Translator Disclaimer
May 2011 Hiding a constant drift
Vilmos Prokaj, Miklós Rásonyi, Walter Schachermayer
Ann. Inst. H. Poincaré Probab. Statist. 47(2): 498-514 (May 2011). DOI: 10.1214/10-AIHP363


The following question is due to Marc Yor: Let B be a Brownian motion and St=t+Bt. Can we define an $\mathcal{F}^{B}$-predictable process H such that the resulting stochastic integral (HS) is a Brownian motion (without drift) in its own filtration, i.e. an $\mathcal{F}^{(H\cdot S)}$-Brownian motion?

In this paper we show that by dropping the requirement of $\mathcal{F}^{B}$-predictability of H we can give a positive answer to this question. In other words, we are able to show that there is a weak solution to Yor’s question. The original question, i.e., existence of a strong solution, remains open.

La question suivante a été posée par Marc Yor: Soit B un mouvement Brownien et St=t+Bt. Peut-on définir un processus H qui est $\mathcal{F}^{B}$-prévisible tel que l’intégrale stochastique (HS) soit un mouvement Brownien (sans drift) pour sa propre filtration $\mathcal{F}^{(H\cdot S)}$?

Dans cet article nous fournissons une réponse affirmative en relâchant la condition que H soit $\mathcal{F}^{B}$-prévisible. Autrement dit, nous montrons qu’il existe une solution faible pour cette question de Yor. La question originale (c’est à dire, l’existence d’une solution forte) reste ouverte.


Download Citation

Vilmos Prokaj. Miklós Rásonyi. Walter Schachermayer. "Hiding a constant drift." Ann. Inst. H. Poincaré Probab. Statist. 47 (2) 498 - 514, May 2011.


Published: May 2011
First available in Project Euclid: 23 March 2011

zbMATH: 1216.60048
MathSciNet: MR2814420
Digital Object Identifier: 10.1214/10-AIHP363

Primary: 60G44, 60H05, 60J65
Secondary: 60G05, 60H10

Rights: Copyright © 2011 Institut Henri Poincaré


Vol.47 • No. 2 • May 2011
Back to Top