∞.
The mean field particle interpretation of the measures (ηn, γn) starts with N independent random variables ξ0 :=

(ξ i
0)1≤i≤N ∈ SN

0 with common law η0. The simplest way to evolve the population of N individuals (also known as
samples, particle, or walkers) ξn := (ξ i

n)1≤i≤N ∈ SN
n is to consider N conditionally independent individuals ξn+1 :=

(ξ i
n+1)1≤i≤N ∈ SN

n+1 that have a common distribution

Φn+1
(
m(ξn)
)

with m(ξn) := 1

N

∑
1≤i≤N

δξi
n
. (2.5)

The resulting particle model is a genetic type particle model with a selection and a mutation transition dictated by the
potential function Gn and the Markov transition Mn.

Loosely speaking, the model works recursively as follows: If we start from a sample ξ
(N)
0 at t = 0 of the initial

distribution η0 (so that m(ξ0) N↑∞ η0), and assume that m(ξn) N↑∞ ηn, then the population at time (n + 1) is
formed with N “almost” independent samples with respect to ηn+1 so that m(ξn+1) N↑∞ ηn+1. See [16] for details.

If Xn is the Markov chain of the trajectories of an auxiliary Markov chain X′
n, then ξn is a set of trajectories,

ξ i
n = (ξ i

0,n, . . . , ξ
i
n,n) ∈ Sn = (S′

0 × · · · × S′
n). These trajectories will also be referred to as ancestral lines (of the ξ i

n,n)

as each trajectory ξ i
n encodes the genealogy of the terminal particle ξ i

n,n. The sequence (ξ0, . . . , ξn) of all the ξp , from
p = 0 to p = n, contains all the informations about the genealogies of the ξ i

p,p,p ≤ n, i ≤ N . It will also be referred
to as the genealogical tree of the Feynman–Kac particle interpretation ξ ′

n of the measures (η′
n, γ

′
n).

2.3. Regularity conditions

It is necessary to introduce regularity conditions to control the convergence of the mean field approximations of
Feynman–Kac measures. We introduce a regularity hypothesis that (besides (G)) will be frequently used later in the
article. It is well-suited, as is clear from its definition, to the study of ergodic properties of Feynman–Kac models, see
e.g., [20] for further details.

This section assumes that Xn is the chain of trajectories of an auxiliary Markov chain X′
n and states the conditions

for the latter chain.
We let η

′,x
p,n be the solution of the equations (2.3) starting at the Dirac measure δx at time p ≤ n, for some state

x ∈ S′
p . The regularity condition, denoted as (H), is

(H) sup
p≥0

∑
n≥p

(
g̃′

n − 1
)
β ′

p,n < ∞, (2.6)

with

β ′
p,n := sup

x,y

∥∥η′,x
p,n − η

′,y
p,n

∥∥
tv and g̃′

n = sup
x,y

(
G′

n(x)/G′
n(y)
)
< ∞,

where ‖ · ‖tv is the total variation norm defined in Section 2.1.
Condition (H) is satisfied if supn≥0 g̃′

n < ∞ and β ′
p,n ≤ ae−λ(n−p), for some finite constants 0 < a,λ < ∞. It is

related to the stability properties of the limiting Feynman–Kac measures and ensures that local errors do not propagate
with respect to the time horizon. For time homogeneous models with supx,y(G

′(x)/G′(y)) < ∞ (where G′ := G′
n and

similarly for other symbols without lower indices), condition (H) is satisfied as soon as the Markov transition kernel
M ′ of the chain X′

n satisfies the minorisation condition M ′,m(x, dz) ≥ εM ′,m(y, dz) for some m ≥ 1 and ε > 0, and
for any x,y ∈ S′ (see, e.g., [18,27] for applications to nonlinear filtering).

In addition, supn≥0 gn := g < ∞, where gn is as in Equation (2.4), as soon as condition (H) is satisfied. Chap-
ter 12.2.1 in [20] proves this result. In particular, (H) implies (G).
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2.4. Some illustrations

Feynman–Kac measures appear in numerous scientific fields including signal processing, statistics, mathematical
finance, rare event analysis, chemistry and statistical physics; see [8–10,16,18,20,24] and [29]. Their mean field inter-
pretation depends on the application domain. We briefly outline two examples to illustrate.

2.4.1. Nonlinear filtering
Let (X′

n,Yn)n≥0 be a Markov chain on some product state space (E1 × E2) whose transition mechanism takes the
form

P
((

X′
n,Yn

) ∈ d(x,y)|(X′
n−1, Yn−1

))= Kn

(
X′

n−1, dx
)
gn(y,x)νn(dy), (2.7)

where (νn)n≥0 is a sequence of positive measures on E2, (Kn)n≥0 is a sequence of Markov kernels from E1 into itself,
and (gn(·,x))n≥0 is a sequence of conditional density functions on E2. These filtering models are often described by
a partially observed dynamic random system. For instance, when E1 = E2 =R, these systems may take the common
form

X′
n = a
(
X′

n−1

)+ Wn and Yn = b
(
X′

n

)+ Vn, (2.8)

with a sequence of independent random variables Wn and Vn, and some bounded functions a, b on R. When the
random variables Vn have some density hn(v) with respect to the Lebesgue measure dv on R, (2.7) holds with
gn(y,x) = hn(y − b(x)). The aim of filtering is to infer the trajectories Xn = (X′

0, . . . ,X
′
n) of the hidden Markov

process X′
n given a series of observations Yk from the origin k = 0, up to the current time k = n. Choosing

Sn = E1, Gk(xk) = G′
k

(
x′
k

) := gk

(
yk,x′

k

)
and Mk = Kk (2.9)

for any xk = (x′
0, . . . ,x′

k) ∈ Sn =R
n+1, it is easily checked that

ηn = Law(Xn|Yk = yk,0 ≤ k < n) = Law
((

X′
0, . . . ,X

′
n

)|Yk = yk,0 ≤ k < n
)
.

2.4.2. Hidden Markov chain models
We further assume that the signal perturbations Wn in (2.8) are Gaussian centered random variables with an unknown
variance θ . We take the prior distribution for θ as an inverse gamma distribution

λ(dθ) := βα

Γ (α)
θ−(α+1)e−β/θ1R+(θ) dθ,

with α and β its shape and scale parameters, where Γ (α) is the gamma function. The Hidden Markov chain problem
consists of computing the conditional distributions

ηn = Law
(
(Θ,Xn)|Yk = yk,0 ≤ k < n

)
. (2.10)

A natural strategy when the priors on the parameters are conjugate is to use a Gibbs sampler. We end this section with
a brief discussion of these MCMC methodologies. Section 4.5 provides further details on these statistical learning
models and their mean field particle Gibbs samplers.

It is readily checked that the conditional distribution λn,x of Θ given the historical process Xn = x = (x′
0, . . . ,x′

n)

(and the sequence of observations Yk = yk,0 ≤ k < n) is again an inverse-gamma distribution with shape and scale
parameters

αn := α + n/2 and βn(x) := β + 1

2

∑
1≤k≤n

(
x′
k − ak

(
x′
k−1

))2
.
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It is straightforward to sample from this conditional distribution. On the other hand, arguing as in (2.9), we first observe
that the conditional distribution ηθ,n of Xn given Θ = θ , and Yk = yk,0 ≤ k < n are defined by the Feynman–Kac
model (2.1) with a reference Markov chain Xn with Markov transitions Mn,θ and the potential functions

Gk,θ (xk) = G′
k,θ

(
x′
k

) := 1√
2πθ

exp

(
− 1

2θ

(
yk − bk

(
x′
k

))2)
that depends on the parameter θ . We let Kn,θ be a collection of Markov transitions with invariant measure ηn,θ on the
path space Sn,

Kn

(
(θ, dx), d(θ, dx)

)= λn,x(dθ)Kn,θ (x, dx) (2.11)

and denote by νn = Law(Xn|Yk = yk,0 ≤ k < n) and λn = Law(Θ|Yk = yk,0 ≤ k < n). We readily check that ηn =
ηnKn is Kn invariant; i.e.,∫

ηn

(
d(θ,x)

)
Kn

(
(θ, dx), d(θ, dx)

) = ∫ νn(dx)λn,x(dθ)Kn,θ (x, dx)

= λn(dθ)

∫
ηn,θ (dx)Kn,θ (x, dx) = ηn

(
d(θ,x)

)
.

For more general hidden Markov chain problems with general priors, we can replace the distribution λn,x in (2.11) by
any collection of Markov chain transition Pn,x(θ, dθ) s.t. λn,x = λn,xPn,x, for any path x.

2.4.3. Physics and chemistry
Feynman–Kac models are widely in physics and chemistry to describe molecular systems. The Feynman–Kac measure
ηn can be interpreted as the solution of a discrete-time approximation of an imaginary time Schrödinger equation. If
we set I as the identity operator, then the Markov kernel M Δt↓0 I + LΔt of the chain Xn corresponds to the
discretization of a continuous-time stochastic process Xt with infinitesimal generator L, Gn = e−V Δt , where V is a
potential energy, and tn+1 − tn := Δt � 1, is a discretization time-step associated with some time mesh tn = n�t/n�.
Replacing the chain Xn in the formulas by the random state of the discrete time approximation model Xtn , we obtain

ηtn(f ) ∝ E

(
f (Xt0, . . . ,Xtn) exp

{
−
∑

0≤tk<tn

V (Xtk )(tk+1 − tk)

})
.

The marginal γt with respect to the terminal time t of the above measures is often defined, in a weak sense, by the
imaginary time Schrödinger equation

d

dt
γt (f ) = γt

(
LV (f )

)
with LV (f ) = L(f ) − Vf.

For a more thorough discussion of these continuous-time models and their applications in chemistry and physics, see
[6,7,26,38,40,41,54], the recent monograph [20], and the references therein.

2.5. Path space models

To illustrate the generality of the Feynman–Kac models discussed above, we develop more systematically the links
between a given state space and its path space. We replace the 5-tuple (Gn,Mn,Qn,Sn,Xn) by its path-space analog
(Gn,Mn,Qn,Sn,Xn). That is, in the constructions of the previous paragraph, each item of the first 5-tuple is going to
be replaced by its path space analog: Xn is the historical process associated with Xn,

Xn := (X0, . . . ,Xn) ∈ Sn := (S0 × · · · × Sn). (2.12)

We write Mn for the Markov transition of Xn. The functions Gn on Sn only depend on the last coordinate and are
defined by Gn(Xn) := Gn(Xn).
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When Xn is already the path Xn = (X′
0, . . . ,X

′
n) of an auxiliary Markov chain, Xn is a path of paths:

Xn = (X0, . . . ,Xn) = ((X′
0

)
,
(
X′

0,X
′
1

)
, . . . ,
(
X′

0, . . . ,X
′
n

))
.

This situation occurs later in the article.
In general, dotted symbols, where appropriate, (e.g., M ′

n, η
′
n, . . . ) refer to the auxiliary Markov chain X′

n, a bold
symbol denotes an element, function, measure, etc. on the path space of Xn – as in the present paragraph. In partic-
ular, we let (γ n,ηn, ξn) be the Feynman–Kac measures and the particle model defined as (γn, ηn, ξn), by replacing
(Gn,Mn,Qn,Sn,Xn) by (Gn,Mn,Qn,Sn,Xn). The two measures on the state space Sn are given for any fn ∈ B(Sn)

by ηn(fn) := γ n(fn)/γ n(1), with

γ n(fn) = E
(
fn(Xn)Zn(X)

)
. (2.13)

The same observations hold as for the relationships between Xn and its auxiliary Markov chain X′
n: by construction,

(γn, ηn) are the Sn marginals of the measures (γ n,ηn). The mean field particle interpretation ξn = (ξ i
n)1≤i≤N of the

path-space Feynman–Kac measures (γ n,ηn) is defined in terms of path-valued particles

∀1 ≤ i ≤ N ξ i
n = (ξ i

0,n, ξ
i
1,n, . . . , ξ

i
n,n

) ∈ Sn := (S0 × · · · × Sn). (2.14)

The ith particle ξ i
n can be seen as the line of ancestors ξ i

p,n of the ith individual ξ i
n := ξ i

n,n at time n, at every
ancestral level 0 ≤ p ≤ n, with 1 ≤ i ≤ N . The path space model ξn clearly coincides with the genealogical tree of
the Feynman–Kac particle interpretation ξn = (ξ i

n)1≤i≤N of the measures (ηn, γn) defined in (2.5).
To distinguish as clearly as possible the three levels of Feynman–Kac models we adopt the following terminology.

Definition 2.1. The 3-tuple (ηn, γn, ξn) is called the Feynman–Kac particle model associated with the potential func-
tions Gn and the Markov transitions Mn on the state spaces Sn. When Xn = (X′

0, . . . ,X
′
n), the 3-tuple (η′

n, γ
′
n, ξ

′
n)

is called the auxiliary particle model associated with (ηn, γn, ξn). The path space model (γ n,ηn, ξn) is called the
historical version of (γn, ηn, ξn).

Whenever the integral operators Qn have some densities Hn with respect to some reference distributions υn on Sn,
the path space measure ηn can be expressed in terms of the marginal measures (ηp)0≤p≤n using the well known
backward formula (see for instance [22])

ηn(dxn) = ηn(dxn)
∏

1≤k≤n

Lk,ηk−1(xk, dxk−1) (2.15)

with the collection of Markov transitions Ln+1,ηn from Sn+1 into Sn defined by

Ln+1,ηn(xn+1, dxn) = ηn(dxn)Hn+1(xn,xn+1)/ηn

(
Hn+1(·,xn+1)

)
. (2.16)

In (2.15), xn stands for the trajectory xn = (x0, . . . ,xn) ∈ Sn := (S0 × · · · × Sn). Finally, we recall that the mean field
approximations of the Feynman–Kac measure γ n are unbiased (see e.g., [16]):

Proposition 2.2. Two unbiased estimators of γ n are defined by

γ (N,i)
n :=Zn(ξ) × η(N,i)

n , i = 1,2 with Zn(ξ) :=
∏

0≤p<n

m(ξp)(Gp) (2.17)

and the two random measures (η
(N,1)
n ,η

(N,2)
n ) on Sn are defined by

η(N,1)
n (dxn) := m(ξn)(dxn) and η(N,2)

n (dxn) := m(ξn)(dxn)
∏

1≤k≤n

Lk,m(ξk−1)(xk, dxk−1).



1696 P. Del Moral, R. Kohn and F. Patras

2.6. Many-body Feynman–Kac models

This section introduces a key ingredient of the developments to follow: the idea of many-body Feynman–Kac models.
As the name “many-body” suggests, these Feynman–Kac models encode properly the collective motion under mean
field constraints of the system of particles associated with a standard Feynman–Kac particle system.

In practice, we consider the set of particles of a standard Feynman–Kac particle model as a proper Markov chain.
This simple idea allows us to recast the unbiasedness properties of mean field approximations of the Feynman–Kac
measures, and is also be the key to the duality results below.

We fix the size N of the particle model, and set Sn := S
[N ]
n for the N th symmetric power of Sn: S

[N ]
n := (Sn ×

· · · × Sn)/ΣN = SN
n /ΣN , where we write ΣN for the symmetric group of order N . The image in Sn of an ordered

sequence (x1, . . . ,xn) ∈ SN
n will sometimes be written with the set-theoretical notation {x1, . . . ,xn} to emphasize that

the order of the xi does not matter, although we will also often identify (x1, . . . ,xn) with its image in S
[N ]
n without

further notice when no confusion can arise.
For example, with this slight abuse of notation, we note for later use that the particle model ξn can be viewed as a

Sn-valued Markov chain (since the distribution of the ξ i
n, i = 1, . . . ,N , is ΣN -invariant) we will have, for a function

f on Sn,

f (ξn) := f
({

ξ1
n , . . . , ξN

n

})=: f (ξ1
n , . . . , ξN

n

)
.

In general, it will be always implicitly assumed from now on that the functions on SN
n (in practice, functions of

population of particles of the models) are symmetric. Due to the symmetry properties of Feynman–Kac models, this
does not result in a loss of generality.

Later in this section we use calligraphic letters such as xn and yn = {yi
n}1≤i≤N to denote states in the product

spaces Sn = S
[N ]
n , and slanted roman letters such as xn, yn, zn to denote states in Sn. The path sequences in the

product spaces Sn :=∏0≤p≤n Sp and Sn :=∏0≤p≤n Sp are denoted by bold letters such as xn = (xp)0≤p≤n ∈ Sn

and xn = (xp)0≤p≤n ∈ Sn.
We write Mn for the Markov transitions of the particle model χn:= ξn viewed now as a Markov chain on Sn,

and introduce the potential functions Gn(χn) = m(χn)(Gn). We let (Πn,Γn) be the Feynman–Kac measures on Sn

defined for any Fn ∈ B(Sn) by Πn(Fn) := Γn(Fn)/Γn(1), with

Γn(Fn) = E
(
Fn(χn)Zn(χ)

)
and Zn(χ) =

∏
0≤p<n

Gp(χp). (2.18)

Equivalently, the Feynman–Kac model on Sn can be turned into a Feyman–Kac model on P(Sn), by replacing in
(2.18) the chain χn by the occupation measure m(χn).

We note that the unbiasedness properties of γ
(N,1)
n (1) ensure that Γn(1) = γn(1). Using (2.2), it is readily checked

that

Γn+1 = ΓnQn+1 and Πn+1 := ΨGn
(Πn)Mn+1, (2.19)

with the integral operators

Qn+1(xn, dxn+1) = Gn(xn)Mn+1(xn, dxn+1).

We denote by (Πn,Γ n) the Feynman–Kac measures associated with the historical process χn= (χ 0, . . . , χn), and
the potential functions Gn(χn) := Gn(χn) on the path space Sn. These measures are defined for any Fn ∈ B(Sn) by
Πn(Fn) := Γ n(Fn)/Γ n(1), with

Γ n(Fn) = E
(
Fn(χn)Zn(χ)

)
. (2.20)

Whenever the integral operators Qn have some densities Hn with respect to some reference distributions υn on Sn,
given χn we let X�

n be a random path with conditional distributions

K�
n(χn,dxn) := m(χn)(dxn)

∏
1≤k≤n

Lk,m(χk−1)(xk, dxk−1). (2.21)
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In (2.21), xn stands for the path xn = (xp)0≤p≤n ∈ Sn, and Lk,m(χk−1) are the Markov transitions defined in (2.16).
We also denote by Xn a random variable with conditional distribution given χn defined by

Kn(χn, dxn) = m(χn)(dxn). (2.22)

Lemma 2.3. The unbiasedness property of the measure γ
(N,2)
n is equivalent to

E
(
fn
(
X�

n

)
Zn(χ)

)= E
(
fn(Xn)Zn(X)

)
, (2.23)

for any fn ∈ B(Sn). The unbiasedness property of the measure γ
(N,1)
n implies that for any fn ∈ B(Sn),

E
(
fn(Xn)Zn(χ)

)= E
(
fn(Xn)Zn(X)

)
. (2.24)

We emphasize that (2.24) holds for general Feynman–Kac models, i.e. without any regularity conditions on Qn.

Definition 2.4. The measures (Πn,Γn) and their path space versions (Πn,Γ n) are called the many body Feynman–
Kac measures associated with the particle interpretation (2.5) of the measures (ηn, γn).

From an abstract point of view, in view of (2.24), all of these measures are essentially equivalent to the abstract
Feynman–Kac model introduced in (2.1).

3. Particle Gibbs samplers: Presentation and statement of results

In this section we will always assume that Xn is the historical path of an auxiliary Markov chain X′
n; that is, Xn =

(X′
0, . . . ,X

′
n) ∈ Sn = (S′

0 × · · · × S′
n), for each n ≥ 0.

3.1. Frozen trajectories and the PG sampler

We first describe the freezing process. The notation for Markov chains, state spaces, etc. is the same as in the previous
section. We now fix the size of the particle system N as well as the time horizon n ≥ 0.

Let some random path X := (Xk)k≥0 be fixed. We let Xn be the N -particle Markov chain defined as χn in Sec-
tion 2.6 except that we enforce it to contain one frozen state Xn at each time step. More precisely, we start with
(N − 1) independent random variables (ξ i

0)2≤i≤N ∈ SN−1
0 with common law η0, and set: X0 := {X0, ξ

2
0 , . . . , ξN

0 }.
In general, given Xk = {Xk, ξ

2
k , . . . , ξN

k },0 ≤ k < n, we consider (N − 1) conditionally independent individuals
(ξ i

k+1)2≤i≤N ∈ SN−1
k+1 having common distribution

Φk+1
(
m(Xk)

)
with m(Xk) := 1

N

(
δXk

+
∑

2≤i≤N

δξi
k

)
, (3.1)

and set Xk+1 := {Xk+1, ξ
2
k+1, . . . , ξ

N
k+1}.

The key idea underlying PMCMC methods is that this freezing technique allows us to define a new Markov transi-
tion on the space of trajectories that (under some reasonable assumptions) has the targeted Feynman–Kac measure ηn

as its invariant distribution. The standard MCMC method can then be used: a new Markov chain can be constructed
iteratively using the new Markov transition to sample the invariant distribution ηn.

We now define the new Markov chain Y
(N)
p ∈ Sn,p ≥ 0. We start from a trajectory x = (xp)0≤p≤n ∈ Sn, xp =

(x′
0, . . . ,x′

p) ∈ Sp = (S′
0 × · · · × S′

p). We set Y(N)
0 := xn ∈ Sn and run the particle model (Xk)0≤k≤n defined as above

with the frozen trajectory x, up to a given time horizon n. We write, as usual, X n = (X0, . . . ,Xn) ∈Sn.
For Xn = {y1, . . . ,yN } ∈ S

[N ]
n , we let Xn be a randomly chosen element in Sn with the uniform distribution

1
N

∑
1≤i≤N δyi , and set

Y
(N)
1 ∼ Law(Xn|Xn).
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◦ ◦ ◦ ◦
Y1

◦ ◦ ◦ ◦

◦ ◦ ◦
Y0 ◦

Fig. 1. A realization of the transition Y0 � Y1 for N = 3 particles and a time horizon n = 3. The dotted and plain lines account together for the
three paths in X3, the dotted line represents Y0, and the sequence of arrows Y1.

Specifically, at the terminal time n, we select uniformly in Xn, viewed as a set of N particles in Sn (or, equivalently,
N elements in the path space (S′

0 × · · · × S′
n)) one element Y(N)

1 = y. More generally, we let (Y
(N)
k )k≥0 be a time-

homogeneous Markov chain on Sn with transition probabilities

K
(N)
n (fn)(x) := E

(
fn

(
Y

(N)
1

)|Y(N)
0 = x

)
. (3.2)

To simplify the notation, we suppress from now on the index (·)(N) and write Yk and Kn, instead of Y(N)
k and K

(N)
n .

A similar convention holds for the self-avoiding Gibbs sampler (whose transition operator is written as K̃n).
Figure 1 illustrates a realization of the transition Y0 �Y1.
For later use, it is convenient to summarize this sampling process graphically: although the chain runs ultimately

on Sn, we incorporate the space Sn to the diagram and view the process as running on (Sn ×Sn). We obtain,{
Yn = x
X n = x

}
→
{
Yn = x ∼ (Xn|X n = x)

X n = x

}
→
{
Yn = x
X n = x ∼ (X n|Xn = x)

}
.

The fundamental result of the particle Gibbs methodology is that the “marginal” chain obtained by forgetting the
auxiliary particle system X n, i.e. the Markov chain whose Markov transition maps Yn to Yn, simulates the Feynman–
Kac measure ηn (in the MCMC sense: iterating the chain p times yields an empirical measure that converges to ηn

when p → ∞). The goal of our article is to build on previous results in the literature and analyse these phenomena
from the perspective of Feynman–Kac models. As we observed in the Introduction and the references there, in spite
of a wide range of applications, the literature on the theoretical properties of these models is still very limited.

3.2. The many-body Gibbs sampler

We now return to the classical Feynman–Kac particle models, in their many-body version. Let χk:= {χi
k}1≤i≤N be

the population after the kth mutation (initially we start with N independent copies of X0) and write χn= (χk)0≤k≤n ∈
Sn :=∏0≤k≤n Sk . With a slight abuse of the notation used in the previous section, we also let Xn be a random variable

in Sn with the uniform distribution 1
N

∑
1≤i≤N δχi

n
.

Finally, we consider the probability distributions πn on (Sn ×Sn) given for any bounded measurable function fn

on (Sn ×Sn) by the formula

πn(fn) ∝ E
(
fn(Xn,χn)Zn(χ)

)
with

Zn(χ) =
∏

0≤k<n

Gk(χk) with Gk(χk) = 1

N

∑
1≤i≤N

Gk

(
χi

k

)
.

The transition probabilities of the Gibbs sampler of the multivariate distribution πn on the product space (Sn × Sn)

are described by the synthetic diagram{
Xn = x
χn = x

}
→
{
Xn = x ∼ (Xn|χn= x)
χn = x

}
→
{
Xn = x
χn = x ∼ (χn|Xn = x)

}
.
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The notation (Xn|χn) and (χn|Xn) is shorthand for the πn-conditional distributions of Xn given χn, and χn

given Xn.
The first transition of the Gibbs sampler reduces to uniformly sampling an ancestral line.

3.3. First steps for obtaining duality and convergence properties

Since the theoretical analysis of PMCMC models under strong regularity assumptions on the potential functions is
already a challenging task from the Feynman–Kac perspective which we wish to develop, we decided not to obtain the
most general form of the results. That is, to avoid an unnecessary technical discussion, we will often assume that the
potential functions Gn are upper and lower bounded by some finite positive constant. However, in view of the existing
results on the convergence of classical Feynman–Kac particle models, we expect the boundedness assumption on the
potential functions can relaxed at the cost of an increased length and complexity of the proofs.

We note, for example, that the algebraic polynomial developments presented in this article involve the positivity of
certain integral operators (indexed by infected and coalescent forests). In this context, these rather strong regularity
properties of the potential functions can be relaxed so that these integral operators still have a finite norm. For instance,
Lemma 5.18 allows us to extend the analysis to bounded potential functions which are not necessarily lower bounded.
Besides, the extension of the results presented in this article to more general models, including indicator type functions
and unbounded potential functions, can also be analyzed using the methodologies developed in [16] (see for instance
Sections 2.3, 2.4, 3.5.2, and Section 7.2.2).

Our article expresses the rate of convergence to equilibrium of the PG chain Yk presented above in terms of powers
(c(n)/N)k of some ratio depending on some constant c(n) that, in turn, depends on the time horizon n of the target
Feynman–Kac measures (2.2). The non-asymptotic estimates derived in the article are valid for any bounded potential
functions Gk and for any Markov chain Xk such that ηn(Gn) > 0. The constant c(n) is expressed in terms of the norm
of the potential functions and the quantities ηk(Gk) (see, for instance the statement of Theorem 4.14).

Without any additional regularity conditions c(n) grows exponentially with respect to the parameter n. One of the
main purposes of the article is to show that the map n �→ c(n) grows linearly with respect to the time n as soon as the
Feynman–Kac model satisfies some natural stability conditions.

Next, we present a key duality formula that shows that the second transition of the many body Gibbs sampler
amounts to sampling a Feynman–Kac particle model with a frozen ancestral line.

Theorem 3.1. For any bounded measurable function fn on the product space (Sn ×Sn), we have the duality formula

E
(
fn(Xn,χn)Zn(χ)

)= E
(
fn(Xn,X n)Zn(X)

)
, (3.3)

where X n = (Xk)0≤k≤n stands for the historical version of a many body Feynman–Kac particle model with a given
frozen trajectory Xn.

Consequently, the particle Gibbs chain Yk with ancestral sampling defined in (3.2) coincides with the first coordi-
nate of the many body Gibbs sampler of the target distribution πn introduced in 3.2.

Section 4 proves the first assertion (see, e.g., Theorem 4.3 and Corollary 4.4 for Feynman–Kac models (2.2) on
general state spaces Sn, and Section 4.2 for models associated with an historical process). This result shows that the
chain Yk reduce to the first coordinate of a pair of Gibbs samplers with target measure πn. By (3.3), we conclude that
Yk is reversible with respect to the target measure ηn.

Besides stating this duality property, the following theorem gives a flavor for our forthcoming developments by
also stating various consequences of stronger results when they are applied to the study of convergence properties of
the particle Gibbs sampler.

Theorem 3.2. The operators Kn are differentiable at any order l ≥ 1 with d(0)
Kn(fn) = ηn(fn). If we further assume

that the regularity condition (H) stated in (2.6) is satisfied, then for any bounded measurable function f on the path
space Sn s.t. ‖fn‖ ≤ 1, the non-asymptotic estimates

∀1 ≤ k ≤ l
∥∥d(k)

Kn(f )
∥∥≤ (cnk2)k and

∥∥∂(l+1)
Kn(f )

∥∥≤ (cn(l + 1)2)l+1
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as soon as N > cn(l + 1)2, for some finite constant c < ∞.
Hence, there exists some finite constant c < ∞ such that for any m ≥ 1, x ∈ Sn, and any N > cn,∣∣E(f (Ym)|Y0 = x

)− ηn(f )
∣∣≤ (cn/N)m (−→min (N,m)→∞ 0), (3.4)

and for any p ≥ 1, we have a sharp non-asymptotic estimate of the Lp(ηn)-mean error norms∣∣∥∥Km
n (f ) − ηn(f )

∥∥
Lp(ηn)

− N−m
∥∥[d(1)

Kn

]m
(f )
∥∥
Lp(ηn)

∣∣≤ (cn/N)m+1,

with the mth iterates Km
n =Km−1

n Kn and [d(1)Kn]m := [d(1)Kn]m−1d(1)Kn of the operators Kn and d(1)Kn.

This theorem is a direct consequence of the more general Theorem 4.14, describing non asymptotic Taylor series
and their behaviour under regularity conditions.

The kth derivative integral operators d(k)
Kn are described in Section 5.4 in terms of Feynman–Kac semigroups

parametrized by coalescent and decorated forests of length n with (2k + 1) edges, and less than k coalescences and
infections.

We note that (3.4) can be used to estimate the Lyapunov exponent of the distribution semigroup of the PMCMC
chain Ym; i.e.,

lim inf
m→∞ − 1

m
log
∥∥Law(Ym) − ηn

∥∥
tv ≥ log

(
N/(cn)

)
.

Sections 4.4 and 4.5 describe more precisely these non-asymptotic Taylor expansions, including a series of illustrations
of the impact of these results on the estimation of the variance and the Dobrushin contraction coefficient of these
models. See, e.g., Theorem 4.14 and the discussion that follows.

3.4. Backward sampling

We end this section with a discussion of PG models based on backward particle samplers (see [2]).
We further assume that the integral operators G′

k(x)M ′
k+1(x, dy) have a density H ′

k+1(x,y) with respect to some
reference measure. In this context, and in order to apply the results of Section 2.5, we will view Xn as the historical
version of X′

n and introduce some extra notation: given the many body model associated with X′
n, χ ′

k:= {χ ′i
k }1≤i≤N ∈

Sk , the historical process associated with these populations is written as

χ ′
n:=
(
χ ′

k

)
0≤k≤n

∈S ′
n :=
∏

0≤k≤n

S ′
k.

We will call χ ′
n the complete population of the Feynman–Kac particle model associated with X′

n.
Here, the Feynman–Kac measure ηn defined in (2.2) can be interpreted as the distribution of a nonlinear backward

Markov chain model (see, for instance, (2.15) and (2.17) in Section 2.5). This backward particle model is a Markov
chain running backward in time with the state spaces {χ ′i

k ;1 ≤ i ≤ N} at each level k. The initial state of the chain
takes the value χ ′i

n with probability 1/N , with 1 ≤ i ≤ N . Then, at each level 0 ≤ k < n, the (conditional) probability

of going from state χ ′i
k+1 to state χ ′j

k is proportional to H ′
k+1(

χ ′j
k ,χ ′i

k+1). Consistent with Section 2.6, we denote by

X
�
n such a backward randomly chosen ancestral line.
Running the Feynman–Kac particle model with a given frozen path Y

�
0 := x = (x′

p)0≤p≤n ∈ Sn up to a given time

horizon n, we let Y�
1 := y be an ancestral line randomly chosen with the backward Markov chain model discussed

above (the initial value of the chain is one of the states at time n of the Feynman–Kac particle model with the frozen
trajectory, including x′

n). Iterating this transition, we define a Markov chain (Y
�
k)k≥0 on Sn. Section 4.3 provides

a more detailed description of the Markov transition of this backward particle MCMC model that we will call the
backward particle Gibbs sampler (BPG sampler).

Figure 2 illustrates a realization of the transitions Y�
0 �Y

�
1.
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◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦
Y

�
0

◦

Y
�
1

Fig. 2. Illustration of a realization of the transitions Y
�
0 � Y

�
1 for N = 3 particles and a time horizon n = 3. The nodes stand for all the particles

generated by the run of the model. The dotted line Y
�
0 together with the plain lines account for the three paths generated by the run at time n = 3.

Y
�
1 is the ancestral line randomly chosen according to the backward model.

◦ ◦ ◦
χ 1

2 ◦
χ 1

3

χ ′1
3

◦ ◦ ◦

χ 2
2

◦χ 2
3

χ ′2
3

◦ ◦ ◦
χ 3

2

◦χ 3
3

χ ′3
3

Fig. 3. A realization of the transitions χ 2 �χ 3 given χ ′
3 for N = 3 particles. Plain lines represent χ 2, dotted line χ 3. The law of the conditional

transition is described in Theorem 4.8.

In the context of BPG models, one of our main results can be stated as follows. Here, Xn is the randomly
chosen ancestral line defined in (2.22), and the many-body model χ ′

n associated to X′
n is viewed in practice as

a marginalization of the Feynman–Kac particle model ξn ∈ SN
n associated to Xn (so that, if ξp = (ξ i

p)i≤N and

ξ i
p = (ξ i

0,p, . . . , ξ i
p,p) ∈ Sp = (S′

0 × · · · × S′
p),p ≤ n,χ ′

p= {ξ i
p,p}i≤N ).

Theorem 3.3. Given the complete populations χ ′
n, the ancestral lines ξ i

n = (ξ i
k,n)0≤k≤n are copies of the backward

trajectory X
�
n starting at the terminal state χ ′i

n= ξ i
n,n, with 1 ≤ i ≤ N . That is,

Law
(
Xn|χ ′

n

)= Law
(
X

�
n|χ ′

n

)
. (3.5)

Consequently, the backward particle Gibbs sampler coincides with the Gibbs sampler targeting the (Sn × S ′
n)-

marginal distribution π ′
n of the measure πn defined in (3.3).

Section 4.2 proves the equivalence formula (3.5) between the ancestral and the backward samplers. Theorem 4.8
in the same section also provides an interpretation of the conditional behaviour of (χk)0≤k≤n given the complete
populations χ ′

n in terms of a Markov chain with elementary transitions defined by backward ancestor sampling.
Figure 3 illustrates a realization of the transitions χ 2 �χ 3 given χ ′

3. Combining (3.3) and (3.5), we prove the
duality formula

π ′
n(fn) ∝ E

(
fn

(
X

�
n,χ

′
n

)
Z ′

n

(
χ ′))= E

(
fn

(
Xn,X ′

n

)
Z′

n

(
X′)) (3.6)

for any bounded measurable function fn on the product space (symmetric on the product spaces S′N
k ), where X ′

n =
(X ′

k)0≤k≤n stands for the populations of the Feynman–Kac particle model with a given frozen trajectory Xn and
Z ′

n,Z
′
n are defined as usual.

The theorem shows that the Markov chain Y
�
k reduces to the first coordinate of a Gibbs sampler with target mea-

sure π ′
n; by (3.6) and (3.3) we conclude that Y�

k is reversible with respect to the target measure ηn.
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Finally, by the duality formula (3.6), the transition probabilities of the Gibbs sampler of the multivariate distribution
π ′

n on the product space (Sn ×S ′
n) are described by the synthetic diagram{

X
�
n = x

χ ′
n = x

}
→
{
X

�

n = x ∼ (X
�
n|χ ′

n = x)
χ ′

n = x

}
→
{
X

�

n = x
χ ′

n = x ∼ (X ′
n|Xn = x)

}
.

Above, (X
�
n|χ ′

n) and (X ′
n|Xn) is a shorthand notation for the π ′

n-conditional distributions of X�
n given χ ′

n, and X ′
n

given X
�
n.

4. Conditional particle Markov chain models

The purpose of this section is to explain PMCMC and, in particular, particle Gibbs sampling from the point of view
of many body Feynman–Kac models. It contains most of the proofs of the results stated in the previous section in
relation to the duality phenomena. Section 4.5 contains a number of remarks and implications of our work. These
developments are only sketched out to avoid making our article excessively long.

4.1. Transport equation for the many-body Feynman–Kac models

We start the section with a pivotal duality formula between the Feynman–Kac integral operator Qn and its many-body
version Qn.

Lemma 4.1. We have the duality formula between integral operators on Sn × Sn

Qn(xn−1, dxn)m(xn)(dxn) = (m(xn−1)Qn

)
(dxn)Mxn,n(xn−1, dxn) (4.1)

and

η⊗N
0 (dx0)m(x0)(dx0) = η0(dx0)μx0(dx0),

with the collection of Markov transitions

Mxn,n(xn−1, dxn) = 1

N

[
N−1∑
i=0

Φn

(
m(xn−1)

)⊗(i) ⊗ δxn ⊗ Φn

(
m(xn−1)

)⊗(N−i−1)

]
(dxn)

and the distribution

μx0 := 1

N

N−1∑
i=0

(
η
⊗(i)
0 ⊗ δx0 ⊗ η

⊗(N−i−1)
0

)
.

Proof. To prove (4.1) we use the symmetry properties of the Markov transitions Mn to check that for any function
Hn ∈ B(Sn × Sn) (extended by right composition with the canonical projection from SN

n to Sn to a function still
written Hn in B(Sn × SN

n )),∫
Qn(xn−1, dxn)m(xn)(dzn)Hn(zn, xn)

= Gn−1(xn−1)

∫
Φn

(
m(xn−1)

)⊗N
(dxn)Hn

(
x1
n, xn

)
= m(xn−1)(Gn−1)

∫
Φn

(
m(xn−1)

)(
dx1

n

)[
δx1

n
⊗ Φn

(
m(xn−1)

)⊗(N−1)]
(dyn)Hn

(
x1
n, yn

)
.
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We complete the proof by using

m(xn−1)(Gn−1)Φn

(
m(xn−1)

)(
dx1

n

)= (m(xn−1)Qn

)(
dx1

n

)
. �

The following is a formal definition of Feynman–Kac particle models with a frozen trajectory introduced in the
previous section.

Definition 4.2. Given a random path (Xn)n≥0, let Xn = {X i
n}i=1,...,N ∈ Sn be the Markov chain with the transitions

MXn,n, and the initial distribution μX0 introduced in Lemma 4.1. We denote by Mn(Xn,dxn) the conditional distri-
butions of the random path X n = (Xp)0≤p≤n on Sn. The process Xn is called the dual many body model associated
with the Feynman–Kac particle model χn and the frozen path Xn.

The justification of the “duality” terminology between the processes Xn and χn is discussed at the end of the
section. The Feynman–Kac measures (γ n,ηn) and their many body version (Γ n,Πn) are connected by the following
duality theorem which can be seen as an extended version of the unbiasedness properties (2.24).

Theorem 4.3. For any Fn ∈ B(Sn ×Sn), we have the duality formula

E
(
Fn(Xn,χn)Zn(χ)

)= E
(
Fn(Xn,X n)Zn(X)

)
. (4.2)

If the integral operators Qn have some densities Hn with respect to some reference distributions υn, for any
Fn ∈ B(Sn ×Sn), then we also have the duality formula

E
(
Fn

(
X�

n,χn

)
Zn(χ)

)= E
(
Fn(Xn,X n)Zn(X)

)
. (4.3)

Proof. The proof of (4.2) is a direct consequence of (4.1). Indeed, using this formula, we find that

Qn(xn−1, dxn)m(xn)(dzn) = [m(xn−1)Qn

]
(dzn)Mzn,n(xn−1, dxn)

=
∫

m(xn−1)(dzn−1)Qn(zn−1, dzn)Mzn,n(xn−1, dxn)

and therefore

Qn−1(xn−2, dxn−1)Qn(xn−1, dxn)m(xn)(dzn)

=
∫

m(xn−2)(dzn−2)Qn−1(zn−2, dzn−1)Qn(zn−1, dzn)

×Mzn−1,n−1(xn−2, dxn−1)Mzn,n(xn−1, dxn).

Iterating backwards in time, we obtain

Γ n(dxn)m(xn)(dzn) =
∫

η0(dz0)Q1(z0, dzn) · · ·Qn(zn−1, dzn)Mn(zn,dxn).

This completes the proof of the first assertion.
The proof of (4.3) is a also direct consequence of (4.1). Using this formula, we obtain

Γ n(dxn)
∏

0≤p≤n

m(xp)(dxp)

=Zn(x)η⊗N
0 (dx0)m(x0)(dx0)

{ ∏
1≤p≤n

Mp(xp−1, dxp)m(xp)(dxp)

}
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=Zn(x)

{
η0(dx0)

∏
1≤p≤n

Φp

(
m(xp−1)

)
(dxp)

}
Mn(xn,dxn)

=
{
η0(dx0)

∏
1≤p≤n

m(xp−1)
(
Hp(·,xp)

)
υp(dxp)

}
Mn(xn,dxn)

with Zn(x) :=∏0≤p<n m(xp)(Gp). The last assertion follows from

m(xp−1)(Gp−1)Φp

(
m(xp−1)

)
(dxp) = m(xp−1)

(
Hp(·, zp)

)
υp(dxp).

We also have that,

K�
n(xn,dxn) := m(xn)(dxn)

∏
1≤p≤n

m(xp−1)(dxp−1)Hp(xp−1,xp)

m(xp−1)(Hp(·,xp))
,

where xn stands for the path xn = (xp)0≤p≤n ∈ Sn. Recalling that

Qp(xp−1, dxp) = Gp(xp−1)Mp(xp−1, dxp) = Hp(xp−1,xp)υp(dxp),

we obtain

Γ n(dxn)K�
n(xn,dxn)

=
{
η0(dx0)

∏
1≤p≤n

Qp(xp−1, dxp)

}
Mn(xn,dxn) = γ n(dxn)Mn(xn,dxn).

This completes the proof of (4.3) and the theorem. �

The following corollary is a direct consequence of (2.24) and (4.3). It provides an interpretation of the conditional
distribution of the dual process X n with respect to a given frozen trajectory as a conditional many body Feynman–Kac
model with respect to a random path X

�
n sampled with the backward distribution (2.21).

Corollary 4.4. For any Fn ∈ B(Sn), and for (ηn ⊗ ηn)-almost every paths (xn,xn),

E
(
Fn(X n)|Xn = xn

) ∝ E
(
Fn(χn)Zn(χ)|Xn = xn

)
. (4.4)

For any (fn, fn) ∈ (B(Sn) ×B(Sn)), and for Πn-almost every path xn,

E
(
fn(Xn)|χn = xn

) ∝ E
(
fn(Xn)Zn(X)|X n = xn

)
.

In addition, if the integral operators Qn have some densities Hn with respect to some reference distributions υn, then

E
(
Fn(X n)|Xn = xn

) ∝ E
(
Fn(χn)Zn(χ)|X�

n = xn

)
(4.5)

and

E
(
fn
(
X�

n

)| χn= xn

) ∝ E
(
fn(Xn)Zn(X)|X n = xn

)
.

We end this section with an analytic description of the duality formulae (4.2) and (4.3) in terms of the conditional
distributions Mn and K�

n introduced in Definition 4.2 and in (2.21). Using (4.2), we have

∀xn ∈ Sn Mn(xn, ·) � ηnMn = Πn.
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Thus, we can define the dual operator M�
n,ηn

of Mn from L1(ηn) into L1(Πn), given for any fn ∈ L1(ηn), by

M�
n,ηn

(fn) = d(ηn,fnMn)

d(ηnMn)
= d(ηn,fnMn)

dΠn

with ηn,fn(dxn) := ηn(dxn)fn(xn).

In addition, for any conjugate integers 1
p

+ 1
q

= 1, with 1 ≤ p,q ≤ ∞, and any pair of functions (fn,Fn) ∈ (Lp(ηn)×
Lq(Πn)),

Πn

(
FnM

�
n,ηn

(fn)
)= ηn

(
Mn(Fn)fn

)
. (4.6)

These constructions show that formula (4.3) holds for general models, i.e. even if the integral operators Qn do not
have a density, where X

�
n is a random path with conditional distribution M�

n,ηn
(χn, ·) given the historical process χn.

For a more detailed discussion on dual Markov transitions, see [17,53]. Conversely,

∀xn ∈ Sn, K�
n(xn, ·) � ΠnK�

n = ηn.

Thus (4.3) also implies that Mn coincides with the dual operator K��
n,Πn

of K�
n from L1(Πn) into L1(ηn); i.e.,

(4.3) �⇒ ΠnK�
n = ηn �⇒ ηn

(
fnK��

n,Πn
(Fn)
)= Πn

(
FnK�

n(fn)
)
,

with

K��
n,Πn

(zn,dxn) = Πn(dxn)
dK�

n(xn, ·)
dΠnK�

n

(zn) =Mn(zn,dxn). (4.7)

These results emphasize the duality between the random paths X n and X
�
n under the Feynman–Kac measures ηn and

their many-body version Πn.

4.2. Historical processes

Suppose that (ηn, γn,χn,Gn) is the historical version of an auxiliary Feynman–Kac model (γ ′
n, η

′
n,χ

′
n,G′

n) associated
with some potential functions G′

n and some Markov chain X′
n with transitions M ′

n on some state spaces S′
n.

In this situation, we recall that Φ ′
n is the one step semigroup defined as Φn by replacing (Gn,Mn,Sn) by

(G′,M ′
n, S

′
n) in (2.2). In addition, Z′

n(X
′) = Zn(X) and Z ′

n(χ
′) =Zn(χ) the corresponding Radon–Nikodym deriva-

tives defined in terms of (G′
n,G′

n,χ
′
n,X

′
n). Besides, when the integral operators Q′

n have some densities H ′
n with

respect to some reference distributions υ ′
n on S′

n, the measure ηn is expressed by a backward formula (2.15) with
Markov transitions L′

n+1,η′
n

defined as in (2.16) by replacing (ηn,Hn,Sn) by (η′
n,H

′
n, S

′
n).

In this context, the Feynman–Kac models (ηn, γn) and (Πn,Γn) defined in (2.1) and (2.18) are defined in terms of
the historical process Xn = X′

n = (X′
0, . . . ,X

′
n) of the chain X′

n and the ancestral lines χn of the particle model χ ′
n.

Notice that the dual process Xn associated with the particle model χn and the frozen path Xn = (X0, . . . ,Xn) is
a (many body) Markov chain on path space: at each time step, given Xn−1, we sample N random trajectories Xn =
(X i

n)1≤i≤N . One of them, say the first X 1
n = xn, takes the value of the frozen trajectory Xn = xn = (x′

0, . . . ,x′
n) ∈ Sn.

The others are (conditionally) independent random paths with common distribution Φn(m(Xn−1)). This path-space
chain can be interpreted as an evolution of a genealogical tree with a frozen ancestral line.

Definition 4.5. We let M�
n be the conditional expectation operator of the dual ancestral lines Xn given the frozen

path Xn, that is

E
(
Fn(Xn)|Xn

)=:M�
n(Fn)(Xn) (4.8)

for any function Fn ∈ B(Sn). We also denote by (Mn,K�
n) the Markov transitions defined as (Mn,K�

n) by replacing
(Xn,X n,χn) by the historical processes (X′

n,X ′
n,χ

′
n) of the chains (X′

n,X ′
n,χ

′
n). We let X�

n be a random path on

Sn with conditional distributions K�
n(χ ′

n, dxn) with respect to the complete populations χ ′
n∈ S ′

n =∏0≤k≤n S ′
k , with

the product spaces S ′
k := S

′[N ]
k , for any k ≥ 0.
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In this context, the duality formulae stated in Theorem 4.3 take the following form.

Corollary 4.6. For any Fn ∈ B(Sn ×Sn),

E
(
Fn(Xn,χn)Z ′

n

(
χ ′))= E

(
Fn(Xn,X n)Z

′
n

(
X′)). (4.9)

In addition, when the integral operators Q′
n have some densities H ′

n with respect to some reference distributions υ ′
n

on S′
n,

E
(
Fn

(
X

�
n,χ

′
n

)
Z ′

n

(
χ ′))= E

(
Fn

(
Xn,X ′

n

)
Z′

n

(
X′))= E

(
Fn

(
Xn,χ ′

n

)
Z ′

n

(
χ ′)). (4.10)

The formulae (4.9) and (4.10) are direct consequences of (4.2) and (4.3).
To further develop this section, we assume that the integral operators Q′

n have some densities H ′
n with respect to

some reference distributions υ ′
n on S′

n.
The next proposition follows from (4.10).

Proposition 4.7.

Law
(
X

�
n,χ

′
n

)= Law
(
Xn,χ ′

n

)
and Law

(
Xn|χ ′

n

)= Law
(
X

�
n|χ ′

n

)
. (4.11)

In particular, given the complete populations χ ′
n, the ancestral lines χi

n= (χ i
k,n)0≤k≤n are N copies of the backward

ancestral line X
�
n starting at χ ′i

n=χi
n,n, with 1 ≤ i ≤ N .

The next result provides a more detailed description of the conditional distribution of the genealogical trees given
the complete populations.

Theorem 4.8. Given the complete populations χ ′
n, the sequence of genealogical trees (χk)0≤k≤n is a Markov chain

starting at χ 0=χ ′
0. The elementary transitions of the ancestral lines χk �χk+1 given the population χ ′

k+1 are
defined for any f ∈ B(Sk+1)

E
(
f (χk+1)|χk,χ

′
k+1

)
∝
∫ { ∏

1≤i≤N

m(χk)
(
dxi

k

)
H ′

k+1

(
xi
k,k,χ

′i
k+1

)}
f
((

xl
k,χ

′l
k+1

)
1≤l≤N

)
,

where xi
k := (xi

l,k)0≤l≤k stands for an ancestral line of length k.

Proof. By construction, for any f1, f2 ∈ B(Sk+1),

E
(
f1(χk+1)f2

(
χk,χ

′
k+1

)|χk

)
∝
∫ { ∏

1≤i≤N

m(χk)
(
dxi

k

)
Q′

k+1

(
xi
k,k, dx′i

k+1

)}
× f1
((

xj
k ,x′j

k+1

)
1≤j≤N

)
f2
(
χk,
(
x′j
k+1

)
1≤j≤N

)
.

Using the result,

m(χk)
(
dxi

k

)
Q′

k+1

(
xi
k,k, dx′i

k+1

)
= m(χk)(dxi

k)H
′
k+1(x

i
k,k,x′i

k+1)

m(χ ′
k)(H

′
k+1(·,x′i

k+1))
× m
(
χ ′

k

)(
H ′

k+1

(·,x′i
k+1

))
νk+1
(
dx′i

k+1

)
∝ m(χk)(dxi

k)H
′
k+1(x

i
k,k,x′i

k+1)

m(χ ′
k)(H

′
k+1(·,x′i

k+1))
× Φ ′

k+1

(
m
(
χ ′

k

))(
dx′i

k+1

)
,
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we conclude that

E
(
f1(χk+1)f2

(
χk,χ

′
k+1

)|χk

)
=
∫ { ∏

1≤i≤N

Φ ′
k+1

(
m
(
χ ′

k

))(
dx′i

k+1

)}
f2
(
χk,
(
x′j
k+1

)
1≤j≤N

)

×
∫ { ∏

1≤i≤N

m(χk)(dxi
k)H

′
k+1(x

i
k,k,x′i

k+1)

m(χ ′
k)(H

′
k+1(·,x′i

k+1))

}
f1
((

xj
k ,x′j

k+1

)
1≤j≤N

)
.

�

We end this section with an elementary proof of the left-hand side backward duality formula in (4.10). Theorem 4.8
implies that

Law
(
Xn|χ ′

n

)= Law
(
X

�
n|χ ′

n

)
.

Combining this result with the duality formula stated in the right-hand side of (4.10), we obtain

E
(
Fn

(
Xn,X ′

n

)
Z′

n

(
X′)) = E

(
E
(
Fn

(
Xn,χ ′

n

)|χ ′
n

)
Z ′

n

(
χ ′))

= E
(
Fn

(
X

�
n,χ

′
n

)
Z ′

n

(
χ ′)).

4.3. Genealogy and backward sampling models

We now again assume that (ηn, γn) is the historical version of an auxiliary Feynman–Kac model (γ ′
n, η

′
n).

Definition 4.9. We consider the Markov transitions from Sn into itself defined by Kn := M
�
nKn, with the operators

(M
�
n,Kn) introduced in (4.8) and in (2.22). In other words, for any function fn on Sn and any frozen trajectory

xn ∈ Sn, we have

Kn(fn)(xn) = E
(
m(Xn)(fn)|Xn = xn

)
.

When the integral operators Q′
n have some densities H ′

n with respect to some distributions υ ′
n, we consider the Markov

transition from Sn into itself defined by K
�
n :=MnK�

n, with the operators (Mn,K�
n) introduced in Section 4.2.

Proposition 4.10. The Markov transitions Kn and K
�
n are reversible with respect to the probability measures ηn.

The reversibility property follows directly because the PG and BPG samplers reduce to a standard Gibbs sampler
of a many-body Feynman–Kac distribution.

Next, under some rather strong regularity conditions, we present an elementary proof of the ergodicity of the two
PG transitions discussed above based on the duality formulae presented in Section 4.

Proposition 4.11. Suppose that the potential functions Gn are lower and upper bounded by some positive constant,
and define gn := supx,y Gn(x)/Gn(y). The measure ηn is the unique invariant measures of the Markov transitions Kn

and K
�
n. In addition, we obtain the estimates

β(Kn) ∨ β
(
K

�
n

)≤ 1 − τn

(
1 − 1

N

)n

with τn = 1
/ ∏

0≤p<n

gp. (4.12)

The estimate of β(K
�
n) is a direct consequence of the following rather crude uniform minorization condition

Kn(fn)(xn) ∧K
�
n(fn)(xn) ≥ τn

(
1 − 1

N

)n

ηn(fn) (4.13)
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for any non-negative function fn on Sn, and any path sequence xn = (x′
p)0≤p≤n. These lower bounds are easily

checked by induction with respect to the time parameter. By construction, for any xn = (xn−1,x′
n) ∈ Sn = (Sn−1 ×S′

n),

K
�
n(fn)(xn) ≥ g−1

n−1(1 − 1/N)K
�
n−1

(
Qn(fn)

)
(xn−1).

We prove similarly that

Kn(fn)(xn) ≥ g−1
n−1(1 − 1/N)E

(
m(Xn−1)

(
Qn(fn)

)|Xn−1 = xn−1
)

= g−1
n−1(1 − 1/N)Kn−1

(
Qn(fn)

)
(xn−1).

We obtain (4.13) by iterating these estimates.
These rather crude estimates are not new. Similar estimates are obtained in [3,11,12,42] using different approaches.

As shown in [3,42], the assumption that Gn is lower bounded is unecessary, although [3] shows that the assumption
that Gn is upper bounded is essentially necessary for a uniform minorization condition to hold. When the function
Gn can take null values, the particles are killed instantly when they hit the set with null potential values. It may also
happen that all the particles hit this hard-type obstacle set at the same time. These general Feynman–Kac models can
be analyzed using the techniques developed in Section 2.4.2 and in Section 7.4.1 in [16] (see also [23] for particle
mean field model locally constrainted models avoiding the null level sets G−1

n ({0})).
Sharp estimates of the contraction properties of Kn and its iterates Km

n , with m ≥ 1, are developed in Section 4.4.
These quantitative estimates are based on new Taylor type expansions of the PMCMC transitions around the limiting
invariant measure ηn with respect to the precision parameter 1/N .

4.4. Taylor type expansions around the invariant measure

We now assume that (ηn, γn, ξn) is the historical version of an auxiliary Feynman–Kac model (γ ′
n, η

′
n, ξ

′
n). Our first

objective is to find a Taylor type expansion of the Markov transition Kn around its invariant measure ηn with respect
to powers of 1/N . We fix the time horizon n and a frozen trajectory zn := (z′

0, . . . , z′
n) ∈ Sn = (S′

0 × · · ·× S′
n), and for

any 0 ≤ p ≤ n we set zp := (z′
0, . . . , z′

p) ∈ Sp .
We denote by Xzn,n the dual many body model associated with the Feynman–Kac particle model χn and the frozen

path Xn = zn. Using the exchangeability properties of the dual particles, there is no loss of generality in assuming that
only the first particle X 1

zn,n = Xn is frozen. With this convention, for any function fn ∈ B(Sn),

Kn(fn)(zn) = E
(
m(Xzn,n)(fn)

)= 1

N
fn(zn) +

(
1 − 1

N

)
E
(
m
(
X−

zn,n

)
(fn)
)
,

where m(X−
zn,n) stands for the occupation measure of the non frozen particles m(X−

zn,n) := 1
N−1

∑
1<i≤N δX i

zn,n
. This

shows that whenever they exists these Taylor expansions are related to the bias and the fluctuations of the measures
m(X−

zn,n). To analyze these properties we observe that

E
(
m(Xzn,n)(fn)|Xzn−1,n−1

)= Φzn,n

(
m(Xzn−1,n−1)

)
(fn),

with the one step transformations Φzn,n defined as Φn by replacing the Markov transitions Mn by

Mzn,n(xn−1, dxn) = 1

N
δzn(dxn) +

(
1 − 1

N

)
Mn(xn−1, dxn).

In addition, the occupation measures m(X−
zn,n) of all the particles, except the first frozen one, are based on

(N − 1) conditionally independent random states with common law Φn(m(Xzn−1,n−1)). Thus, the local fluctuations
of m(Xzn,n) around Φzn,n(m(Xzn−1,n−1)) can be expressed in terms of the local sampling random fields

V N
n := √

N − 1
[
m
(
X−

zn,n

)− Φn

(
m(Xzn−1,n−1)

)]
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with the formula

m(Xzn,n)(fn) = Φzn,n

(
m(Xzn−1,n−1)

)+(1 − 1

N

)
1√

N − 1
V N

n .

Proposition 4.12. Let Xzn,n stand for a Markov chain on Sn, with initial distribution ηz0,0 = 1
N

δz0 + (1 − 1
N

)η0 and
Markov transitions Mzn,n from Sn−1 into Sn. Then,

E

(
m(Xzn,n)(fn)

∏
0≤p<n

m(Xzp,p)(Gp)

)
= E

(
fn(Xzn,n)

∏
0≤p<n

Gp(Xzp,p)

)
. (4.14)

The proof is similar to showing that γ
(N,1)
n is an unbiased approximation of γ n as in [16], and is omitted.

The right-hand side Feynman–Kac measure in (4.14) can be expressed in terms of powers of the precision pa-
rameter 1/N . To describe these models, let εn be a sequence of independent {0,1}-valued random variables with
P(εn = 1) = 1/N . For any ε = (εp)0≤p≤n ∈ {0,1}n+1, we set X

(ε)
zn,n be a Markov chain on Sn, with initial distribution

η
(ε)
z0,0

and Markov transitions M
(ε)
zn,n defined by

η
(ε)
z0,0

= ε0δz0 + (1 − ε)η0,

M(ε)
zn,n(xn−1, dxn) = εnδzn(dxn) + (1 − εn)Mn(xn−1, dxn).

In this notation, we can readily check that

E

(
fn(Xzn,n)

∏
0≤p<n

Gp(Xzp,p)

)

=
(

1 − 1

N

)(n+1)

γn(fn) +
∑

1≤p≤n+1

(
1

N

)p(
1 − 1

N

)(n+1)−p ∑
ε0+···+εn=p

E

[
fn

(
X(ε)

zn,n

) ∏
0≤p<n

Gp

(
X(ε)

zp,p

)]
.

These decompositions can be easily turned into Taylor type polynomial expansions in powers of 1/N . The Taylor
expansion of the normalized Feynman–Kac measures with the 0th order measure ηn follows standard arguments on
quotient power series.

The next proposition is easily proved using rather standard stochastic perturbation techniques (cf. for instance [16,
20]).

Proposition 4.13. The random fields
√

N [m(Xzn,n) − ηn] and
√

N [m(ξn) − ηn] converge in law as N ↑ ∞ to the
same Gaussian and centered random fields. The same property holds true for the random fields associated with the
unnormalized particle measures. In addition, for any function fn ∈ B(Sn) s.t. ηn(fn) = 0, and any frozen trajectory
zn = (z′

p)0≤p≤n ∈ Sn =∏0≤p≤n S′
p we obtain the asymptotic bias expansion

lim
N↑∞NKn(fn)(zn) =

∑
0≤p≤n

ηp

(
Qp,n(1)

[
Qp,n(fn)(zp) − Qp,n(fn)

])
(4.15)

with zp := (z′
0, . . . , z

′
p) ∈ Sp , for any p ≤ n.

We proceed by analyzing the propagation properties of the non-frozen particles.

Theorem 4.14. If the condition (G) stated in (2.4) is satisfied then there exists some finite constant c > 0 such that
for any n ≥ 0, m ≥ 1 and N > cn(mgn)

2,

Kn(zn, dyn) = ηn(dyn) +
∑

1≤k≤m

1

Nk
d(k)

Kn(zn, dyn) + 1

Nm+1
∂(m+1)

Kn(zn, dyn). (4.16)
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In (4.16), d(k)Kn, and ∂(m+1)Kn stand for some sequence of signed and bounded integral operators such that

d(k)
Kn(1)(zn) = ∂(m+1)

Kn(1)(zn) = 0 = ηn

(
d(k)

Kn(fn)
)= ηn

(
∂(m+1)

Kn(fn)
)
, (4.17)

for any function fn on the path space Sn, and

β
(
d(k)

Kn

)≤ [cn(kgn)
2]k and β

(
∂(m+1)

Kn

)≤ (cn((m + 1)gn

)2)m+1
. (4.18)

In addition, if the Feynman–Kac model (γ ′
n, η

′
n) satisfies the regularity condition (H) stated in (2.6), then the above

estimate remains valid by replacing gn by g := supn≥0 gn < ∞.

This theorem is a particular case of Theorem 5.21, which can be stated as follows. Let

P
(N,q)
zn,n = Law

(
X 2

zn,n,X 3
zn,n, . . . ,X

q+1
zn,n

)
, (4.19)

be the distribution of the first q random non frozen particles X i+1
z,n i = 1, . . . , q . Using this notation, and under the

regularity conditions stated in Theorem 4.14, there exists some finite constant c > 0 such that for any n ≥ 0, r > m ≥ 1
and N > cn((r + q)gn)

2, the Taylor expansion

P
(N,q)
zn,n = η

⊗q
n +

∑
1≤k≤m

1

Nk
d(k)

P
(q)
zn,n + 1

Nm+1
∂(m+1)

P
(N,q)
zn,n , (4.20)

exists for some signed and bounded measures d(k)
P

(q)
zn,n with null mass d(k)

P
(q)
zn,n(1) = 0, whose values don’t depend

on the population size N , and such that∥∥d(k)
P

(q)
z,n
∥∥

tv ≤ [cn((q + 2k)gn

)2]k and
∥∥∂(m+1)

P
(N,q)
zn,n

∥∥
tv ≤ b(q)

(
cn
(
(q + m)gn

)2)m+1
,

with some finite constant b(q) < ∞ whose values only depend on the parameters q . Theorem 5.21 provides a more
precise description of the derivative operators.

4.5. Further developments and consequences

We conclude this part of the article with a series of direct implications of the previous expansions around the fixed
point Feynman–Kac measures. To illustrate our result we assume that the regularity condition (H) holds and the
size N of the system is chosen such that N > cng2 for some finite constant c < ∞, and the constant g defined in
Theorem 4.14.

• These expansions can also be used to estimate of the behavior of the particle measures m(ξzn,n) as N ↑ ∞. For
instance, the bias and the variance estimates are

E
(
m(Xzn,n)(fn)

)= ηn(fn) + 1

N

([
fn(zn) − ηn(f )

]+ d(1)
P

(1)
zn,n(f )

)+ 1

N2
r(N,1)

zn,n (f )

and

Var
(
m(Xzn,n)(fn)

)= 1

N

([
ηn

(
f 2

n

)− ηn(fn)
2]+ d(1)

P
(2)
zn,n

((
f − ηn(f )

)⊗2))+ 1

N2
r(N,2)

zn,n (f )

with the two remainder terms such that

sup
i=1,2

∣∣r(N,i)
zn,n (f )

∣∣≤ c
(
ng2)2 for some finite c < ∞.

The last estimate is related to the variance of the particle measures m(Xzn,n). Similarly, the variance of a function
of the trajectory delivered by the PMCMC model is computed using the expansion of E(m(Xzn,n)(f

2
n )).
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• Using the first order expansion (4.16), we can readily check that for any μn, νn ∈ P(Sn)

N2
∥∥∥∥(μn − νn)Kn − 1

N
(μn − νn)d

(1)
Kn

∥∥∥∥
tv

≤ c
(
ng2)2,

for some finite constant c < ∞, and the first order integral operator d(1)
Kn defined in (4.15) and given by

d(1)
Kn(fn)(zn) =

∑
0≤p≤n

ηp

(
Qp,n(1)

[
Qp,n(fn)(zp) − Qp,n(fn)

])
.

This implies that∣∣∣∣β(Kn) − 1

N
β
(
d(1)

Kn

)∣∣∣∣≤ c
(
ng2/N

)2
. (4.21)

Using (4.15), we also have the crude estimate

β
(
d(1)

Kn

)≤ 2
∑

0≤k≤n

∥∥Qk,n(1)
∥∥≤ 2(n + 1)g.

To check that the right-hand side linear estimate with respect to the time horizon n is sharp, we choose unit potential
functions Gn = 1 and a function fn(zn) = ϕ(z′

0) that only depend on the initial state of the path zn = (z′
k)0≤k≤n ∈

Sn =∏0≤k≤n S′
n. Now,

d(1)
Kn(fn)(yn) − d(1)

Kn(fn)(zn) = (n + 1)
(
ϕ
(
y′

0

)− ϕ
(
z′

0

)) ⇒ β
(
d(1)

Kn

)≥ (n + 1).

The estimates (4.21) ensure that the Markov chain with transitions Kn converges exponentially fast to ηn with a
rate that can be made arbitrarily large when the precision parameter and the size of the particle population N ↑ ∞.

• Using the properties (4.17) we can readily prove the existence of the Taylor expansions of any mth iterate K
m
n =

K
m−1
n Kn of the transition Kn. For instance, for any m ≥ 1, we have

K
m
n (yn, dzn) = ηn(dzn) + 1

Nm

[
d(1)

Kn

]m
(yn, dzn) + 1

Nm+1
∂(m+1)

K
m(yn, dzn), (4.22)

with the remainder integral operator ∂(m+1)
K

m
n such that

∂(m+1)
K

m
n (1)(yn) = 0 and β

(
∂(m+1)

K
m
n

)≤ m
(
cng2)m+1(1 + cng2/N

)m−1
.

This result shows that the distribution of the random state of the Markov chain with transition Kn after m iterations
is equal to ηn, up to some remainder measure with total variation norm of order N−m. In addition, arguing as above,
we find that

Nm+1
∣∣∣∣β(Km

n

)− 1

Nm
β
([

d(1)
Kn

]m)∣∣∣∣≤ β
(
∂(m+1)

K
m
n

)
.

• The decompositions (4.22) can be used to derive, without any additional work, the Lp-norms between the distribu-
tions of the random states of the PG model and the invariant measures. For instance, for any p ≥ 1,∥∥Km

n (fn) − ηn(fn)
∥∥
Lp(ηn)

= 1

Nm

∥∥[d(1)
Kn

]m
(fn)
∥∥
Lp(ηn)

+ 1

Nm+1

∥∥∂(m+1)
K

m(fn)
∥∥
Lp(ηn)

.

• The proof of the Taylor expansions (4.19) is based on renormalization techniques and a differential calculus on the
measures Υ

(N,q)
zn,n on S

q
n defined for any Fn ∈ B(S

q
n ) by

Υ
(N,q)
zn,n (Fn) := E

(
m(Xzn,n)

⊗q(Fn)
∏

0≤p<n

m(Xzp,p)(Gp)q
)

. (4.23)
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We will show that the Υ
(N,q)

zn,n are differentiable of any order with d(0)Υ
(N,q)
zn,n = η

⊗q
n . Furthermore, formula (4.2)

implies that∫
ηn(dzn)Υ

(N,q−1)
zn,n (Fn) = Υ

(N,q)
n (Fn ⊗ 1), (4.24)

for any Fn ∈ B(S
q−1
n ), with the measure Υ

(N,q)
n defined as Υ

(N,q)
zn,n by replacing (Xzp,p)0≤p≤n by (Xn)0≤p≤n. This

formula can be used to compute Taylor type expansions for the occupation measures of the process Xn, including
the (q + 1)th-moments of the unnormalized particle normalizing constants

∏
0≤p<n m(χp)(Gp).

In this connection, the transfer formula (4.24) also shows that the particle approximation
∏

0≤p<n m(Xp)(Gp)

of the normalizing constants associated with the particle model with a frozen trajectory is biased even if the particle
Markov chain model starts with the desired target measure. For instance, for q = 1 and Fn = 1, equation (4.24)
implies that

E

( ∏
0≤p<n

m(Xp)(Gp)

)
= 1 +E

([ ∏
0≤p<n

m(χp)(Gp) − 1

]2)
�= 1.

By running a Markov chain with one of the transitions Kn, we design an asymptotically unbiased estimate using
the easily checked formula

E

([ ∏
0≤p<n

m(Xp)(Gp)

]−1)
=
[ ∏

0≤p<n

ηp(Gp)

]−1

.

• We consider the Hidden Markov chain model discussed in Section 2.4.2. For any path xn ∈ Sn, we let Pn,xn(θ, dθ)

be a collection of Markov transitions in the parameter space s.t. λn,xn = λn,xnPn,xn . In this context, the Feynman–
Kac model ηn,θ and the corresponding mean field particle Gibbs transitions Kn,θ introduced in Definition 4.9
depend on the parameter θ . We set

Kn

(
(θ, dxn), d(θ, dxn)

) := Pn,xn(θ, dθ)Kn,θ (xn, dxn).

The Taylor expansions stated in Theorem 4.14 and (4.20) and all their implications discussed above remain valid
if (ηn,Kn) is replaced by (ηn,θ ,Kn,θ ), for every fixed value of the parameter θ . In addition, assuming that the
condition (H) stated in (2.6) is satisfied uniformly with respect to the parameter θ , the Taylor expansions stated in
Theorem 4.14 and all their consequences discussed above remain valid if (ηn,Kn) is replaced by (ηn,Kn), with the
posterior distribution ηn defined in (2.10).

5. Propagation of chaos expansions

This section focuses on the fine analysis of the size N dependence of PG samplers and related problems such as the
asymptotic independence of q � N subsets of the particle models investigated in the first part of the article – i.e.,
propagation of chaos properties.

5.1. Combinatorial preliminaries

We let X = (Xi)2≤i≤N be a sequence of random variables on some state space S, and z ∈ S a given fixed state. For
any q < N we set

m(X)�q = 1

(N − 1)q

∑
a∈IN

q

δ(Xa(1),...,Xa(q)),

where IN
q stands the set of all (N − 1)q = (N−1)!

((N−1)−q)! multi-indices a = (a(1), . . . , a(q)) ∈ {2, . . . ,N}q with different
values, or equivalently one to one mappings from [q] := {1, . . . , q} into {2, . . . ,N} = [N ] − {1}. The link between
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these measures and tensor product measures is expressed in terms of the Markov transitions A(q)
a indexed by the set

of mappings a from [q] into itself and defined for any x = (x1, . . . , xq) ∈ Sq by

A
(q)
a (F )(x) = F

(
xa
)

with xa := (xa(1), . . . , xa(q)
)
,

for any function F on B(Sq), and any (x1, . . . , xq) ∈ Sq . The connection between these measures is described in the
following technical lemma taken from [21].

We emphasize that the tensor product measures discussed above are symmetry-invariant by construction. To
proceed, we assume, without loss of generality, that these measures act on symmetric functions F ; i.e., F =
1
q!
∑

σ∈Gq
A

(q)
σ (F ), where Gq stands for the symmetric group of all permutations of [q].

Lemma 5.1. For any q < N ,

m(X)⊗q = m(X)�q
A

(N,q) with A
(N,q) = 1

(N − 1)q

∑
a∈[q][q]

(N − 1)|a|
(q)|a|

A
(q)
a ,

where |a| is the cardinality of the set a([q]), and (m)p = m!/(m−p)! is the number of one to one mappings from [p]
into [m].

Definition 5.2. For any z ∈ S, we define the random measures

mz(X) := 1

N
δz +
(

1 − 1

N

)
m(X), m(1)

z (X) := δz and m(0)
z (X) := m(X).

For any b ∈ {0,1}[q], let B(q)
z,b denote the Markov transitions defined for any x = (x1, . . . , xq) ∈ Sq by

B
(q)
z,b(F )(x) = F

(
xb

z
)

with xb
z := (b(1)z + (1 − b(1)

)
x1, . . . , b(q)z + (1 − b(q)

)
xq
)
.

We observe that

mz(X)⊗q =
∑

b∈{0,1}[q]

1

N |b|1

(
1 − 1

N

)q−|b|1
m(b)

z (X),

with |b|1 =∑1≤p≤q b(p) and

m(b)
z (X) = m(b(1))

z (X) ⊗ · · · ⊗ m
(b(q))
z (X).

Lemma 5.3. For any q < N , and b ∈ {0,1}[q] we have m
(b)
z (X) = m⊗q(X)B

(N,q)
z,b and

mz(X)⊗q = m⊗q(X)B
(N,q)
z with B

(N,q)
z =

∑
b∈{0,1}[q]

1

N |b|1

(
1 − 1

N

)q−|b|1
B

(q)
z,b

as well as

mz(X)⊗q = m(X)�q
C

(N,q)
z with C

(N,q)
z :=A

(N,q)
B

(N,q)
z .

Definition 5.4. We let p1 and p2 be two integers s.t. 0 ≤ p1 ≤ q − 1 and 0 ≤ p2 ≤ q .

• We consider the collection of sets

Iq := {0, . . . , q − 1} × {0, . . . , q}, [r][q]
q−p1

:= {a ∈ [r][q] : |a| = q − p1
}
,

{0,1}[q]
1,p2

:= {b ∈ {0,1}[q] : |b|1 = p2
}

and Iq(p1,p2) = [q][q]
q−p1

× {0,1}[q]
1,p2

.
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• We let A(q)
p1 and B(q)

p2 be the uniform distributions on [q][q]
q−p1

and {0,1}[q]
1,p2

respectively. We also denote by C(q)
p1,p2 =

A(q)
p1 ⊗B(q)

p2 the uniform measure on Iq(p1,p2).

• For any c = (a, b) ∈ Iq(p1,p2), we let C(q)

z,(a,b)
be the coalescent operator defined for any x = (x1, . . . , xq) ∈ Sq by

C
(q)

z,(a,b)(F )(x) := F
(
x(a,b)

z
)
,

with

x(a,b)
z = (b(1)z + (1 − b(1)

)
xa(1), . . . , b(q)z + (1 − b(q)

)
xa(q)
)
,

so that C(q)

z,(a,b) =A
(q)
a B

(q)
z,b .

Remark 5.5. When maps in [q][q] are represented graphically, the parameter p1 in [q][q]
q−p1

represents the number of

coalescences of the change of index mapping a. The p2 is the number of b(i) such that b(i) = 0 or x
(a,b),i
z = z; it will

be referred to as the number of z-infections of the mapping b.

We recall that for the Stirling numbers of the second kind, S(q,p) is the number of partitions of [q] into p sets, so
that

#
([r][q]

p

)= S(q,p)(r)p and rq =
∑

1≤p≤q

S(q,p)(r)p,

for any p ≤ q ≤ r . We also recall that the Stirling numbers of the first kind s(q,p) provide the coefficients of the
polynomial expansion of (r)q

(r)q =
∑

1≤p≤q

s(q,p)rp. (5.1)

We also use the convention that (r)q = 0 and (r)0 = 1 = (−r)0 for any q > r ≥ 0, as well as s(q,0) = s(0,−q) =
S(0,−q) = S(q,0) = 0 except s(0,0) = S(0,0) = 1, for q = 0.

These formulae can be found in any textbook on combinatorial analysis, e.g., [13,14].

Definition 5.6. We define the sequence of probabilities P (N,q) =P [N,q,1] ⊗P [N,q,2] on the set Iq as

P(N,q)(p1,p2) := 1

(N − 1)q
S(q, q − p1)(N − 1)q−p1︸ ︷︷ ︸

P [N,q,1](p1)

×
(

q

p2

)(
1 − 1

N

)q−p2 1

Np2︸ ︷︷ ︸
P [N,q,2](p2)

. (5.2)

We note that P [N,q,1](p1) = #([N − 1][q]
q−p1

)/#[N − 1][q] is a statistic for the number of coalescences, whereas
P [N,q,2](p2) is the proportion of infested mappings with p2 infections. The following lemma is obtained by construc-
tion.

Lemma 5.7. The following formula holds for any q < N

C
(N,q)
z =

∑
p∈I0,q

P(N,q)(p)Ĉ
(q)
z,p with Ĉ

(q)
z,p =

∑
c∈Iq (p)

C(q)
p (c)C

(q)
z,c .

We end this section with a Taylor series expansion of the measure P(N,q) introduced above.
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Proposition 5.8. For any q < N , the mapping N �→ P (N,q) is differentiable of any order m ≥ 0. The mth-order
derivative is supported by

T (m)
q,n := {(p1,p2) ∈ Iq : 0 ≤ p1 + p2 ≤ m

}
.

Equation (5.2) shows that the fraction in the variable N , P(N,q)(p1,p2), can be expanded as a formal power
series in 1

N
(or, more precisely, as an analytic function in the neighborhood of 0) with leading term in 1

Np1+p2
. The

proposition follows.
Expanding the formula for P(N,q)(p1,p2) using (5.1) and the Taylor expansion

1

(1 − x)n
=
∑
0≤k

(n + k − 1)k
xk

k! =
∑
0≤k

(
n + k − 1

k

)
xk,

with (n − 1)0 := 1, we get an explicit formula for the derivatives.

Proposition 5.9. The mth-order derivative is given by the signed measure (with total null mass) supported on the
set T (m)

q,n :

d(m)P(q) :=
∑

(p1,p2)∈T (m)
q,n

τ (m)
q,p1,p2

δ(p1,p2), (5.3)

with

τ (m)
q,p1,p2

=
∑

k∈K(m)
q (p1,p2)

αq,p1,p2(k),

K(m)
q (p1,p2) :=

{
(k1, k2, k3) ∈ [0, q − p1[× [0, q − p2] ×N :

∑
1≤i≤2

pi +
∑

1≤i≤3

ki = m

}
,

(5.4)

αq,p1,p2(k1, k2, k3) = S(q, q − p1)

(
q

p2

)
× s(q − p1, q − p1 − k1)(−1)k2

(
q − p2

k2

)(
(p1 + k1) + k3 − 1

k3

)
.

Remark 5.10. We observe that τ
(0)
q,p1,p2 = 1(0,0)(p1,p2). As we show below, this identity encodes the propagation of

chaos properties (i.e., asymptotic independence) of PG samplers. We also mention that αq,p1,p2(k) = 0 = τ
(m)
q,p1,p2 as

soon as p1 > q or p2 > q .

Remark 5.11. The mth-order signed measure d(m)P(q) and the mapping (p1,p2) �→ τ
(m)
q,p1,p2 in formula (5.3) only

give mass to integers (p1,p2) ∈ ([1, q] × [0, q]) such that 0 ≤ p1 + p2 ≤ m. The first coordinate 0 ≤ p1 < q can be
interpreted as the number of coalescent states, while p2 can be interpreted as the number of z-infected states.

By construction, the mapping (p1,p2) �→ τ
(m)
q,p1,p2 can also be seen as a measure with null total mass supported

on the set 0 ≤ p1 + p2 ≤ m. For instance, for m = 1,2, recalling that s(q, q − 1) = −q(q − 1)/2 = −S(q, q − 1),
s(q, q − 2) = q!

3!(q−3)!
3q−1

4 , and S(q, q − 2) = q!
3!(q−3)! (3q − 5)/4, we have

τ
(2)
q,2,0 = q!

3!(q − 3)!
3q − 5

4
, τ

(2)
q,0,2 = q(q − 1)

2
,

τ
(2)
q,0,0 = q2(q − 1)

2
+ q!

3!(q − 3)!
3q − 1

4
, τ

(2)
q,1,0 = −

(
q(q − 1)

2

)2

, (5.5)
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τ
(2)
q,0,1 = −q2(q − 1)

2
− q(q − 1), τ

(2)
q,1,1 = q

q(q − 1)

2
,

τ
(1)
q,1,0 = q(q − 1)

2
, τ

(1)
q,0,1 = q, τ

(1)
q,0,0 = −(τ (1)

q,1,0 + τ
(1)
q,0,1

)
.

Definition 5.12. We denote by pn := (p0, . . . , pn) a given multi-index in In,q := (Iq)n+1, with pk = (p1
k ,p

2
k) ∈ Iq

for any 0 ≤ k ≤ n. We also denote by cn = (c0, . . . , cn) a sequence of mappings in the set

J q,n =
⋃

pn∈In,q

Iq(pn) with Iq(pn) :=
∏

0≤k≤n

Iq(pk).

For any mn = (m0, . . . ,mn) ∈N
n+1, we set |mn| =∑0≤k≤n mk , and we use the multi-index notation

τ (mn)
q,pn

=
∏

0≤k≤n

τ
(mk)

q,p1
k ,p2

k

, τ (m)
q,pn

:=
∑

|mn|=m

τ (mn)
q,pn

, T (m)
q,n :=

∐
|mn|=m

∏
0≤k≤n

T (mk)
q,n

and

C(q)
pn

(cn) :=
∏

0≤k≤n

C(q)
pk

(ck), P (N,q)
n (pn) :=

∏
0≤k≤n

P(N,q)(pk).

In this notation, and recalling that p1
n+p2

n > mn ⇒ τ
(mn)
q,pn

= 0, we can prove the following extension of Lemma 5.9:

Proposition 5.13. For any q < N and n ≥ 0, the mapping N �→ P (N,q)
n is differentiable of any order. Furthermore,

the mth-order derivative is the signed measure with null mass

d(m)P (q)
n =

∑
pn∈T (m)

q,n

τ (m)
q,pn

δpn .

Finally,∑
pn∈T (m)

q,n

∣∣τ (m)
q,pn

∣∣≤ (m + n)!
m!n! (cq)2m, (5.6)

for some finite constant c < ∞.

Proof. By Theorem 2 in [4], for any p ≤ q we have the rather crude estimates

S(q, q − p) ≤ c
q2p

2pp! ≤ cq2p and
∣∣s(q, q − p)

∣∣≤ c

(
q

q − p

)(
q − p

2

)p

≤ cq2p,

for some finite constant c < ∞. We also note that(
q

p2

)
≤ qp2

(
q − p2

k2

)
≤ qk2 and

(
(p1 + k1) + k3 − 1

k3

)
≤ (2eq)k3 . (5.7)

To obtain the right-hand side estimate, we use Stirling’s approximation to check that(
(p1 + k1) + k3 − 1

k3

)
≤ (q + k3)

k3/k3! ≤
(
e(q + k3)/k3

)k3 ≤ (e(q + 1)
)k3 ≤ (2eq)k3 .

Combining (5.7) and (5.5) with the inequality∣∣αq,p1,p2(k)
∣∣≤ (cq)2p1+p2+2k1+k2+k3 ≤ (cq)2m,
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for any k ∈K(m)
q (p1,p2) and some finite constant c < ∞, we conclude that∣∣τ (m)

q,p1,p2

∣∣≤ (m − (p1 + p2)
)2 × (cq)2m ≤ m2(cq)2m ≤ (c′q

)2m
,

for some finite constant c′ < ∞. Similarly,∑
0≤p1+p2≤m

∣∣τ (m)
q,p1,p2

∣∣≤ m2(c′q
)2m ≤ (cq)2m,

for some finite constant c < ∞. This yields the rather crude estimates

∀m0 + · · · + mn = m
∑

0≤p1
0+p2

0≤m

. . .
∑

0≤p1
n+p2

n≤m

∣∣τ (m)
q,pn

∣∣≤ (cq)2m.

The estimate (5.6) holds because the cardinality of the set {(m0, . . . ,mn) : m0 + · · · + mn = m} coincides with the
number (m+n)!

m!n! of finite multisets of size m whose elements are drawn from a set of (n + 1) elements. �

Definition 5.14. To proceed further, let c = (c0, . . . , cn), ci = (ai, bi) be a sequence of mappings in the set J q,n. We
say that

• the pth trajectory, 1 ≤ p ≤ q of c is free if ∀i ≤ n,∀m �= p,

ai ◦ · · · ◦ an(p) �= ai ◦ · · · ◦ an(m) and bi

(
ai+1 ◦ · · · ◦ an(p)

) �= 1,

• the pth trajectory is coalescent if ∃i ≤ n,∃m �= p,ai ◦ · · · ◦ an(p) = ai ◦ · · · ◦ an(m),
• the pth trajectory is infected if ∃i ≤ n,bi(ai+1 ◦ · · · ◦ an(p)) = 1.

5.2. Unnormalized tensor product measures

We now apply these combinatorial results to PG samplers. Our first result is concerned with tensor product measures.
Given a frozen trajectory z := (zn)n≥0 ∈∏n≥0 Sn, we denote by Xz,n the dual many body model associated with the
Feynman–Kac particle model χn and the frozen path Xn = zn.

We also set

ηN
z,n := m(Xz,n) = mzn

(
X−

z,n
)
, γ N

z,n(1) :=
∏

0≤p<n

ηN
z,p(Gp), γ N

z,n := γ N
z,n(1) · ηN

z,n,

and finally, for any function F on S
q
n ,

Υ
(N,q)
z,n (F ) := E

((
γ N

z,n
)⊗q

(F )
)
/γn(1)q .

Definition 5.15. We consider the tensor product measures

Δ
(q)
z,pn

= (η⊗q

0 Ĉ
(q)
z0,p0

)(
Q

⊗q

1 Ĉ
(q)
z1,p1

) · · · (Q⊗q

n Ĉ
(q)
zn,pn

)= ∑
cn∈I q (pn)

C(q)
pn

(cn)Δ
(q)
z,cn

(5.8)

with the conditional expectation operators

Δ
(q)
z,cn

:= (η⊗q

0 C
(q)
z0,c0

)(
Q

⊗q

1 C
(q)
z1,c1

) · · · (Q⊗q

n C
(q)
zn,cn

)
.

Theorem 5.16. For any q < N , n ≥ 0,

Υ
(N,q)
z,n =

∑
pn∈In,q

∑
cn∈Iq (pn)

[
P (N,q)

n (pn)C(q)
pn

(cn)
]
Δ

(q)
z,cn

.
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Proof. Define ηN
z,n := mzn(X−

z,n), by Lemma 5.1 we have

mzn

(
X−

z,n
)⊗q = m

(
X−

z,n
)�q

C
(N,q)
zn

.

Furthermore, for any function F on S
q
n ,

E
(
m
(
X−

z,n+1

)�q
(F )|Fn

)= (ηN
z,n
)⊗q(

Q
⊗q

n+1(F )
)
/ηN

z,n(Gn)
q,

implying that

E
((

γ N
z,n+1

)⊗q
(F )|Fn

) = γ N
z,n(1)q × (ηN

z,n
)⊗q(

Q
⊗q

n+1C
(N,q)
zn+1 (F )

)
= (γ N

z,n
)⊗q(

Q
⊗q

n+1C
(N,q)
zn+1 (F )

)
,

from which we conclude that

Υ
(N,q)

z,n (F ) = (η⊗q

0 C
(N,q)
z0

)(
Q

⊗q

1 C
(N,q)
z1

)
. . .
(
Q

⊗q

n C
(N,q)
zn

)
(F ).

The result follows by expanding the C
(N,q)
zi

in terms of the C
(q)
zi ,ci

. �

The next corollary is a direct consequence of the proof of Theorem 5.16. It provides a more probabilistic description
of the measure Υ

(N,q)
n in terms of expectation operators.

Corollary 5.17. For any q < N and n ≥ 0, Υ
(N,q)
z,n is differentiable of any order. In addition, for any n ≥ 0, its

derivatives are given by the recursion

d(m)Υ
(q)
z,n (F ) =

∑
r1+r2=m

∑
p∈Iq

d(r1)P(q)(p)d(r2)Υ
(q)

z,n−1

(
Q

⊗q

n Ĉ
(q)
zn,p(F )

)
,

using the convention that Υ
(q)

z,−1Q
⊗q

0 = η
⊗q

0 and d(r2)Υ
(q)

z,−1Q
⊗q

0 = 0 for r2 > 0. In particular, we obtain the expansions

d(m)Υ
(q)
z,n =

∑
pn∈T (m)

q,n

τ (m)
q,pn

× Δ
(q)
z,pn

. (5.9)

To proceed, we study the action of the operators Δ
(q)
z,cn

. We already know that they contribute to d(m)Υ
(q)

z,n only if
the total number of coalescences and infections of cn, written Tot(cn), is less than m.

Lemma 5.18. For any pn ∈ T (m)
q,n , m ≥ 1, and n′ ≥ n,∥∥Δ(q)

z,pn
Q

⊗q

n,n′
∥∥

tv ≤ g2m
n′ and

∥∥d(m)Υ
(q)
z,n Q

⊗q

n,n′
∥∥

tv ≤ (cn(qgn′)2)m, (5.10)

for some finite constant c < ∞. In addition, let f be a ηn-centered function on Sn (i.e., ηn(f ) = 0). Then, for any
sequence of mappings cn,

Tot(cn) <
q

2
⇒ Δ

(q)
z,cn

(
f ⊗q
)= 0.

In particular, d(m)Υ
(q)
z,n (f ⊗q) = 0 whenever m <

q
2 .

Proof. The first assertion follows because for any cn with p1
k -coalescences and p2

k infections at levels 0 ≤ k ≤ n, we
have the rather crude estimates∥∥Δ(q)

z,cn

(
Q

⊗q

n,n′(F )
)∥∥≤ ∏

0≤k≤n

g
2p1

k+p2
k

n′ ≤ g
2|pn|
n′ ,
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with

|pn| :=
∑

0≤k≤n

(
p1

k + p2
k

)≤ ∑
0≤k≤n

mk = m

for any function F on S
q

n′ s.t. ‖F‖ ≤ 1. The proof of (5.10) is completed as a direct consequence of (5.6), (5.8) and

(m + n)!
m!n!nm

≤ (n + m)m

nmm! ≤ mm

m!
(

1

m
+ 1

n

)
≤ e2m.

To prove the second assertion, suppose that Tot(cn) <
q
2 . It follows immediately that one trajectory is free in the

sense of Definition 5.14. Because of the symmetry of the problem (which, as usual, is invariant to a permutation of
the particles), we may assume without restriction that the particles of this free trajectory all have the same index q

(ai(q) = q ∀i ≤ n). Denote by ĉn the sequence of mappings obtained by restricting each ai to a map from [q − 1]
to itself (this process is well-defined because of the freeness assumption) and by similarly restricting bi to [q − 1]. It
then follows from the definition of Δ

(q)
z,cn

(f ⊗n) that

Δ
(q)
z,cn

(
f ⊗q
)= Δ

(q−1)

z,ĉn

(
f ⊗q−1) · ηn(f ) = 0. �

Corollary 5.19. For an arbitrary q ≤ N ,

E
[(

γ N
z,n
(
Gn − ηn(Gn)

)q]= E
[(

γ N
z,n
)⊗q((

Gn − ηn(Gn)
)⊗q)]= O

(
N−q/2).

Corollary 5.20. For an arbitrary q ≤ N ,

E
[(

γ N
z,n(Gn) − γn(Gn)

)q]= O
(
N−q/2).

Indeed,

γ N
z,n(Gn) − γn(Gn) =

∏
0≤p≤n

ηN
z,p(Gp) −

∏
0≤p≤n

ηp(Gp)

= γ N
z,n
(
Gn − ηn(Gn)

)+ [γ N
z,n−1(Gn−1) − γn−1(Gn−1)

]
ηn(Gn)

=
n∑

i=0

[
γ N

z,i (Gi − ηi(Gi)
] n∏

j=i+1

ηi(Gi).

The proof follows from the previous corollary and the Minkowski inequality.

5.3. Normalized tensor product measures

This section shows that the distribution P
(N,q)

z,n+1 of the first q random non frozen particles (see Definition 4.19) has
derivatives of all orders.

We recall the instrumental identity: for any u �= 1, q ≥ 0 and m ≥ 1

1

(1 − u)q+1
=
∑

0≤k≤m

(q + k)k
uk

k! + um
∑

1≤k≤q+1

(
(q + 1) + m

k + m

)(
u

1 − u

)k

. (5.11)

See [21, Lemma 4.11 on page 820] for a detailed proof. Using the identity(
n + 1

k

)
=
∑

k≤l≤n

(
n

l

)
following, e.g., from 1 − (1 − x)n+1 = x

∑
0≤k≤n

(1 − x)k,



1720 P. Del Moral, R. Kohn and F. Patras

we obtain

1

xq
= (q + r)!

(q − 1)!
∑

0≤l≤r

1

(q + l)

(−1)l

l!(r − l)!x
l +
∑

1≤k≤q

(
q + r

k + r

)
(1 − x)r+k

xk
. (5.12)

Theorem 5.21. There exists some finite constant c > 0 such that for any n ≥ 0, r > m ≥ 1 and N > cn((r +q)gn+1)
2,

such that∥∥∥∥P(N,q)

z,n+1 − η
⊗q

n+1 −
∑

1≤k≤m

1

Nk
d(k)

P
(q)

z,n+1

∥∥∥∥
tv

≤ b(q)

(
cn((q + r)gn+1)

2

N

)m+1

,

with some finite constant b(q) < ∞ whose values only depend on the parameters q , and the kth order derivatives
given for any function F on S

q
n by

d(k)
P

(q)

z,n+1(F ) = (q + 2k)!
(q − 1)!

∑
0≤l≤2k

(−1)l

(q + l)

1

l!(2k − l)!d
(k)Υ

(l+q)
z,n
[
Q

⊗(l+q)

n,n+1

(
1⊗l ⊗ F

)]
. (5.13)

In addition,∥∥d(k)
P

(q)

z,n+1

∥∥
tv ≤ [cn((q + 2k)gn+1

)2]k
, (5.14)

for some finite constant c < ∞.

Proof. The proof of (5.14) is a direct consequence of (5.10). Let γ N
z,n(f ) = γ N

z,n(f )/γn(1). In this notation,

γ N
z,n(Gn) − γn(Gn) = γn(1)

(
γ N

z,n(Gn) − 1
)
.

If q is an even integer, then by Corollary 5.20,

E
((

γ N
z,n(Gn) − 1

)q) = ∑
k≥q/2

1

Nk

∑
0≤p≤q

(
q

p

)
(−1)q−pd(k)Υ

(p)
z,n
(
G

⊗p

n

)

≤ 2q
∑

k≥q/2

(
cn(qgn+1)

2

N

)k

,

for some finite constant c < ∞ and for any N ≥ cn(qg2
n+1)

2. The right-hand side estimate is readily checked by

recalling that Q
⊗p

n,n+1(1) = G
⊗p

n and applying (5.10). Thus, there exists some finite universal constant c < ∞ such
that

E
((

γ N
z,n(Gn) − 1

)q)1/q ≤ (cn(qgn+1)
2/N
)1/2

and

E
((

γ N
z,n(Gn)

)q)1/q ≤ 1 + (cn(qgn+1)
2/N
)1/2 ≤ 2,

as soon as N ≥ cn(qgn+1)
2.

It follows from the proof of Theorem 5.16 that

E
(
m
(
X−

z,n+1

)�q
(F )
)= E
[
γ N

z,n(Gn)
−q × (γ N

z,n
)⊗q(

Q
⊗q

n,n+1(F )
)]

.
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Furthermore, for any 1 ≤ k ≤ q , r ≥ 1 and ‖F‖ ≤ 1,∣∣E[γ N
z,n(Gn)

−k × (1 − γ N
z,n(Gn)

)r+k(
γ N

z,n
)⊗q(

Q
⊗q

n,n+1(F )
)]∣∣

≤ E
[
γ N

z,n(Gn)
q−k × ∣∣1 − γ N

z,n(Gn)
∣∣r+k]

≤ 2q−k
(
E
[(

γ N
z,n(Gn) − 1

)2(r+k)])1/2 ≤ 2q
(
cn
(
(r + k)gn+1

)2
/N
)(r+k)/2

,

as soon as N ≥ cn((r + q)gn+1)
2. Recall that

G
⊗l

n ⊗ (Q⊗q

n,n+1(F )
)= Q

⊗(q+l)

n,n+1

(
1⊗l ⊗ F

)
and combine (5.12) with Corollary 5.20, to obtain∣∣∣∣P(N,q)

z,n+1(F ) − (q + r)!
(q − 1)!

∑
0≤l≤r

1

(q + l)

(−1)l

l!(r − l)!Υ
(N,l+q)
z,n

[
Q

⊗(l+q)

n,n+1

(
1⊗l ⊗ F

)]∣∣∣∣
≤ a(q)

(
cn
(
(r + q)gn+1

)2
/N
)(r+1)/2

,

for any r ≥ 0 and some finite constant a(q) < ∞. We obtain the kth differential operator formulae (5.13) by choosing
r = 2k. After some elementary manipulations, this yields the estimate∥∥∥∥P(N,q)

z,n+1 − η
⊗q

n+1 −
∑

1≤k≤r

1

Nk
d(k)

P
(q)

z,n+1

∥∥∥∥
tv

≤ b(q)
(
cn
(
(q + r)gn+1

)2
/N
)r+1/2

,

with some finite constant b(q) < ∞ and the derivatives operators d(k)
P

(q)

z,n+1 given in (5.13). It is now straightforward
to complete the proof. �

It is instructive to derive explicit expressions for the derivatives – this is one of the topics addressed below. To
facilitate these developments we make explicit the first order derivative in a simple case. For k = q = 1, and any
function f on Sn, with ηn(f ) = 0, using the first order expansions that will be stated in Corollary 5.24, it is readily
checked that

d(1)
P

(1)
z,n+1(f ) =

∑
0≤k≤n

Qk,n+1(f )(zk) −
∑

0≤k≤n

ηk

(
Qk,n+1(1)Qk,n+1(f )

)
.

5.4. Infected forest expansions

We know that P(q,N)
z,n has derivatives of all orders and can be expanded in terms of the derivatives of Υ

(N)
z,n . In turn, these

derivatives can be expanded in terms of the elementary integral operators Δ
(q)
z,n,c. However, because of the symmetries

of Feynman–Kac models, many of these operators coincide and this expansion is inefficient, both computationally
and theoretically. This section clarifies these issues and eliminates redundancies in the combinatorial expansions of
the derivatives.

The results in this section build largely on [21]. We therefore skip the details of the arguments as they follow
closely the ones in [21] and refer the reader to that article for further details on the definitions, proofs, reasoning, etc.
on trees, forests and jungles.

5.4.1. Forests and jungles
We start by recalling some classical terminology on trees and forests introduced in [21].

A tree is a (isomorphism class of) finite non-empty oriented connected graph t without loops such that any vertex of
t has at most one outgoing edge. Paths are oriented from the vertices to the root. The height of a tree is the maximum
lenght of a path. Similarly, the level of a vertex in a tree is the length of the path that connects it to the root. This
definition extends in a straightforward way to the objects introduced below (forests and jungles).
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◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
Fig. 4. A forest representing a sequence of maps in ([4][4])4.

A forest f is a multi-set of trees, that is a set of trees with repetitions of the same tree allowed, or equivalently an
element of the commutative monoid 〈T 〉 on T , with the empty graph T0 = ∅ as a unit. Since the algebraic notation
is the most convenient, we write f = tm1

1 , . . . , tmk

k , for the forest with the tree ti appearing with multiplicity mi , i ≤ k.
When ti �= tj for i �= j , we say that f is written in normal form.

The set of forests with height (n + 1), and with q vertices at each level set is written as Forestq,n.
The sequence a = (a0, . . . , an) ∈ Aq,n := ([q][q])n+1 is naturally associated with a forest F(a): the one with one

vertex for each element of [q]n+1, and an edge for each pair (i, ak(i)), i ∈ [q]. The sequence can also be represented
graphically uniquely by a planar graph J (a), where, however, the edges between vertices at level k + 1 and k are
allowed to cross. We call such a planar graph, where paths between vertices are entangled, a jungle. The set of such
jungles is written Jungleq,n. Figure 4 is a graphical representation of a jungle (for consistency with the probabilistic
interpretation of heights and levels as time-indices, we represent trees, forest and jungles horizontally and from left to
right – roots are on the left!).

The group Gq,n := Gn+2
q also acts naturally on sequences of maps a ∈ Aq,n, and on jungles J (a) ∈ Jungleq,n by

permuting the vertices at each level. More precisely, for all a ∈ An,q and all σ = (σ0, . . . , σn+1) ∈ Gq,n, we use the
two formulae

σ (a) := (σ0a0σ
−1
1 , σ1a1σ

−1
2 , . . . , σnanσ

−1
n+1

)
and σJ (a) := J

(
σ (a)
)
. (5.15)

We note that if two sequences a and a′ ∈ Aq,n differ only by the order of the vertices in J (a) and J (a′) (i.e. by
the action of an element of Gq,n) then the associated forests are identical: F(a) = F(a′). The converse is also true: if
F(a) = F(a′), then J (a) and J (a′) differ only by the ordering of the vertices, since they have the same underlying
non planar graph. Here, a and a′ belong to the same orbit

[a] := {σ (a) : σ ∈ Gq,n

}
,

under the action of Gq,n. In particular, the set of equivalence classes of jungles in Jungleq,n under the action of the
permutation groups Gq,n is a bijection with both the set of Gq,n-orbits of maps in Aq,n and the set of forests Forestq,n.

Writing

Stab(a) := {τ ∈ Gq,n : τ (a) = a
}

for the stabilizer subgroup of a, the class formula yields

#[a] = #Gq,n/# Stab(a) = (q!)n+2/# Stab(a).

To compute the cardinality of the set Stab(a) in terms of forests and trees, we denote by Cut(t) the forest deduced
from cutting the root of the tree t; that is, removing its root vertex, and all its incoming edges. Conversely, we denote
by Cut−1(f) the tree deduced from the forest f by adding a common root to its rooted tree. The symmetry multiset S(t)
of a tree t = Cut−1(tm1

1 , . . . , tmk

k ) associated with a forest written in normal form, is defined by S(t) := (m1, . . . ,mk).
The symmetry multiset of a forest is

S
(
tm1
1 . . . tmk

k

) := (S(t1), . . . ,S(t1)︸ ︷︷ ︸
m1-terms

, . . . ,S(tk), . . . ,S(tk)︸ ︷︷ ︸
mk-terms

)
.
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We also extend Cut(f) to forests f = tm1
1 , . . . , tmk

k by setting

Cut(f) = Cut(t1)
m1 · · ·Cut(tk)mk , (5.16)

where Cut(ti )mi stands for the forest deduced from Cut(ti ) repeated mi times. Combining the class formula with a
recursion with respect to the height parameter, we obtain

#
([a])= (q!)n+2/#

(
Stab(a)

)
with #
(
Stab(a)

)= n∏
i=−1

S
(
Cuti
(
F(a)
))!, (5.17)

where we have used the multi-index factorial notation (n1, . . . , nk) = n1! · · ·nk!, for any nk ∈N, with k ≥ 0. A detailed
proof of this closed formula is provided in [21].

We leave it to the reader check that, for example, for a as in the above graphical representation, #(Stab(a)) =
1 · 1 · 2! · 2! = 4 and #([a]) = (4!)4 · 3!.

5.4.2. Infected forests
Recall that the study of PG samplers requires the introduction of sequences of mappings c = (a,b) ∈J q,n, where the
maps bk can be thought of as “infections” (using the terminology previously introduced). The infection of a jungle
J (a) (or of the associated sequence of maps a) is defined accordingly by a sequence of functions b = (b0, . . . , bn) ∈
({0,1}[q])n+1.

Figure 5 provides an example of an infected planar forest.
By construction, there are

∏
0≤k≤n

(
q
ik

)
ways of infecting a given forest with 0 ≤ ik ≤ q infections at each level

0 ≤ k ≤ n. Some of them are clearly equivalent. More precisely, we consider the following equivalence relation on
infected jungles

(a,b) ∼ (a′,b′)⇐⇒ ∃σ ∈ Gq,n : σ (a,b) = (a′,b′).
The equivalence classes are denoted by

[a,b] := {σ (a,b) : σ ∈ Gq,n

}= {(σ (a),bσ−1) : σ ∈ Gq,n

}
with

σ := (σ1, . . . , σn+1) and σ−1 = (σ−1
1 , . . . , σ−1

n+1

)
.

a0

b0

a1

b1

a2

b2

a3

b3

◦ 0 ◦ 1 ◦ ◦ 0 ◦

◦ 1 ◦ 1 ◦ 0

0

◦ 0 ◦

◦ 1 ◦ ◦ 1

1

◦ 0 ◦

◦ 1 ◦
0

◦ 0 ◦ 0 ◦

◦ ◦
1

◦ 1 ◦ ◦
0

◦ 0 ◦ 0 ◦ 1 ◦ 0 ◦
Fig. 5. Example of an infected planar forest of height 4 with 5 trees and 6 leaves, and the corresponding sequence of infection mappings. The
infection is represented by the label 1, and the non-infection by the label 0 on the edges of the jungle.
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The definitions of forests and jungles discussed in the previous section extend in a straightforward way to the infected
case (edges being colored by 0 or 1). It is natural to associate with a sequence (a,b) an infected forest F(a,b): the
one with one vertex for each element of [q]n+1, and an infected edge for each triplet (i, bk(i), ak(i)), i ∈ [q]. The set
of infected forests is a bijection with the set of Gq,n-orbits of maps in J q,n.

The class formula yields once again a way to compute the cardinals of the classes [a,b] from the action of the
symmetry group Gq,n.

Lemma 5.22. The number of infected jungles in [a,b] is

#[a,b] = (q!)n+2/Staba(b) = #[a] × #(Stab(a))

#(Staba(b))
,

with

Staba(b) := {τ ∈ Stab(a) : bτ = b
}
.

Similarly to the non-infected case, #(Staba(b)) can be computed inductively, following essentially the same prin-
ciples. We describe briefly how to do so.

Let t1, . . . , tn and t′1, . . . , t′m be two families of distinct infected trees and li , i = 1, . . . , n,pj , j = 1, . . . ,m two

sequences of positive integers. We write tl11 , . . . , tlnn � t′p1
1 , . . . , t′pm

n for the infected tree obtained by joining, for
i = 1, . . . , n, li copies of ti to a common root with infection index 0 and for i = 1, . . . ,m, pi copies of t′i to the
same common root with infection index 1. Any infected tree t can be written uniquely in this way: we write S′(t) =
(l1, . . . , ln,p1, . . . , pm) for the corresponding multiset and call it the symmetry multiset of t.

Cuts of infected trees and infected forests are infected forests that are defined as in the non-infected case by
removing the root and erasing all infected edges connected to the root. A (right only) inverse operation Cut−1 acting
on an infected forest tk1

1 , . . . , tkn
n is defined by linking all the infected trees to a common root with non infected edges.

Mimicking the inductive arguments for counting jungles using cardinals of stabilizers in [21], we obtain

Staba(b) =
n∏

i=−1

S′(Cuti
([a,b]))!. (5.18)

5.4.3. Expectation operators on infected forests
Recall that J q,n is the set of (n + 1) mappings c = (a,b) = (c0, . . . , cn) with ck = (ak, bk) ∈ Iq(p1

k ,p
2
k), for any

0 ≤ k ≤ n.
For any symmetric function F on S

q
n , and any c = (a,b) and c′ := (a′,b′) we have

c ∼ c′ �⇒ Δ
(q)
z,c (F ) = Δ

(q)

z,c′(F ).

We check this claim by using the result that for any a1, a2 ∈ [q][q], and any b ∈ {0,1}[q], and σ ∈ Gq ,

Aa1Aa2 =Aa1a2 and Bz,b =AσBz,bσAσ−1 .

Thus, for any f ∈Fq,n, we can define unambiguously Δ
(q)

z,f = Δ
(q)
z,c for any choice c of a representative of f in J q,n.

We also denote by Fq(pn) the set of forests with p1
k -coalescences and p2

k infections at each level 0 ≤ k ≤ n. By
construction, these forests are associated with the mappings cn ∈ Iq(pn). In this notation, the operators (5.8) can be
rewritten in terms of the expectations operators on the set of infected forests

Δ
(q)
z,pn

=
∑

cn∈Iq (pn)

C(q)

(pn)
(cn)Δ

(q)
z,cn

=
∑

f∈Fq (pn)

λq,pn(f)Δ
(q)

z,f , (5.19)

with the probability measure λq,pn given by

λq,pn(f) = #(f)/#
(
Iq(pn)

)
,
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where we used the shortcut notation #(f) := #[c] for an arbitrary representative of f in J q,n. We summarize the above
discussion with the following theorem.

Theorem 5.23. For any m ≥ 0,

d(m)Υ
(q)
z,n =

∑
pn∈T (m)

q,n

τ (m)
q,pn

( ∑
f∈Fq (pn)

λq,pn(f)Δ
(q)

z,f

)
.

5.4.4. Infected forests
The first order derivative is expressed in terms of two classes of infected forests. The explicit description of the second
derivative depends on 20 different types of infected forests. We investigate them in this section.

Fixing 3 < q < N and the time horizon n, there exists a single forest f0 with trivial trees with no infection. There is
also a single non infected forest fk1,0 with only one coalescence at level k. We also have a single forest fk0,1 with trivial
trees and an infection at level k. Figure 6 gives a synthetic description of these forests.

The corresponding measures are Δ
(q)

z,f0
= η

⊗q
n , and the pair of measures

Δ
(q)

z,fk1,0
= η

⊗(q−2)
n ⊗

[∫
ηk(dw)(δwQk,n)

⊗2
]

and Δ
(q)

z,fk0,1
= η

⊗(q−1)
n ⊗ δzk

Qk,n. (5.20)

It is also immediate to check using (5.18) that

#(f0) = q!n+1#
(
fk1,0

)= q!n+2/
(
(q − 2)!2!) and #

(
fk0,1

)= q!n+1q.

There are two non-infected forests fk,1
2,0 and fk,2

2,0 with two coalescences at level k. The first one has a non-trivial tree
with three leaves, the second one has two trees with two leaves (see Figure 7).

The corresponding measures are

Δ
(q)

z,fk,1
2,0

= η
⊗(q−3)
n ⊗

[∫
ηk(dw)

(
δwQ

⊗3
k,n

)]
,

Δ
(q)

z,fk,2
2,0

(F ) = η
⊗(q−4)
n ⊗

{∫
ηk(dw1)ηk(dw2)

[
(δw1Qk,n)

⊗2 ⊗ (δw2Qk,n)
⊗2]} (5.21)

f0 fk1,0 k

1

fk0,1 k

Fig. 6. Symbolic representation of a forest with trivial trees and no infection, resp. only one coalescence at level k, resp. trivial trees and an infection
at level k.

fk,1
2,0 k fk,2

2,0 k

Fig. 7. Symbolic representation of non-infected forests with two coalescences at level k.
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1

1

fk
0,2 k

0

1

fk,1
1,1 k

1

fk,2
1,1 k

Fig. 8. Symbolic representation of forests with two infections at level k, resp. one infection and a coalescence at level k.

fk,l,1
1,1 k l fk,l,2

1,1 k l fk,l,3
1,1 k l fk,l,4

1,1 k l

Fig. 9. Symbolic representation of fk,l,1
1,1 , fk,l,2

1,1 , fk,l,3
1,1 , fk,l,4

1,1 .

with #(fk,1
2,0 ) = (q!)n+2/((q − 3)!3!) and #(fk,2

2,0 ) = (q!)n+2/((q − 4)!23).

There is also a single non coalescent forest fk
0,2 with two trivial infected trees at level k. There are two forests fk,i

1,1,
i = 1,2, with one infection and one coalescence at level k. The first one has a single coalescent tree with only one
infected leaf. The last one has a non infected coalescent tree and a single infected trivial tree (see Figure 8).

The corresponding measures are

Δ
(q)

z,fk,1
0,2

= η
⊗(q−2)
n ⊗ (δzk

Qk,n)
⊗2, Δ

(q)

z,fk,1
1,1

= Δ
(q)

z,n,fk
0,1

,

(5.22)

Δ
(q)

z,fk,2
1,1

= η
⊗(q−3)
n ⊗

[∫
ηk(dw)(δwQk,n)

⊗2
]

⊗ (δzk
Qk,n).

One checks that #(fk
0,2) = q!n+1q(q − 1)/2, #(fk,1

1,1 ) = q!n+1q(q − 1) and #(fk,2
1,1 ) = (q!)n+2

2(q−3)! .
We also have the traditional four non infected forests fk,l,i

1,1 , i = 1,2,3,4 with two coalescences at level k and l

[21]. The first one has two coalescent trees with all the leaves at level n. The second one also has two coalescent
trees but one has two leaves at level n, the other has a leaf at level l and another at level n. The third one has a single
coalescent tree with three leaves at level n, and a coalescent branch at level l. The last one has a single coalescent tree
with two leaves at level n and a coalescent branch at level l (see Figure 9).

In this case, we readily check that

#
(
f k,l,1
1,1

)= q!n+2

4(q − 4)! , #
(
fk,l,2
1,1

)= q!n+2

(q − 3)!2! , #
(
fk,l,3
1,1

)= q!n+2

(q − 3)!2! , #
(
fk,l,4
1,1

)= q!n+2

(q − 2)!2!
and the corresponding measures are

Δ
(q)

z,fk,l,1
1,1

= η
⊗(q−4)
n ⊗

[∫
ηk(du)(δuQk,n)

⊗2
]

⊗
[∫

ηl(dv)(δvQl,n)
⊗2
]
,

Δ
(q)

z,fk,l,2
1,1

= η
⊗(q−3)
n ⊗

[∫
ηk(du)Qk,l(1)(u)δuQk,n

]
⊗
[∫

ηl(dv)(δvQl,n)
⊗2
]
, (5.23)
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1

1

fk,l,1
0,1,1 k l

1 1

fk,l,2
0,1,1 k l

Fig. 10. Symbolic representation of fk,l,1
0,1,1, fk,l,2

0,1,1.

1

fk,l,1
1,0,1 k l

1

fk,l,2
1,0,1 k l

Fig. 11. Symbolic representation of fk,l,1
1,0,1, fk,l,2

1,0,1.

Δ
(q)

z,fk,l,3
1,1

= η
⊗(q−3)
n ⊗

[∫
ηk(du)

({∫
Qk,l(u, dv)(δvQl,n)

⊗2
}

⊗ δuQk,n

)]
,

Δ
(q)

z,fk,l,4
1,1

= η
⊗(q−2)
n ⊗

[∫
ηk(du)Qk,l(1)(u)Qk,l(u, dv)(δvQl,n)

⊗2
]
.

We also have two non coalescent forests fk,l,i
0,1,1, i = 1,2, with two infections at level k and l. The first one has two

infected trivial trees. The second one has a trivial tree with two infections (see Figure 10).
In this case, we have #(fk,l,1

0,1,1) = q!n+1q(q − 1) and #(fk,l,2
0,1,1) = q!n+1q , and

Δ
(q)

z,fk,l,1
0,1,1

= η
⊗(q−2)
n ⊗ δzk

Qk,n ⊗ δzl
Ql,n and

(5.24)
Δ

(q)

z,fk,l,2
0,1,1

= Qk,l(1)(zk)
[
η
⊗(q−1)
n ⊗ δzl

Ql,n

]
.

We also have two forests fk,l,i
1,0,1, i = 1,2, with a coalescence at level k and an infection at level l > k. The first one

has a coalescent tree with an infection. The second one has a non infected coalescent tree and an infected trivial tree
(see Figure 11). In this case we have #(fk,l,1

1,0,1) = q!n+2/(q −2)!, and #(fk,l,2
1,0,1) = q!n+2/(2(q −3)!). The corresponding

measures are

Δ
(q)

z,fk,l,1
1,0,1

= η
⊗(q−2)
n ⊗

[∫
ηk(du)Qk,l(1)(u)δuQk,n

]
⊗ δzl

Ql,n,

(5.25)

Δ
(q)

z,fk,l,2
1,0,1

= η
⊗(q−3)
n ⊗

[∫
ηk(du)(δuQk,n)

⊗2
]

⊗ δzl
Ql,n.

Finally, there are three forests fk,l,i
0,1,0,1, i = 1,2,3, with an infection at k and a coalescence at level l > k. The first

one has a infected tree with a leaf at level n and a non-infected coalescent tree. The second one has a infected tree
with a leaf at level l and a non-infected coalescent tree. And finally, the last one has an infected coalescent tree (see
Figure 12).

In this case we have #(f k,l,1
0,1,0,1) = q!n+2/(2(q −3)!) and for any i ∈ {2,3} #(fk,l,i

1,0,1) = q!n+2/(2(q −2)!). In addition,
the corresponding measures are

Δ
(q)

z,fk,l,1
0,1,0,1

= η
⊗(q−3)
n ⊗

[∫
ηl(du)(δuQl,n)

⊗2
]

⊗ δzk
Qk,n,
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1

fk,l,1
0,1,0,1 k l

1

fk,l,2
0,1,0,1 k l

1

fk,l,3
0,1,0,1 k l

Fig. 12. Symbolic representation of fk,l,1
0,1,0,1, fk,l,2

0,1,0,1, fk,l,3
0,1,0,1.

Δ
(q)

z,fk,l,2
0,1,0,1

= Qk,l(1)(zk)

[
η
⊗(q−2)
n ⊗

{∫
ηl(du)(δuQl,n)

⊗2
}]

,

(5.26)

Δ
(q)

z,fk,l,3
0,1,0,1

= η
⊗(q−2)
n ⊗

[∫
Qk,l(zk, du)(δuQl,n)

⊗2
]
.

For any multi-index κ , and any integer i we set

Δ
(q)

z,f ·,·,i
κ

:=
∑

0≤k<l≤n

Δ
(q)

z,fk,l,i
κ

with Δ
(q)

z,n,fk,l,i
κ

:= Δ
(q)

z,n,fk,l,i
κ

− η
⊗q
n .

5.4.5. First and second derivatives
To describe with some precision the first two order derivatives of the mapping N �→ Υ

(q)
z,n we need to compute the

expectation operators on random infected forests defined in (5.19). The ones associated with forests with at most one
infection or one coalescence at some level only depend one class of forests. Thus, using (5.20) their description is
immediate. Using (5.21), the centered operator associated with non infected forests with a couple of coalescence at
some level is

Δ
(q)

z,f ·,�
2,0

:= 1

1 + (3/4)(q − 3)
Δ

(q)

z,f ·,1
2,0

+
(

1 − 1

1 + (3/4)(q − 3)

)
Δ

(q)

z,f ·,2
2,0

.

Similarly, by (5.22), the one associated with forests with a single coalescence and a single infection at some level is

Δ
(q)

z,f ·,�
1,1

:= 2

q
Δ

(q)

z,f ·,1
1,1

+
(

1 − 2

q

)
Δ

(q)

z,f ·,2
1,1

.

In view of (5.23), the centered expectation operator associated with forests with a single coalescence at two different
levels is

Δ
(q)

z,f ·,·,�
1,1

:= (q − 2)(q − 3)

(q − 2)(q − 3) + 4(q − 2) + 2
Δ

(q)

z,f ·,·,1
1,1

+ 2(q − 2)

(q − 2)(q − 3) + 4(q − 2) + 2

[
Δ

(q)

z,f ·,·,2
1,1

+ Δ
(q)

z,f ·,·,3
1,1

]
+ 2

(q − 2)(q − 3) + 4(q − 2) + 2
Δ

(q)

z,f ·,·,4
1,1

.

Using (5.24), the one associated with non coalescent forests with a single infection at two different levels is

Δ
(q)

z,f ·,·,�
0,1,1

:=
(

1 − 1

q

)
Δ

(q)

z,f ·,·,1
0,1,1

+ 1

q
Δ

(q)

z,f ·,·,2
0,1,1

.
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Finally, using (5.25) and (5.26), the operators associated with a single coalescence and a single infection at two
different levels are given by

Δ
(q)

z,f ·,·,�
1,0,1

:= 2

q
Δ

(q)

z,f ·,·,1
1,0,1

+
(

1 − 2

q

)
Δ

(q)

z,f ·,·,2
1,0,1

and

Δ
(q)

z,f ·,·,�
0,1,0,1

:=
(

1 − 2

q

)
Δ

(q)

z,f ·,·,1
0,1,0,1

+ 1

q
Δ

(q)

z,f ·,·,2
0,1,0,1

+ 1

q
Δ

(q)

z,f ·,·,3
0,1,0,1

.

Expanding the formulae stated in Theorem 5.23, extending the combinatorial methods developed in [21] for computing
the cardinals #(f) we prove the following expansions.

Corollary 5.24. The first three derivatives of Υ
(N,q)
z,n are

d(0)Υ
(q)
z,n = η

⊗q
n ,

d(1)Υ
(q)
z,n = τ

(1)
q,1,0Δ

(q)

z,f ·
1,0

+ τ
(1)
q,0,1Δ

(q)

z,f ·
0,1

,

d(2)Υ
(q)
z,n

= τ
(2)
q,1,0Δ

(q)

z,f ·
1,0

+ τ
(2)
q,0,1Δ

(q)

z,f ·
0,1

+ τ
(2)
q,1,1Δ

(q)

z,f ·,�
1,1

+ τ
(2)
q,2,0Δ

(q)

z,f ·,�
2,0

+ τ
(2)
q,0,2Δ

(q)

z,f ·
0,2

+ (τ (1)
q,1,0

)2
Δ

(q)

z,f ·,·,�
1,1

+ (τ (1)
q,0,1

)2
Δ

(q)

z,f ·,·,�
0,1,1

+ τ
(1)
q,1,0τ

(1)
q,0,1

{
Δ

(q)

z,f ·,·,�
1,0,1

+ Δ
(q)

z,f ·,·,�
0,1,0,1

}
+ nτ

(1)
q,0,0

[
τ

(1)
q,1,0Δ

(q)

z,f ·
1,0

+ τ
(1)
q,0,1Δ

(q)

z,f ·
0,1

]
with the parameters τ

(m)
q,p1,p2 given in (5.5).

When q = 1, all the terms are null except τ
(1)
1,0,1 = 1 = −τ

(1)
1,0,0, and

d(1)Υ (1)
z,n =

∑
0≤k≤n

[
Δ

(1)

z,fk
0,1

− ηn

]= ∑
0≤k≤n

δzk
(Qk,n − ηn),

d(2)Υ (1)
z,n = Δ

(1)

z,f ·,·,2
0,1,1

− nΔ
(1)

z,f ·
0,1

=
∑

0≤k<l≤n

[
Qk,l(1)(zk)δzl

Ql,n − ηn

]− n
∑

0≤k≤n

[δzk
Qk,n − ηn].

6. Some extensions and open questions

6.1. Island type methodologies

Particle MCMC methods are computationally intensive sampling techniques. As discussed in [33,55], parallel and
distributed computations provide an appealing solution of tackling these issues. The central idea of Island models
is to run N2 particle models in parallel with N1 individuals, instead of running a single particle model with N1N2
particles. These N2 batches are termed islands in reference to dynamic population models. Within each island the
N1 individuals evolve as a standard genetic type particle model. In this interpretation, island particle models can be
thought as a parallel implementation of particle models. In the further development of this section, we show that these
methodologies can also be used in a natural way to design island type particle MCMC samplers.

To design these models, we consider a collection of bounded and non-negative potential functions Gn on some
measurable state spaces En, with n ∈N. We let Xn be a Markov chain on En with initial distribution μ0 ∈ P(E0) and
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some Markov transitions Mn from En−1 into En. The Feynman–Kac measures (μn, νn) associated with the parameters
(Gn,Mn) are defined for any fn ∈ B(En) by the formulae

μn(fn) := νn(fn)/νn(1) with νn(fn) := E

(
fn(Xn)

∏
0≤p<n

Gp(Xp)

)
. (6.1)

The many body N ′-particle approximation

X′
n = {X′i

n

}
1≤i≤N ′ ∈ S′

n := E[N′]
n

of these Feynman–Kac models is defined as in (2.5) by considering the evolution semigroup of the Feynman–Kac
model μn.

We let M ′
n be Markov transitions of X′

n and we consider the potential functions G′
n on S′

n defined by

G′
n

(
X′

n

)= m
(
X′

n

)
(Gn) = 1

N ′
∑

1≤i≤N ′
Gn

(
X′i

n

)
. (6.2)

We let (η′
n, γ

′
n) be the Feynman–Kac measures associated with the parameters (G′

n,M
′
n). In this framework, the

unbiasedness properties of the unnormalized Feynman–Kac particle measures take the form

f ′
n

(
X′

n

)= m
(
X′

n

)
(fn)

�⇒ νn(fn) = E

(
fn(Xn)

∏
0≤p<n

Gp(Xp)

)
= E

(
f ′

n

(
X′

n

) ∏
0≤p<n

G′
p

(
X′

p

))= γ ′
n

(
f ′

n

)
. (6.3)

The path space version (ηn, γn) of these measures are defined by the Feynman–Kac measures associated with the
historical process Xn and the potential function Gn given by

Xn = (X′
0, . . . ,X

′
n

) ∈ Sn = (S′
0 × · · · × S′

n

)
and Gn(Xn) = G′

n

(
X′

n

)
.

The mean field N -particle approximations ξ ′
n = (ξ ′i

n )1≤i≤N of the measures (η′
n, γ

′
n) can be interpreted as a genetic

type model with island type particles

∀1 ≤ i ≤ N ξ ′i
n = {ξ ′i,j

n

}
1≤j≤N ′ ∈ S′

n := E[N′]
n ,

with mutation transitions M ′
n and the selection potential functions G′

n given in (6.2).
By construction, the N -particle approximation ξn of the path space measures (ηn, γn) is a genealogical tree based

model in the space of islands. Each particle

ξ i
n = (ξ i

0,n, . . . , ξ
i
n,n

) ∈ Sn = (E[N′]
0 × · · · ×E[N′]

n

)
represents the line of island ancestors ξ i

p,n ∈ E
[N′]
p of the ith island ξ i

n,n = ξ ′i
n ∈ E

[N′]
n at time n, at every level 0 ≤ p ≤ n,

with 1 ≤ i ≤ N . In other words, (ηn, γn, ξn) is the historical version of the Feynman–Kac model (γ ′
n, η

′
n, ξ

′
n). In

this case, the dual mean field particle model Xn evolves on the state spaces Sn = S
[N ]
n , with a frozen trajectory of

islands Xn.
This model can be interpreted as the evolution of N interacting islands

∀1 ≤ i ≤ N X i
n = {X i,j

n

}
1≤j≤N ′ ∈ E[N′]

n ,

with N ′ individuals in each island. The PG models discussed in Section 4.3 can be used without further work to design
island type particle Markov chain models with the target measure ηn. Using (6.3), we see that the S′

n-marginal of ηn

can be used to compute any Feynman measures of the form (6.1). Similar constructions can be developed to design a
backward-sampling based particle MCMC model.
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These nested constructions can be iterated at any level. For a more thorough discussion on these island type particle
methodologies, see [19,20], and the recent article [55]. An important open question is analysis of the convergence
properties of the islands type particle models presented above in terms of the number of individual and the number of
islands.

6.2. Concluding remarks

The duality relations and differential calculus developed in this article open up research problems in the field of
Feynman–Kac particle models and PMCMC methods. One important problem is extending the results developed
in the article to continuous time Feynman–Kac models observed discretely, where the model is also discretized to
facilitate estimation. In this situation it is important to analyze the effect of the time discretization of the models on
the corresponding numerical error, when we add such an extra level of approximation.

Our stability analysis is restricted to particle Gibbs methods on the space of ancestral lines. However, an alterna-
tive particle approach is to use a Metropolis–Hastings scheme to sample a target Boltzmann–Gibbs measure asso-
ciated with a many-body Feyman–Kac measure. The resulting algorithm is sometimes called a particle independent
Metropolis–Hastings algorithm [2]. An alternative approach is to use an interacting MCMC methodology to sample
sequentially these many-body measures on path spaces (see for instance Section 2.2.1 and 2.2.5 in [25]). For parameter
inference in Hidden Markov chain problems this strategy amounts to estimating at each time step the likelihood unbi-
asedly and then using a Metropolis–Hastings scheme to generate the parameters. In future work, we plan to analyze
the convergence to equilibrium of these particle Metropolis–Hastings samplers and compare their stability properties
to those of particle Gibbs sampling with a target many body Feynman–Kac measure.
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