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Abstract. We present a nonasymptotic theorem for interacting particle approximations of unnormalized Feynman–Kac models.
We provide an original stochastic analysis-based on Feynman–Kac semigroup techniques combined with recently developed coa-
lescent tree-based functional representations of particle block distributions. We present some regularity conditions under which the
L2-relative error of these weighted particle measures grows linearly with respect to the time horizon yielding what seems to be the
first results of this type for this class of unnormalized models. We also illustrate these results in the context of particle absorption
models, with a special interest in rare event analysis.

Résumé. Nous présentons un théorème non asymptotique pour les approximation par systèmes de particules en interaction des
modèles de Feynman–Kac non normalisés. Nous introduisons une analyse stochastique originale basée sur des techniques de
semigroupes de Feynman–Kac, associées avec les représentation, récemment proposées, des distributions de blocks de particules,
en terme de développement en arbre de coalescence. Nous présentons des conditions de régularité sous lesquelles l’erreur relative
L2 de ces mesures particulaires pondérées croît linéairement par rapport ‘a l’horizon temporel, conduisant ‘a ce qui semble être le
premier résultat de ce type pour cette classe de modèles non normalisés. Nous illustrons ces résultats dans le contexte des mesures
statiques de Boltzmann–Gibbs et des distributions restreintes, avec un intéret partuculier pour les événements rares.

MSC: Primary 47D08; 60C05; 60K35; 65C35; secondary 31B10; 60J80; 65C05; 92D25

Keywords: Interacting particle systems; Feynman–Kac semigroups; Nonasymptotic estimates; Genetic algorithms; Boltzmann–Gibbs measures;
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1. Introduction

The field of Feynman–Kac path integrals and their particle interpretations are one of the most active contact points
between probability, theoretical chemistry, quantum physics and engineering sciences, including rare event analysis
and advanced signal processing. For a rather thorough discussion, the interested reader is recommended to consult the
pair of books [5,9], and the references therein. During the last two decades, the asymptotic analysis of these interacting
particle models has been developed in various directions, including propagation of chaos analysis, Lp-mean error
estimates, central limit type theorems, and large deviation principles. Nevertheless, we emphasize that most of the
nonasymptotic results developed in the literature are concerned with empirical particle measures and normalized
Feynman–Kac probability distributions. Thus, they do not apply to engineering or physical problems involving the
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computation of unnormalized Feynman–Kac models including rare event particle simulation and partition functions
estimation in statistical mechanics.

Loosely speaking, unnormalized Feynman–Kac measures represent the distribution of the paths of a Markov
process, weighted by the product of a given collection of nonnegative potential functions. The total masses of these
measures are also called the normalizing constants. For instance, for set indicator potential functions the total mass
of these functional represents the probability that the reference Markov chain stays in that set for a given number of
time steps. We already mention that the particle approximations of these unnormalized measures are defined in terms
of weighted products of empirical potential functions. The length of these products is directly related to the time hori-
zon. The refined analysis of these unnormalized particle approximations requires to control the degeneracy of these
weighted products in terms of the time parameter. The main objective of this article is to present nonasymptotic L2-
estimates for these weighted particle measures. Our main result is a nonasymptotic variance estimate of the relative
error with a degeneracy degree that grows linearly with respect to the time parameter. As shown in [2,11] in the context
of rare events, this result is sharp in the sense that the asymptotic variance of the relative errors grows linearly with
respect to the time horizon. We design an original stochastic analysis that combines refined Feynman–Kac semigroup
techniques with the recently developed algebraic tree-based functional representations of particle block distributions
obtained by the second author with Patras and Rubenthaler in [8].

The rest of this article is organized as follows: In a preliminary section, Section 1.1, we provide a mathematical
description of the Feynman–Kac models and their probabilistic particle interpretations. The advantage of the general
Feynman–Kac model presented here is that it unifies the theoretical analysis of a variety of genetic type algorithms
currently used in Bayesian statistics, biology, particle physics, and engineering sciences. It is clearly out of the scope
of this article to present a detailed review of these particle approximation models. We rather refer the reader to the pair
of research books [5,9], and references therein. The main results of this article are briefly presented in the end of this
section. In Section 1.2, we illustrate these rather abstract models with the traditional particle absorption interpretation
model of Feynman–Kac semigroups. We also discuss the regularity properties used in our analysis and we present
some strategies to relax these conditions. Section 2 is concerned with some key combinatorial properties of tensor
product measures and their interpretations in terms of coalescent type transitions. In Section 3 we provide some
preliminary coalescent tree-based expansions for particle tensor product measures. These algebraic developments
are pivotal in our analysis of nonasymptotic L2-estimates for unnormalized Feynman–Kac measures. We already
mention that these expansions are expressed in terms of pairwise coalescent Markov transitions and Feynman–Kac
semigroups. Section 4 is devoted to the analysis of the total mass of unnormalized Feynman–Kac semigroups. We
provide a series of regularity conditions under which the relative variation of these quantities depends only linearly
on the time horizon of these semigroups. In Section 5, we state and prove the main results of the present article.
We examine nonhomogeneous models including degenerate potential functions that may vanish on some state space
regions. In the final section, Section 6, we outline the preceding results in terms of efficiency for rare event probability
estimation. Roughly speaking, we want to control the relative variance of our estimator when the event of interest
is getting more and more rare. Our main result enables us to derive an efficiency result for rare event probability
estimation, the first of its kind concerning the Interacting Particle System (IPS) approach applied to rare events.

We end this Introduction with a brief review of some of the standard notation used in the present article. We
denote respectively by M(E), P (E) and Bb(E), the set of bounded and signed measures, the subset of all probability
measures on some measurable space (E, E ), and the Banach space of all bounded and measurable functions f on E

equipped with the uniform norm ‖f ‖ = supx∈E |f (x)|. We denote by μ(f ) = ∫
μ(dx)f (x), the Lebesgue integral

of a function f ∈ Bb(E), with respect to a measure μ ∈ M(E). We slightly abuse the notation, and sometimes
denote by μ(A) = μ(1A) the measure of a measurable subset A ∈ E . Recall that a bounded integral operator M

from a measurable space E into itself, is an operator f �→ M(f ) from Bb(E) into itself such that the functions
M(f )(x) = ∫

F
M(x,dy)f (y) are measurable and bounded, for any f ∈ Bb(E). A bounded integral operator M from

a measurable space (E, E ) into itself also generates a dual operator μ �→ μM from M(E) into M(E) defined by
(μM)(f ) := μ(M(f )). Given a pair (M1,M2) of bounded integral operators we denote by M1M2 the composition of
the operators given by the following formula (M1M2)(x,dz) = ∫

M1(x,dy)M2(y,dz). We also set Mm = Mm−1M =
MMm−1 the m composition transition, with m ≥ 1, and we use the conventions (

∑
∅

,
∏

∅
) = (0,1). Finally, the

tensor product operator M⊗2 is the bounded integral operator defined for every function f ∈ Bb(E × E) by

M⊗2(f )
(
x, x′) =

∫
E×E

M(x,dy)M
(
x′,dy′)f (

y, y′).
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1.1. Description of the models and statement of some results

We consider a collection of bounded potential functions Gn on the state space E, a distribution η0 on E, and a collec-
tion of Markov transitions Mn(x,dy) from E into itself. We associate to these objects the Feynman–Kac measures,
defined for any f ∈ Bb(E) by the formulae

ηn(f ) = γn(f )/γn(1) with γn(f ) = E

[
f (Xn)

∏
0≤k<n

Gk(Xk)

]
. (1.1)

In (1.1), (Xn)n≥0 represents a Markov chain with initial distribution η0, and elementary transitions (Mn)n>0. To
simplify the presentation, and avoid unnecessary technical discussion, we shall suppose that the potential functions
take values in [0,1] and for any n ≥ 0 we have ηn(Gn) > 0. By the Markov property and the multiplicative structure
of (1.1), it is easily checked that the flow (ηn)n≥0 satisfies the following equation

ηn+1 = Φn(ηn) := ΨGn(ηn)Mn+1 (1.2)

with the Boltzmann–Gibbs transformation ΨGn defined below:

ΨGn(ηn)(dx) := 1

ηn(Gn)
Gn(x)ηn(dx).

We also readily check the following multiplicative formula

γn(1) =
∏

0≤p<n

ηp(Gp). (1.3)

The particle approximation of the flow (1.2) depends on the choice of the McKean interpretation model. These
probabilistic interpretations consist of a chosen collection of Markov transitions Kn+1,ηn , indexed by the set of prob-
ability measures ηn on E, and satisfying the compatibility condition Φn(ηn) = ηnKn+1,ηn (see, for instance, [5],
Definition 2.5.4, p. 75). The choice of these Markov transitions is far from being unique. By (1.2), we find that

∀n ≥ 0,∀α ∈ [0,1] ηn+1 = ηnK
(α)
n+1,ηn

(1.4)

with the McKean transition K
(α)
n+1,ηn

= SαGn,ηnMn+1 and the selection type transition

SαGn,ηn(x,dy) = αGn(x)δx(dy) + (
1 − αGn(x)

)
ΨGn(ηn)(dy).

Definition 1.1. The mean field particle interpretation of the evolution equation (1.4) is the EN -valued Markov chain
X

(N)
n = (X

(N,i)
n )1≤i≤N with elementary transitions

P
(
X

(N)
n+1 ∈ dxn+1

∣∣X(N)
n

) =
N∏

i=1

K
(α)

n+1,ηN
n

(
X(N,i)

n ,dxi
n+1

)
, (1.5)

where ηN
n stands for the occupation measure ηN

n = 1
N

∑N
i=1 δ

X
(N,i)
n

of the N -uple X
(N)
n at time n. The initial configura-

tion X
(N)
0 = (X

(N,i)
0 )1≤i≤N consists of N independent and identically distributed random variables with distribution

η0.

In our context, it is worth mentioning that the elementary transitions of the chain X
(N)
n � X

(N)
n+1 are decomposed

into two separate mechanisms: Firstly, the current state X
(N,i)
n of each individual with label i ∈ {1, . . . ,N} performs

an acceptance–rejection type transition X
(N,i)
n � X̂

(N,i)
n according to Markov transition: SαGn,ηN

n
. In other words with
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a probability αGn(X
(N,i)
n ) the particle remains in the same site and we set X̂

(N,i)
n = X

(N,i)
n . Otherwise it jumps to a

new location randomly chosen according to the Boltzmann–Gibbs distribution

ΨGn

(
ηN

n

) =
N∑

j=1

Gn(X
(N,j)
n )∑N

k=1 Gn(X
(N,k)
n )

δ
X

(N,j)
n

.

After the acceptance–rejection stage, the selected individuals X̂
(N,i)
n evolve independently to a new site X

(N,i)
n+1 ran-

domly chosen with distribution Mn+1(X̂
(N,i)
n ,dx).

The above model can be extended in various ways. For instance we can consider acceptance parameters αn(ηn)

that depend on the time parameter as well as on the current measure ηn. All the results presented in this article remain
valid for these extended models. We also emphasize that for α = 0, we find that K

(0)
n+1,ηn

(x,dy) = Φn+1(ηn)(dy).

In this situation, X
(N)
n evolves as a simple genetic algorithm with mutation transitions Mn, and selection fitness

functions Gn.
Besides the fact that ηn(Gn) > 0, it is important to mention that the empirical quantities ηN

n (Gn) may vanish at a
given random time. The formal definition of this time is given below.

Definition 1.2. We let τN be the first time n we have ηN
n (Gn) = 0.

τN = inf
{
n ≥ 0: ηN

n (Gn) = 0
}
.

At time τN , the particle algorithm stops and from that time the particle approximation measures are defined as the
null measures (see, for instance, [5], Chapter 7, Section 7.2.2):

∀n > τN ηN
n = 0.

Mimicking the multiplicative formula (1.3), we also consider the following N -particle approximation of the unnor-
malized Feynman–Kac measures.

Definition 1.3. The N -particle approximation measures γ N
n associated with the unnormalized Feynman–Kac models

γn introduced in (1.1) are defined for any f ∈ Bb(E) by the following formulae:

γ N
n (f ) = γ N

n (1) × ηN
n (f ) with γ N

n (1) =
∏

0≤p<n

ηN
p (Gp).

As an aside, we observe that γ N
n = 0, for any time n > τN . It is well known that the particle measures γ N

n are
unbiased estimates of the unnormalized Feynman–Kac measures γn (see, for instance, [5], Theorem 7.4.2, p. 239).
That is we have that

∀f ∈ Bb(E) E
(
γ N
n (f )

) = γn(f ).

It is obviously out of the scope of this article to present a full asymptotic analysis of these particle models. We refer
the interested reader to the book [5] and the series of articles [6,7,10] and the references therein. For instance, it is
well known that the particle occupation measures converge to the desired Feynman–Kac measures as the size of the
population tends to infinity. That is, we have with various precision estimates, and as N tends to infinity, the weak
convergence results limN→∞ ηN

n = ηn and limN→∞ γ N
n = γn.

To give a flavor of our main results, we discuss nonasymptotic variance estimates only for time homogeneous
models (Gn,Mn) = (G,M). The next result is a representation/decomposition formula for the normalizing constant
γ N
n (1).
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Theorem 1.4. For the simple genetic algorithm corresponding to the choice α = 0, we have an explicit decomposition
formula of the following form

∀N > 1 E
(
γ N
n (1)2) = γn(1)2

(
1 +

(
1 − 1

N

)(n+1) n+1∑
s=1

1

(N − 1)s
vn(s)

)
(1.6)

for some finite constants vn(s) explicitly described in terms of Feynman–Kac type coalescent tree-based expansions
and whose values do not depend on the precision parameter N .

The proof of this theorem is housed in Section 3. The definition of vn(s) is given in Proposition 3.4. It is clear
that the preceding representation for the variance is only as good as our information about vn(s). These quantities
are expressed in terms of coalescent tree-based expansions of path integrals associated with the semigroup Qp,n

associated with the Feynman–Kac distribution flow γn = γpQp,n, with 0 ≤ p ≤ n. Theorem 1.5 and its extension to
nonhomogeneous models, Theorem 5.1, provide some precise conditions under which vn(s) can be upper-bounded.

The analysis of particle models with an acceptance parameter α ∈]0,1] is much more involved. In particular, we
have no explicit representation formulae for the second moment of γ N

n (1) but some L2-mean error bounds between
γ N
n (1) and its limiting value γn(1).

We also would like to emphasize that Theorem 1.4 holds true under no additional assumptions on the model. In
particular, it is valid for Feynman–Kac models associated with nonhomogeneous potential functions Gn and Markov
transitions Mn, including all the examples stated in Sections 1.2 and 6. The next theorem is of a different flavor since it
holds true for any α ∈ [0,1], but only under very strict conditions on pair (G,M). The proof of the following theorem
and its extension to nonhomogeneous Feynman–Kac models is presented in Section 5 (see, for instance, Theorem 5.1
and its corollary, Corollary 5.2).

Theorem 1.5. Suppose that the pair of potential-transitions (G,M) are chosen so that

∀(
x, x ′) ∈ E2 G(x) ≤ δG

(
x′) and Mm(x,dy) ≤ βMm

(
x′,dy

)
(1.7)

for some m ≥ 1 and some parameters (δ,β) ∈ [1,∞[2. In this situation, any n ≥ 0, and any N > (n+ 1)βδm we have

E
[(

γ N
n (1) − γn(1)

)2] ≤ γn(1)2
(

4

N
(n + 1)βδm

)
. (1.8)

As the quantities vn(s) discussed above, the variance estimates (1.8) involve the analysis of coalescent tree-based
integrals expressed in terms of the semigroup Qp,n. We already mention that the regularity condition (1.7) is mainly
used to obtain an uniform control of the total mass mapping x �→ Qp,n(1)(x).

We end this section with some comments on the impact of these nonasymptotic estimates. Firstly, we mention that
the convergence analysis of the occupation measures ηN

n around their limiting values is rather well understood (see,
for instance, [5], Theorem 7.4.4, p. 246). For instance, under the regularity conditions (1.7) it is well known that for
every bounded Borel function f , with ‖f ‖ ≤ 1, we have the uniform estimates

sup
n≥0

E
[[

ηN
n (f ) − ηn(f )

]2]1/2 ≤ c(β, δ)√
N

for some finite constant c(β, δ) < ∞, whose values only depend on the pair of parameters (β, δ). Using the following
decomposition

γ N
n (f )

γn(1)
− ηn(f ) =

[
γ N
n (1)

γn(1)
− 1

]
ηN

n (f ) + [
ηN

n (f ) − ηn(f )
]

we readily find that for any N > (n + 1)βδm

√
NE

[[
γ N
n (f )

γn(1)
− ηn(f )

]2]1/2

≤ 2
√

(n + 1)βδm + c(β, δ).
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We slightly abuse the notation and we consider the following flow of Feynman–Kac measures on path spaces

ηn(fn) = γn(fn)/γn(1) with γn(fn) = E

[
fn(X0, . . . ,Xn)

∏
0≤k<n

Gk(Xk)

]

for any bounded function fn ∈ Bb(E
n+1). It is rather well known that these models can also be expressed as the ones

presented in (1.1) through a state-space enlargement. In this context, under the regularity conditions (1.7) it is more
or less well known that for every function fn, with ‖fn‖ ≤ 1, and any n ≥ 0 we have the estimates

√
NE

[[
ηN

n (fn) − ηn(fn)
]2]1/2 ≤ c(β, δ)(n + 1).

Arguing as above, we readily find that for any N > (n + 1)βδm

√
NE

[[
γ N
n (fn)

γn(1)
− ηn(fn)

]2]1/2

≤ 2
√

(n + 1)βδm + c(β, δ)(n + 1).

1.2. Some model application areas

It is of course out of the scope of this article to present a detailed list of the application areas of Feynman–Kac models.
We refer the interested reader to the pair of books [5,9] and the articles [6,10]. The regularity condition (1.7) or its time
nonhomogeneous version (H)m presented in the beginning of Section 4 is often used in the analysis of the long time
behavior of Feynman–Kac semigroups and their mean field particle approximations. The analysis of these regularity
conditions depends on the application model at hand; and it often requires a refined analysis of the mixing properties
of the reference free evolution Markov chain model.

Roughly speaking, the r.h.s. condition in (1.7) is related to some compactness property of the state space or to some
regularity property of the tails of the Markov transitions Mn. For instance, it is well known that for finite state spaces
is met as soon as the Markov chain is aperiodic and irreducible. It is also met for Markov chains with bi-Laplace
transitions and bounded drift function, as well as for Gaussian transitions with constant drift function outside some
compact intervals (see, for instance, [5], Section 3.5.2).

In this section, we illustrate our results on the traditional particle absorption interpretation model of Feynman–Kac
semigroups. In this context, we provide simple conditions for a direct application of Theorem 1.5 to these models.
We also discuss the regularity conditions we used in our analysis and we indicate some strategies to relax these
conditions. The application to rare event simulation will be treated in full details in Section 6 through Theorem 5.1
and Corollary 5.2.

For [0,1]-valued potential functions Gn, the Feynman–Kac models (1.1) can be interpreted as the distribution of a
particle absorption model Xc

n evolving with the Markov transitions in an environment with absorption rate Gn. In this
situation, the normalizing constants γn(1) coincide with the nonabsorption probability at time n, and ηn represents
the conditional distribution of the particle given the fact that it has not been absorbed. Further details on this model
can be found in Chapter 2 of the book [5]. In this application area, Theorem 1.5 applies directly to time homogeneous
models satisfying the regularity condition (1.7). For instance, the potential function of these particle absorption models
is often expressed in terms of a Boltzmann–Gibbs exponential Gn(x) = e−(1/T )V (x) of an energy function V with a
temperature parameter T . In this situation, for free evolution transitions M satisfying the r.h.s. condition in (1.7), by
a direct application of Theorem 1.5, we have the rather crude upper bound

E

[(
γ N
n (1)

γn(1)
− 1

)2]
≤ 4

N
(n + 1)β exp

(
m

T
osc(V )

)
with osc(V ) := sup

x,y

(
V (x) − V (y)

)
.

We also mention that the mean field particle model associated with these particle absorption models are often called
Quantum or Diffusion Monte Carlo methods in particle physics. In this context, the normalizing constants γn(1)

contain information on the ground state energy of a molecular conformation model (see, for instance, the recent
article [8] and references therein).

The analysis of nonhomogeneous models w.r.t. the time parameter will be developed using a time nonhomoge-
neous version of condition (1.7). The precise description of this regularity condition, named (H)m, is provided in the
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beginning of Section 4. In this situation, the upper bound corresponding to (1.8) can be expressed in term of a sum
over n quantities that depend on the oscillations of the potential functions Gn and on the mixing properties of the
Markov transitions Mn (see, for instance, Corollary 5.2).

To analyze time homogeneous Feynman–Kac models associated with indicator type potential functions, we can
replace in condition (1.7) the triplet (E,G,M) by the triplet (Ê, Ĝ, M̂) given below

Ê := G−1(]0,1]), Ĝ(x) := M(G)(x) and M̂(x,dy) := M(x,dy)G(y)/M(G)(x). (1.9)

The analysis of the Feynman–Kac semigroups involved in the variance estimates can be developed using any one of
the above regularity conditions. This flexibility comes from the fact that the flow of updated measures η̂n := ΨG(ηn)

coincides with the flow of Feynman–Kac measures ηn defined as in (1.1) by replacing (E,G,M) by (Ê, Ĝ, M̂) (see,
for instance, [5], Section 2.4.3, Proposition 2.4.2, as well as the discussion in (4.2), in the present article).

The analysis of the corresponding nonhomogeneous models can be developed using the extension of (1.9) to
nonhomogeneous models, named (Ĥ )m. In this situation, the upper bound corresponding to (1.8) is expressed in
terms of the pair quantities (Ên, Ĝn, M̂n) defined as in (1.9) by replacing the pair (G,M) by (Gn,Mn).

2. Particle tensor product measures

In this short section, we provide some key combinatorial properties of empirical measures. We also define the unnor-
malized versions of the N -tensor product measures associated with the particle models introduced in Section 1.1.

Firstly, we denote by m(x) = 1
N

∑
1≤i≤N δxi , the empirical measure associated with some N -uple x = (x1, . . . ,

xN) ∈ EN . We also introduce the tensor product measures

m(x)⊗2 = 1

N2

∑
1≤i,j≤N

δ(xi ,xj ) and m(x)2 = 1

N(N − 1)

∑
1≤i �=j≤N

δ(xi ,xj ).

Definition 2.1. We denote by C the coalescent type integral operator defined by

∀F ∈ Bb

(
E2),∀(x, y) ∈ E2 C(F)(x, y) = F(x, x).

Lemma 2.2. For any F ∈ Bb(E
2), we have

m(x)⊗2(F ) = 1

N
m(x)2(C(F)

) +
(

1 − 1

N

)
m(x)2(F ). (2.1)

Proof. We use the fact that

m(x)⊗2(F ) = 1

N2

∑
1≤i,j≤N

F
(
xi, xj

)

= 1

N2

∑
1≤i≤N

F
(
xi, xi

) + 1

N2

∑
1≤i �=j≤N

F
(
xi, xj

)

= 1

N

(
1

N(N − 1)

∑
1≤i �=j≤N

F
(
xi, xi

)) + N(N − 1)

N2

(
1

N(N − 1)

∑
1≤i �=j≤N

F
(
xi, xj

))

to check that

m(x)⊗2(F ) = 1

N
m(x)2(C(F)

) +
(

1 − 1

N

)
m(x)2(F ). �

We end this section with the definition of the tensor product measures associated with the mean field particle model
presented in Section 1.1.
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Definition 2.3. For any population size N ≥ 1 and any time parameter n ≥ 0, we set

(
γ N
n

)⊗2
(F ) = γ N

n (1)2 × (
ηN

n

)⊗2
(F ) and

(
γ N
n

)2
(F ) := γ N

n (1)2 × (
ηN

n

)2
(F )

with the tensor product measures given by (ηN
n )⊗2 := m(X

(N)
n )⊗2 and (ηN

n )2 := m(X
(N)
n )2.

One can then easily check that for every test function φ ∈ Bb(E × E):

E
((

ηN
n

)2
(φ)

∣∣X(N)
n−1

) = E
((

ηN
n−1

)2[
K⊗2

n,ηN
n−1

(φ)
]∣∣X(N)

n−1

)
. (2.2)

3. Coalescent tree-based expansions

The functional coalescent tree-based expansions developed in this section are described in terms of the Feynman–Kac
semigroups defined below.

Definition 3.1. We let Qp,n, with 0 ≤ p ≤ n, be the Feynman–Kac semigroup associated with the flow γn = γpQp,n.
For p = n, we use the convention that Qn,n = Id.

Using the Markov property, it is not difficult to check that Qp,n has the following functional representation

Qp,n(fn)(xp) = E

[
fn(Xn)

∏
p≤k<n

Gk(Xk)

∣∣∣Xp = xp

]
(3.1)

for any test function fn ∈ Bb(E), and any state xp ∈ E.
To simplify the presentation, we notice that formula (2.1) stated in Lemma 2.2 can be rewritten as follows

m(x)⊗2(F ) = E
(
m(x)2(Cε(F )

))
, (3.2)

where (C0,C1) = (Id,C) and ε stands for a {0,1}-valued random variable with distribution

P(ε = 1) = 1 − P(ε = 0) = 1

N
.

The following technical lemma is pivotal.

Lemma 3.2. For any nonnegative function F ∈ Bb(E
2), any acceptance parameter α ∈ [0,1], and any n ≥ 0, we have

the upper bound

E
((

γ N
n

)⊗2
(F )

) ≤
(

N

N − 1

)n+1

E
(
η⊗2

0 Cε0Q
⊗2
1 Cε1 · · ·Q⊗2

n Cεn(F )
)
. (3.3)

In the particular case where α = 0, we have the formula

E
((

γ N
n

)⊗2
(F )

) = E
(
η⊗2

0 Cε0Q
⊗2
1 Cε1 · · ·Q⊗2

n Cεn(F )
)
, (3.4)

where (εn)n≥0 stands for a sequence of independent and identically distributed random variables with common law:

P(ε1 = 1) = 1 − P(ε1 = 0) = 1

N
.

Before getting into the details of the proof of the lemma, let us pause for a while and give some comments on the
interpretations of these results. Firstly, we observe that the functional representation formulae stated in Lemma 3.2
are expressed in terms of coalescent operators and Feynman–Kac tensor product semigroups. We emphasize that the
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second assertion, formula (3.4), is a particular case of the general functional tree-based representations presented by
the second author with Patras and Rubenthaler in [8]. This result is only met for the simple genetic model associ-
ated with a null acceptance parameter α = 0. Up to our knowledge there still does not exist any explicit functional
representation formula for more general models associated with an acceptance parameter α ∈]0,1].

Next, we turn our attention to a coalescent tree-based formulation of the integral expansion stated in the r.h.s.
of (3.4). Let us start with an elementary example. Suppose that n = 3 and (ε0, ε1, ε2, ε3) = (0,1,0,0). In this situation,
we have that

η⊗2
0 C0Q

⊗2
1 C1Q

⊗2
2 C0Q

⊗2
3 C0(F )

= η⊗2
0 Q⊗2

1 CQ⊗2
2 Q⊗2

3 (F )

=
∫ [

η0(dx0)η0(dy0)
][

Q1(x0,dx1)Q1(y0,dy1)
]

× [
Q2(x1,dx2)Q2(x1,dy2)

][
Q3(x2,dx3)Q3(y2,dy3)

]
F(x3, y3).

The integration coordinates (xp, yp) from the origin p = 0 up to the third and last level p = 3 can be associated in
a canonical way to the following coalescent tree:

•
η0

y0
Q1

y1 y2
Q3

y3

•
η0

x0
Q1

x1

Q2

Q2
x2

Q3
x3

(ε0 = 0) (ε1 = 1) (ε2 = 0) (ε3 = 0)

More generally, suppose that

∀j ∈ {i1, . . . , is} εj = 1 and ∀k /∈ {i1, . . . , is} εk = 0

for some collection of coalescence time indexes 0 ≤ i1 < · · · < is ≤ n, with 0 ≤ s ≤ n. The corresponding coalescent
tree picture is given below:
y0 ··· yi1 yi1+1 ··· yi2 yi2+1 yis+1 ··· yn

x0 ··· xi1

Qi1+1

Qi1+1

xi1+1 ··· xi2

Qi2+1

Qi2+1

xi2+1 xis

Qis+1

Qis+1
xis+1 ··· xn

(εi1 = 1) (εi2 = 1) (εis = 1)

This formulation is associated with the following integral expansion:

η⊗2
0 Cε0Q

⊗2
1 Cε1 · · ·Q⊗2

n Cεn = η⊗2
0 Q⊗2

0,i1
CQ⊗2

i1,i2
C · · ·Q⊗2

is−1,is
CQ⊗2

is ,n
.

The coalescent tree-based expansions associated with the mean tensor product measures (3.4) will be described in
terms of the bounded positive measures defined below.
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Definition 3.3. We associate with any 0 ≤ s ≤ (n + 1) and any coalescence time indexes 0 ≤ i1 < · · · < is ≤ n the
nonnegative measure Γ

(i1,...,is )
n ∈ M(E2) defined by the transport equation

Γ (i1,...,is )
n := γ ⊗2

i1
CQ⊗2

i1,i2
CQ⊗2

i2,i3
· · ·CQ⊗2

is−1,is
CQ⊗2

is ,n
.

We also denote by �Γ (i1,...,is )
n its normalized version given for any F ∈ Bb(E

2) by the following formula:

�Γ (i1,...,is )
n (F ) := 1

γn(1)2
Γ (i1,...,is )

n (F ).

We also use the conventions

Γ (∅)
n (F ) = γ ⊗2

n (F ) and �Γ (∅)
n (F ) = η⊗2

n (F ) for s = 0.

Using Lemma 3.2, we readily prove the following decomposition:

E
(
η⊗2

0 Cε0Q
⊗2
1 Cε1 · · ·Q⊗2

n Cεn(F )
)

=
(

1 − 1

N

)(n+1)

γ ⊗2
n (F )

+
n+1∑
s=1

(
1 − 1

N

)(n+1)−s 1

Ns

∑
0≤i1<···<is≤n

E
(
η⊗2

0 Cε0Q
⊗2
1 Cε1 · · ·Q⊗2

n Cεn(F )|Ωn(i1, . . . , is)
)

with the sets of events

Ωn(i1, . . . , is) := {∀j ∈ {i1, . . . , is} εj = 1 and ∀k /∈ {i1, . . . , is} εk = 0
}
.

On these sets we have that

η⊗2
0 Cε0Q

⊗2
1 Cε1 · · ·Q⊗2

n Cεn = η⊗2
0 Q⊗2

0,i1
CQ⊗2

i1,i2
C · · ·Q⊗2

is−1,is
CQ⊗2

is ,n
= Γ (i1,...,is )

n .

Then, for the simple genetic particle model associated with the case where α = 0, we find the following functional
representation formula:

E

(
(γ N

n )⊗2(F )

γn(1)2

)
− η⊗2

n (F ) =
n+1∑
s=1

(
1 − 1

N

)(n+1)−s 1

Ns

∑
0≤i1<···<is≤n

[�Γ (i1,...,is )
n (F ) − η⊗2

n (F )
]
.

In particular, if we choose the constant unit function F = 1, we obtain the first assertion (1.6) of Theorem 1.4.

Proposition 3.4. For the simple genetic particle model associated with the case where α = 0 we have

E

[(
γ N
n (1)

γn(1)
− 1

)2]
=

n+1∑
s=1

(
1 − 1

N

)(n+1)−s 1

Ns
vn(s)

with the collection of constants vn(s) defined below

vn(s) :=
∑

0≤i1<···<is≤n

[�Γ (i1,...,is )
n (1) − 1

]
.

The above functional representation shows that the order of precision is directly related to the coalescence degree
of the trees discussed above. The order 1

N
corresponds to a coalescent tree with a single coalescence, the order 1

N2

corresponds to a coalescent tree with a pair coalescence, and so on. The main difficulty in estimating these variances
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comes from the fact that the total mass of the coalescent type measures �Γ (i1,...,is )
n are generally unknown and we

need to resort to a more refined analysis. We shall return to these questions in Section 5 dedicated to nonasymptotic
L2-estimates.

We end this section with the proof of Lemma 3.2.

Proof of Lemma 3.2. By construction, we have

E
((

γ N
n

)⊗2
(F )

∣∣X(N)
n−1

) = γ N
n (1)2 × E

((
ηN

n

)⊗2
(F )

∣∣X(N)
n−1

)
.

By (3.2), we find that

E
((

γ N
n

)⊗2
(F )

∣∣X(N)
n−1

) = γ N
n (1)2 × E

((
ηN

n

)2
(CεnF )

∣∣X(N)
n−1

)
,

where εn is a {0,1}-valued random variable with distribution

P(εn = 1) = 1 − P(εn = 0) = 1

N
.

As noticed in (2.2), we have that

E
((

ηN
n

)2
(CεnF )

∣∣X(N)
n−1

) = E
((

ηN
n−1

)2[
K⊗2

n,ηN
n−1

(
Cεn(F )

)]∣∣X(N)
n−1

)
. (3.5)

We use Lemma 2.2 to check that

(
ηN

n−1

)2 = N

N − 1

[(
ηN

n−1

)⊗2 − 1

N

(
ηN

n−1

)2
C

]
.

This implies that for any nonnegative function F , we have the upper bound

E
((

ηN
n

)2
(CεnF )

∣∣X(N)
n−1

) ≤ N

N − 1
E

((
ηN

n−1

)⊗2[
K⊗2

n,ηN
n−1

(
Cεn(F )

)]∣∣X(N)
n−1

)
.

Using the fact that

ηN
n−1Kn,ηN

n−1
= Φn

(
ηN

n−1

) �⇒ (
ηN

n−1

)⊗2
K⊗2

n,ηN
n−1

= (
ηN

n−1Kn,ηN
n−1

)⊗2 = Φn

(
ηN

n−1

)⊗2

we obtain

E
((

ηN
n

)2
(CεnF )

∣∣X(N)
n−1

) ≤ N

N − 1
E

(
Φn

(
ηN

n−1

)⊗2(
Cεn(F )

)∣∣X(N)
n−1

)
. (3.6)

In summary, we have proved that

E
((

γ N
n

)⊗2
(F )

∣∣X(N)
n−1

) ≤ N

N − 1
γ N
n (1)2 × E

(
Φn

(
ηN

n−1

)⊗2(
Cεn(F )

)∣∣X(N)
n−1

)
.

To take the final step, we use the fact that

Φn

(
ηN

n−1

)
(f ) = ηN

n−1Qn(f )

ηN
n−1Qn(1)

�⇒ Φn

(
ηN

n−1

)⊗2
(F ) = (ηN

n−1)
⊗2Q⊗2

n (F )

(ηN
n−1)

⊗2Q⊗2
n (1)

and

Qn(1)(x) = Gn−1(x)Mn(1)(x) = Gn−1(x) �⇒ (
ηN

n−1

)⊗2
Q⊗2

n (1) = ηN
n−1(Gn−1)

2.
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This yields that

γ N
n (1)2 × 1

(ηN
n−1)

⊗2Q⊗2
n (1)

=
{ ∏

0≤p<n

ηN
p (Gp)

}2

× 1

ηN
n−1(Gn−1)2

=
{ ∏

0≤p<(n−1)

ηN
p (Gp)

}2

= γ N
n−1(1)2.

This implies that

E
((

γ N
n

)⊗2
(F )

∣∣X(N)
n−1

) ≤ N

N − 1
γ N
n−1(1)2 × E

((
ηN

n−1

)⊗2
Q⊗2

n

(
Cεn(F )

)∣∣X(N)
n−1

)
.

This readily implies that

E
((

γ N
n

)⊗2
(F )

∣∣X(N)
n−1

) ≤ N

N − 1
E

((
γ N
n−1

)⊗2
Q⊗2

n

(
Cεn(F )

)∣∣X(N)
n−1

)
from which we find that

E
((

γ N
n

)⊗2
(F )

) ≤ N

N − 1
E

((
γ N
n−1

)⊗2
Q⊗2

n

(
Cεn(F )

))
.

This ends the proof of (3.3). The proof of the second assertion follows the same lines of arguments. Thus, it is only
sketched. Indeed, in particular case where α = 0, we have that

Kn,ηN
n−1

(x,dy) = Φn

(
ηN

n−1

)
(dy) �⇒ K⊗2

n,ηN
n−1

((
x, x′), d(

y, y′)) = Φn

(
ηN

n−1

)⊗2(
d
(
y, y′)).

In this situation, the formula (3.5) takes the following form

E
((

ηN
n

)2
(CεnF )

∣∣X(N)
n−1

) = E
(
Φn

(
ηN

n−1

)⊗2(
Cεn(F )

)∣∣X(N)
n−1

)
. (3.7)

In other words, loosely speaking, the upper bound recursion (3.6) is replaced by Eq. (3.7). The remainder of the proof
follows exactly the same line of arguments, thus it is omitted. This ends the proof of the lemma. �

4. Regularity properties of Feynman–Kac semigroups

This section is concerned with some regularity properties of the Feynman–Kac semigroups involved in the coalescent
tree-based functional expansions presented in Section 3. We start with a rather strong condition on the pair (Gn,Mn).

Condition (H)m:

• (G) The potential functions Gn satisfy the following conditions

∀n ≥ 0 δn := sup
(x,y)∈E2

Gn(x)

Gn(y)
< ∞.

• (M)m There exists some integer m ≥ 1 and some sequence of numbers β
(m)
p ∈ [1,∞[ such that for any p ≥ 0 and

any (x, x′) ∈ E2 we have

Mp,p+m(x,dy) ≤ β(m)
p Mp,p+m

(
x′,dy

)
with Mp,p+m = Mp+1Mp+2 · · ·Mp+m.

The main simplification due to this regularity condition is that the total mass mapping x �→ Qp,n(1)(x) of the
Feynman–Kac semigroup Qp,n introduced in (3.1) has uniformly bounded relative oscillations.
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Lemma 4.1. We suppose condition (H)m is met for some parameters (m, δn,β
(m)
p ). Then, we have for any p ≥ 0

sup
(x,y)∈E2

Qp,n(1)(x)

Qp,n(1)(y)
≤ δ(m)

p β(m)
p with δ(m)

p =
∏

p≤q<p+m

δq. (4.1)

Proof. For any nonnegative function f ∈ Bb(E), any pair of points (x, y) ∈ E2 and for any p ≤ n with |n − p| ≥ m

we have

Qp,n(f )(x)

Qp,n(f )(y)
= Gp(x)Mp+1Qp+1,n(f )(x)

Gp(y)Mp+1Qp,n(f )(y)
≤ δp

Mp+1Qp+1,n(f )(x)

Mp+1Qp+1,n(f )(y)
.

Using a simple induction, we find that

Qp,n(f )(x)

Qp,n(f )(y)
≤ δ(m)

p

Mp,p+m[Qp+m,n(f )](x)

Mp,p+m[Qp+m,n(f )](y)
.

Under condition (M)m we conclude that

sup
(x,y)∈E2

Qp,n(f )(x)

Qp,n(f )(y)
≤ δ(m)

p β(m)
p .

We further assume that |n − p| < m. In this case, we readily find that

Qp,n(1)(x)

Qp,n(1)(y)
≤ δ

(n−p)
p ≤ δ(m)

p ≤ δ(m)
p β(m)

p .

This ends the proof of the lemma. �

Condition (H)m is clearly not met for indicator potential functions. Our next objective is to relax this condition
in order to analyze these models. To describe precisely these new conditions, we need to introduce another round of
notations.

Definition 4.2. We denote by An the support of the potential functions Gn, that is

An := {
x ∈ E: Gn(x) > 0

}
.

We let (γ̂n, η̂n) be the updated Feynman–Kac measures on the set An given by

∀n ≥ 0 γ̂n(dx) = γn(dx)Gn(x) and η̂n(dx) := 1

ηn(Gn)
Gn(x)ηn(dx).

We let (Ĝn, M̂n) be the pair of potential functions and Markov transitions given by

∀x ∈ An Ĝn(x) := Mn+1(Gn+1)(x) and ∀x ∈ An−1 M̂n(x,dy) := Mn(x,dy)Gn(y)

Mn(Gn)(x)
.

Notice that the updated Feynman–Kac measures (γ̂n, η̂n) can be rewritten in terms of (Ĝn, M̂n) with the following
change of reference measure formula

η̂n(f ) := γ̂n(f )

γ̂n(1)
with γ̂n(f ) = η0(G0)E

(
f (X̂n)

∏
0≤p<n

Ĝp(X̂p)

)
. (4.2)

In the above display, X̂n stands for a nonhomogeneous Markov chain with initial distribution η̂0 and elementary
Markov transitions M̂n from An−1 into An. We are now in position to describe these new conditions.
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Condition (Ĥ )m:

• (Ĝ) The potential functions Ĝn satisfy the following conditions

∀n ≥ 0 δ̂n := sup
(x,y)∈A2

n

Ĝn(x)

Ĝn(y)
< ∞.

• (M̂)m There exists some integer m ≥ 1 and some sequence of numbers β̂
(m)
p ∈ [1,∞[ such that for any p ≥ 0 and

any (x, x′) ∈ A2
p we have

M̂p,p+m(x,dy) ≤ β̂(m)
p M̂p,p+m

(
x′,dy

)
with M̂p,p+m = M̂p+1M̂p+2 · · · M̂p+m.

Using elementary but rather tedious calculations we readily prove that

(H)m �⇒ (Ĥ )m with δ̂n ≤ δn and β̂(m)
p ≤ δ

(m)
p+1β

(m)
p .

For m = 1, we also observe that

(M)1 �⇒ (Ĥ )1 with δ̂n ≤ β(1)
n and β̂(1)

p ≤ (
β(1)

p

)2
.

Using the change of measure formula (4.2) we observe that the semigroup of the updated measures γ̂n is given by

Q̂p,n = Q̂p+1Q̂p+2 · · · Q̂n with Q̂n(x,dy) = Ĝn−1(x)M̂n(x,dy).

In other words, Q̂p,n is defined as the semigroup Qp,n by replacing the pair of objects (Gn,Mn) by the quantities
(Ĝn, M̂n). From this simple observation, applying Lemma 4.1 to the semigroup Q̂p,n, without further work we readily
find that for any p ≥ 0

sup
(x,y)∈A2

p

Q̂p,n(1)(x)

Q̂p,n(1)(y)
≤ δ̂(m)

p β̂(m)
p with δ̂(m)

p =
∏

p≤q<p+m

δ̂q (4.3)

as soon as the regularity condition (Ĥ )m is met for some parameters (m, δ̂n, β̂
(m)
p ).

Using the easily checked formula

Qp,n(f )(x) = Gp(x)[Q̂p,n−1Mn](f )(x) (4.4)

we readily prove the following lemma.

Lemma 4.3. We suppose condition (Ĥ )m is met for some parameters (m, δ̂n, β̂
(m)
p ). In addition, we assume that the

potential functions Gn satisfy the following conditions

∀n ≥ 0 δ̃n := sup
(x,y)∈A2

n

Gn(x)

Gn(y)
< +∞.

Then, for any p ≥ 0, we have the estimates

sup
(x,y)∈A2

p

Qp,n(1)(x)

Qp,n(1)(y)
≤ δ̃pδ̂(m)

p β̂(m)
p . (4.5)
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5. Nonasymptotic L2-estimates

This section is concerned with the statement and the proof of the main results of this article.

Theorem 5.1. We suppose condition (Ĥ )m is met for some parameters (m, δ̂n, β̂
(m)
p ). In addition, we assume that the

potential functions Gn satisfy the following conditions

∀n ≥ 0 δ̃n := sup
(x,y)∈A2

n

Gn(x)

Gn(y)
< +∞. (5.1)

Then, for any nonnegative function F ∈ Bb(E
2) with ‖F‖ ≤ 1, and any N > 1 we have

E
((

γ N
n

)⊗2
(F )

) ≤ γn(1)2 ×
n∏

s=0

(
1 + 1

N − 1

δ̃s δ̂
(m)
s β̂

(m)
s

ηs(As)

)
. (5.2)

Furthermore, if condition (H)m is met for some (m, δn,β
(m)
p ) then we have the estimate

E
((

γ N
n

)⊗2
(F )

) ≤ γn(1)2 ×
n∏

s=0

(
1 + 1

N − 1
δ(m)
s β(m)

s

)
. (5.3)

Before getting into the proof of this theorem, we already present a simple consequence of the above estimates.
Notice that Theorem 1.4 stated in the Introduction is a direct consequence of the following corollary.

Corollary 5.2. When conditions (5.1) and (Ĥ )m are met for some (m, δ̂n, β̂
(m)
p ), we have the nonasymptotic estimates

N >

n∑
s=0

δ̃s δ̂
(m)
s β̂

(m)
s

ηs(As)
�⇒ E

([
γ N
n (1)

γn(1)
− 1

]2)
≤ 4

N

n∑
s=0

δ̃s δ̂
(m)
s β̂

(m)
s

ηs(As)
.

In addition, if condition (H)m is met for some (m, δn,β
(m)
p ), then we have

N >

n∑
s=0

[
δ(m)
s β(m)

s

] �⇒ E

([
γ N
n (1)

γn(1)
− 1

]2)
≤ 4

N

n∑
s=0

[
δ(m)
s β(m)

s

]
.

The proof of the corollary is elementary, thus we give it first.

Proof of Corollary 5.2. Using the act that log(1 + x) ≤ x for any x ≥ 0, and ex ≤ 1 + 2x for any x ∈ [0,1], we
conclude that

n∏
s=0

(
1 + as

N − 1

)
− 1 = e

∑n
s=0 log(1+as/(N−1)) − 1 ≤ e(1/(N−1))

∑n
s=0 as − 1 ≤ 2

N − 1

n∑
s=0

as

for every (as)s≥0 ∈ [1,∞[N and any N ≥ 1 + ∑n
s=0 as . Also observe that 1

N−1 ≤ 2
N

for any N ≥ 1 + ∑n
s=0 as (≥ 2).

This yields that

n∏
s=0

(
1 + as

N − 1

)
− 1 ≤ 4

N

n∑
s=0

as.

Using these estimates the proof of the corollary is a direct consequence of Theorem 5.1. This ends the proof of the
corollary. �
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Now, we come to the proof of Theorem 5.1.

Proof of Theorem 5.1. To simplify the presentation, firstly we suppose that (H)m is met for some parameters
(m, δn,β

(m)
p ). We observe that

Γ (i1,...,is )
n (F ) = γi1(1)

∫
γi1(dx)

[
Q⊗2

i1,i2
C · · ·Q⊗2

is−1,is
CQ⊗2

is ,n
(F )

]
(x, x)

= Γ
(i1,...,is−1)

is

(
CQ⊗2

is ,n
(F )

)
.

On the other hand, we have

γi1(1)

γn(1)
= γi1(1)

γi1Qi1,n(1)
= 1

ηi1Qi1,n(1)

and

γi1(dx)

γn(1)
= γi1(1)

γn(1)
× ηi1(dx) = ηi1(dx)

ηi1Qi1,n(1)
.

Now, we prove (5.3) using an induction on the parameter s. For s = 1 we observe that

�Γ (i1)
n (F ) = γi1(1)

γn(1)

∫
γi1(dx)

γn(1)
Q⊗2

i1,n
(F )(x, x)

=
∫

ηi1(dx)Qi1,n(x,dy)

ηi1Qi1,n(1)
× Qi1,n(x,dy′)

ηi1Qi1,n(1)
F

(
y, y′).

Since ‖F‖ ≤ 1 this yields that

�Γ (i1)
n (F ) ≤

∫
ηi1(dx)Qi1,n(x,dy)

ηi1Qi1,n(1)
× Qi1,n(1)(x)

ηi1Qi1,n(1)
.

Using the estimate (4.1) we find that

�Γ (i1)
n (F ) ≤ δ

(m)
i1

β
(m)
i1

.

Next, we suppose that the desired upper bound is valid at rank (s − 1), that is we have that for any ‖F‖ ≤ 1

�Γ (i1,...,is−1)
n (F ) ≤

∏
k∈{i1,...,is−1}

(
δ
(m)
k β

(m)
k

)
.

To check that the result is also true at rank s, we use the decompositions

�Γ (i1,...,is )
n (F )

= 1

(ηi1Qi1,n(1))2

∫
ηi1(dx)

[{
Q⊗2

i1,i2
CQ⊗2

i2,i3
· · ·CQ⊗2

is−1,is

}
CQ⊗2

is ,n

]
(F )(x, x)

= 1

(ηi1Qi1,n(1))2

∫
ηi1(dx)

[
Q⊗2

i1,i2
CQ⊗2

i2,i3
· · ·CQ⊗2

is−1,is

](
(x, x), d(u, v)

)
Q⊗2

is ,n
(F )(u,u).

We observe that

Q⊗2
is ,n

(1 ⊗ 1)(u,u) = Qis,n(1)(u)2 ≤ (
δ
(m)
is

β
(m)
is

)
Qis,n(1)(u)Qis ,n(1)

(
u′)

= (
δ
(m)
is

β
(m)
is

)
Q⊗2

is ,n
(1 ⊗ 1)

(
u,u′)
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from which we conclude that

�Γ (i1,...,is )
n (F )

≤ (δ
(m)
is

β
(m)
is

)

(ηi1Qi1,n(1))2

∫
ηi1(dx)

[
Q⊗2

i1,i2
CQ⊗2

i2,i3
· · ·CQ⊗2

is−1,is

](
(x, x), d

(
u,u′))Q⊗2

is ,n
(1 ⊗ 1)

(
u,u′)

= (
δ
(m)
is

β
(m)
is

) 1

(ηi1Qi1,n(1))2

∫
ηi1(dx)

[
Q⊗2

i1,i2
CQ⊗2

i2,i3
· · ·CQ⊗2

is−1,n

]
(1 ⊗ 1)(x, x)

and therefore

�Γ (i1,...,is )
n (F ) ≤ (

δ
(m)
is

β
(m)
is

)�Γ (i1,...,is−1)
n (1 ⊗ 1).

Using the induction hypothesis, we conclude that

�Γ (i1,...,is )
n (F ) ≤

{ ∏
k∈{i1,...,is−1}

(
δ
(m)
k β

(m)
k

)} × (
δ
(m)
is

β
(m)
is

)
.

This ends the proof of the inductive proof. Using the above estimates, we find that

1

γn(1)2
E

(
η⊗2

0 Cε0Q
⊗2
1 Cε1 · · ·Q⊗2

n Cεn(F )
)

≤
(

1 − 1

N

)(n+1)

+
n+1∑
s=1

(
1 − 1

N

)(n+1)−s 1

Ns

∑
0≤i1<···<is≤n

∏
k∈{i1,...,is }

(
δ
(m)
k β

(m)
k

)
.

Using the decomposition

n∏
s=0

(1 + as) = 1 +
∑

1≤s≤n+1

∑
0≤i1<···<is≤n

( ∏
j∈{i1,...,is }

aj

)
,

which is valid for any n ≥ 0 and any collection of numbers (ap)p≥0, we prove that

1

γn(1)2
E

(
η⊗2

0 Cε0Q
⊗2
1 Cε1 · · ·Q⊗2

n Cεn(F )
)

≤
(

1 − 1

N

)(n+1)
(

1 +
n+1∑
s=1

∑
0≤i1<···<is≤n

∏
k∈{i1,...,is }

δ
(m)
k β

(m)
k

N − 1

)

≤
(

1 − 1

N

)(n+1) n∏
s=0

(
1 + δ

(m)
s β

(m)
s

N − 1

)
.

The end of the inductive proof of (5.3) is now easily completed. Indeed, using (3.3) we conclude that for any α ∈ [0,1]

E

(
(γ N

n )⊗2(F )

γn(1)2

)
≤

n∏
s=0

(
1 + δ

(m)
s β

(m)
s

N − 1

)
.

The proof of (5.2) follows the same lines of arguments, thus it is only sketched. We suppose condition (Ĥ )m is met
for some parameters (m, δ̂n, β̂

(m)
p ). In this situation, for every 1 ≤ i ≤ n we have

�Γ (i)
n (F ) ≤ ‖F‖

∫
ηi(dx)Qi,n(x,dy)

ηiQi,n(1)
× Qi,n(1)(x)

ηiQi,n(1)
.
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Using Lemma 4.3 and recalling that

Qi,n(1)(x) = Gi(x)Mi+1
(
Qi+1,n(1)

)
(x) = 1Ai

(x)Qi,n(1)(x)

we find that

Qi,n(1)(x)

ηiQi,n(1)
= Qi,n(1)(x)∫

ηi(dy)Qi,n(1)(y)
= 1Ai

(x)
Qi,n(1)(x)∫

ηi(dy)1Ai
(y)Qi,n(1)(y)

≤ δ̃i × δ̂
(m)
i β̂

(m)
i

ηi(Ai)
.

The inductive proof of (5.2) now follows exactly the one of (5.3) and it is omitted. This ends the proof of the theo-
rem. �

6. Application to rare events

In this section, we want to outline the use of our main result in terms of efficiency for rare event probability estimation.
By rare event we mean an event whose probability is too small to be accurately estimated by a simple Monte Carlo
procedure in a reasonable time. Practically, this is the case if this probability is less than, say 10−9. In this case, the
normalizing constant γn(1) is the probability, to be estimated, of the rare event under consideration.

One of the most used model for rare event is the following. Let Z = {Zt , t ≥ 0} be a continuous-time strong Markov
process taking values in some Polish state space S. For a given target Borel set A ⊂ S we define the hitting time

TA = inf{t ≥ 0: Zt ∈ A},
as the first time when the process Z hits A. In many applications, the set A is the (super) level set of a scalar measurable
function φ defined on S, i.e.

A = {
z ∈ S: φ(z) ≥ λA

}
.

It may happen that most of the realizations of X never reach the set A. The corresponding rare event probabilities are
extremely difficult to analyze. In particular one would like to estimate the quantity

P(TA ≤ T ),

where T is a P-almost surely finite stopping time, for instance the hitting time of a recurrent Borel set R ⊂ S, i.e.
T = TR with

TR = inf{t ≥ 0: Zt ∈ R} and P(TR < ∞) = 1.

In practice the process Z, before visiting R or entering into the desired set A, passes through a decreasing sequence
of closed sets

A = An� ⊂ An�−1 ⊂ · · · ⊂ A2 ⊂ A1 ⊂ A0. (6.1)

The parameter n� and the sequence of level sets depend on the problem at hand. We can easily fit this problem in the
Feynman–Kac model presented in Section 1.1 simply by setting

∀1 ≤ n ≤ n� Xn := ZTn∧T ,

where, with a slight abuse of notation, Tn stands for the first time TAn the process Z reaches An, that is

Tn = inf{t ≥ 0: Zt ∈ An}
with the convention inf ∅ = ∞. The potential functions Gn on S are defined by

Gn(x) = 1An(x).
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In this notation, we have TA = Tn� and for every n ≤ n�

γn(1) = P(Tn ≤ T ) and ηn = Law(Xn|Tn ≤ T ). (6.2)

For more details on these excursion valued Feynman–Kac models, we refer the reader to [2]. As we will show now, our
main result enables us to derive an efficiency result for rare event probability estimation, the first of its kind concerning
the Interacting Particle System (IPS) approach applied to rare events.

Basically, efficiency results are about asymptotics when the rare event probability goes to 0: we want to control
the relative variance of our estimator when the event of interest is getting more and more unlikely. In the context of
importance sampling, a discussion about various efficiency (or robustness) properties may be found in [1]. Among all
those, we will focus here on logarithmic efficiency.

Returning to the framework presented above, we further assume that we have a family of rare sets Aε indexed by
ε ≥ 0, of the form

Aε = {
z ∈ S s.t. φ(z) > λε

}
for some real valued function φ. Denote as usual

TAε = inf
{
t ≥ 0,Zt ∈ Aε

}
and TR = inf{t ≥ 0,Zt ∈ R}

for some recurrent Borel subset R ⊂ S. Assume further that we have for some θ > 0

P(TAε < TR) = e−θ/ε,

which is typical of behavior driven by a large deviation principle. We further assume that we are given a nonincreasing
sequence of level sets

Aε = Anε ⊂ Anε−1 ⊂ · · · ⊂ A2 ⊂ A1 ⊂ A0

with a real valued function ψ so that

An = {
x ∈ S,ψ(x) > Ln

}
.

In the above displayed formula (Ln)1≤n≤nε stands for a nondecreasing sequence of real numbers, with some fixed time
horizon nε that may depend on the parameter ε, and so that Anε = Aε . In the rare event literature, such a function ψ

is called an importance function. In this notation, by (6.2) the rare event probability of interest is given by

γnε (1) = P(Tnε ≤ TR) = e−θ/ε.

Then we say that our estimator γ N
nε

(1) has the logarithmic efficiency property if we have

lim
ε→0

logE[(γ N
nε

(1))2]
2 logγnε (1)

= 1.

Next, we discuss the regularity conditions (Ĝ) and (M̂)m introduced on page 642.
Before to proceed, we observe that the parameters δ̃n introduced in (4.3) are simply given by δ̃n = 1. We check this

claim using the fact that the potential functions Gn are the indicator functions on excursion subsets ending at the level
sets An.

The assumption (M̂)m is clearly a mixing type property. In this context M̂n(xn−1,dxn) is the elementary transition
probability of an excursion X̂n starting at An−1 (at the terminal state of an excursion xn−1 ending at An−1) and ending
at the next level set An. We illustrate condition (M̂)m for the simple random walk on the one dimensional lattice S = Z

starting at the origin, with the increasing sequence of level sets An = [n,∞[. In this context, we readily find that (M̂)m
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is satisfied with m = 1 and β̂
(1)
n = 1, for every n ≥ 1. More generally, in the simple setting of one dimension (i.e., the

random process Z lives in R), we always have β̂
(m)
n = 1 for all n.

Now we discuss to the regularity condition (Ĝ). Firstly, we observe that

Ĝn(xn) = Mn+1(Gn+1)(xn)

is the probability of reaching the set An+1, starting from the terminal value of a random excursion xn ending at An.
The less this quantity depends on xn, the lower is the variance, as it is already well known for the asymptotic variance
(as seen in [2]). So a good choice of the sets An is such that they are close to level sets for the probability of reaching
the rare event.

From Corollary 5.2, we see that ηn(An) is another quantity of interest. In this situation, we recall that An is the set of
all random excursions ending at the level An and ηn is the distribution of the nth excursion Xn of the process Zt given
the fact that it has reached the level An−1 at time Tn−1. Thus, ηn(An) is the probability of reaching level An, knowing
that the trajectory has reached An−1. It is well known already (see [2,11]) that we need to have these quantities ηn(An)

as close to each other as possible (the best would be equal). So not only do we need to have an importance function
close to the optimal one, but also to have the sets An evenly spaced in terms of hitting probabilities.

The issue of constructing a good importance function is far from trivial, and has been nicely addressed in [4]
in the case of importance splitting techniques (which are close to the IPS approach). Their choice of importance
function allows them to prove the asymptotically optimal efficiency of the importance splitting with their choice of
the importance function.

From now on, we assume that we know how to construct a good importance function, is such a way that for all n,
δ̂
(m)
n < δ for some δ, and we know how to construct the level sets An so that

P(Tn < TR|Tn−1 < TR) = ηn(An) ≈ p > 0

for some p ∈ [0,1]. A practical way for doing this has been proposed by two of the authors in [3]. We also suppose
that the Markov process X̂n is sufficiently mixing, so that β̂

(m)
n < β , for some β . In this situation, using the fact that

ηn(An) ≈ p > 0, we get that the number nε of steps needed to get to the rare event is of order − θ
ε logp

. Using our
Theorem 5.1, we see that

E
[(

γ N
nε

(1)
)2] ≤ γnε (1)2

(
1 + δβ

(N − 1)p

)−θ/(ε logp)

.

Using the fact that logγ N
nε

(1) = −θ/ε, we get the lower bound

1 + 1

2 logp
log

(
1 + 1

N − 1

δβ

p

)
≤ log E[(γ N

nε
(1))2]

2 logγnε (1)
.

Now, using Jensen’s inequality and the fact that the estimator γ N
nε

(1) is unbiased, we have the upper bound

logE[(γ N
nε

(1))2]
2 logγnε (1)

≤ 1.

Putting all things together, we get the asymptotic logarithmic efficiency at any (slow) rate, in the sense that

lim
N↑∞

log E[(γ N
nε

(1))2]
2 logγnε (1)

= 1.
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