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1. Introduction

Let Ω be a probability space, rich enough to generate the set of probability laws on R × R. Let d be a pseudodistance
on the set of real-valued random variables, such that d(X,Y ) depends only on the law of (X,Y ). Then, according to
Paul Lévy (see Note B in Fréchet (1950) for this fact) the minimal distance d̂ associated with d is defined by

d̂(μ, ν) = inf
{
d(X,Y ): X ∼ μ,Y ∼ ν

}
,

where the infimum is taken over all random vectors (X,Y ) with respective marginal laws μ and ν. We refer to
Zolotarev (1976) for the properties of minimal distances. When E = R, r ≥ 1 and d(X,Y ) = ‖X − Y‖r , we denote
by Wr the so defined minimal distance on the space Mr of probability laws with a finite absolute moment of order r .
This distance is often called Wasserstein distance of order r . More generally, if ψ is some Orlicz function and ‖ · ‖ψ is
the Orlicz norm associated with this function, we will denote by Wψ the minimal distance associated with d(X,Y ) =
‖X − Y‖ψ . The distances Wr and Wψ are homogeneous of degree 1.

Our aim in this paper is to provide upper bounds for the minimal distances between the normalized sum and the
limiting Gaussian distribution in the independent case. We now recall the known results on this subject.

Throughout the paper, X1,X2, . . . is a sequence of independent real-valued random variables with mean zero and
finite positive variance. We set Sn = X1 + X2 + · · · + Xn and vn = VarSn. We denote by μn the law of v

−1/2
n Sn and

by γv the normal law with mean 0 and variance v. For independent and identically distributed (i.i.d.) random variables
with finite absolute third moment, Esseen (1958) proved that

lim
n→∞

√
nW1(μn, γ1) = A1(μ1), (1.1)
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where A1(μ1) is some non-negative explicit constant depending only on the law of X1. Consequently the rate in the
central limit for the distance W1 is O(n−1/2). Next Zolotarev (1964) obtained

A1(μ1) ≤ 1

2

E(|X1|3)
(E(X2

1))
3/2

. (1.2)

He also proved that the constant (1/2) in this inequality cannot be improved. For p in ]2,3] and i.i.d. random variables
in L

p , Ibragimov (1966) proved that

W1(μn, γ1) = O
(
n1−p/2) (1.3a)

and that this rate cannot be improved. For independent and non-identically distributed random variables, it follows
from the non-uniform estimates of Bikelis (1966) that

W1(μn, γ1) ≤ Cv
−p/2
n

n∑
i=1

E
(|Xi |p

)
(1.3b)

for some constant C depending only on p, which generalizes the results of Ibragimov (1966).
Later Bártfai (1970) proved that Wr(μn, γ1) = O(nε−1/2) for i.i.d. random variables with a finite moment generat-

ing function, for any r ≥ 1. He also conjectured that

Wr(μn, γ1) = O
(
n−1/2) as n → ∞. (1.4)

For r > 2 and i.i.d. random variables with a finite absolute moment of order r ,

Wr(μn, γ1) = O
(
n(1/r)−(1/2)

)
as n → ∞, (1.5)

as proved by Sakhanenko (1985). Furthermore this rate cannot be improved. Consequently the optimal rate needs
a more stringent moment condition.

We now give an outline of our results. In Section 2, we give an answer to Bártfai’s question. More precisely, we
prove that, for i.i.d. random variables with a finite moment generating function in a neighborhood of the origin,

Wψ(μn, γ1) = O
(
n−1/2) as n → ∞, (1.6)

where ψ is the Orlicz function ψ(x) = exp(|x|) − 1. This result implies that (1.4) holds for i.i.d. random variables
with a finite moment generating function, for any r ≥ 1.

In Section 4, we give more precise results for r in [1,2] and sequences of independent random variables. In
particular, our results imply that there exists some positive constant C depending only on r such that, for i.i.d. random
variables in L

r+2,

Wr(μn, γ1) ≤ C
(‖X1‖r+2/‖X1‖2

)1+2/r
n−1/2 for any positive n. (1.7)

The proof of (1.7) is mainly based on some functional inequality linking the Wasserstein distance of order r and
Zolotarev’s ideal distance of order r . This result was announced in Rio (1998). However, the proof was not correct
(the constant appearing in his Theorem 1 should be modified). This is the reason why we give a new proof of this
functional inequality in Section 3. In Section 5, we prove that inequality (1.7) cannot be improved. In Section 6, we
extend the results of Section 4 to more general transportation costs. For example, for i.i.d. random variables with finite
fourth moments, the results of Section 6 ensure that

W2(PS2
n/vn

,PY 2) ≤ C
(‖X1‖4/‖X1‖2

)2
n−1/2, (1.8)

where Y is a standard normal, which cannot be derived from the results of Section 4.
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2. Minimal distances in the CLT for r.v.’s with finite Laplace transform

Throughout Section 2, X1,X2, . . . is a sequence of i.i.d. real-valued random variables satisfying the conditions

E(X1) = 0 and E
(
exp

(
t |X1|

))
< ∞ for some t > 0. (2.1)

Let ψ be the convex function defined by ψ(x) = exp(|x|) − 1. The Orlicz norm associated with ψ is defined by

‖X‖ψ = inf
{
a > 0 such that E

(
ψ(X/a)

) ≤ 1
}
, (2.2)

with the convention ‖X‖ψ = +∞ if E(ψ(X/a)) > 1 for any positive a.
Theorem 2.1 below proves that the Wasserstein distances Wψ(μn, γ1) converge to 0 at the rate n−1/2 for sums of

i.i.d. r.v.’s with finite Laplace transforms. Since lim∞ x−rψ(x) = +∞ for any r ≥ 1, it follows that (1.4) holds true
for any r ≥ 1 under condition (2.1). For random variables with a finite moment generating function, this result was
stated by Rio (1993), pp. 785–786, in the case of random vectors with smooth density.

Theorem 2.1. Let X1,X2, . . . be a sequence of i.i.d. r.v.’s satisfying (2.1). Then there exists some positive A such that√
nWψ(μn, γvn) ≤ A for any positive integer n.

Proof. Let Fn denote the distribution function of Sn, F−1
n denote the generalized inverse function of Fn and � denote

the distribution function of a standard normal r.v. Y . Then Un = F−1
n (�(Y )) has the same distribution as Sn and, by

Theorem 8.1 in Major (1978),

√
vnWψ(μn, γ1) = ∥∥Un − √

vnY
∥∥

ψ
.

It remains to prove that the sequence (Un − √
vnY )n is bounded in the Orlicz space L

ψ associated to ψ .
The idea of such a result goes back to Komlós, Major and Tusnády (1975), pp. 114–115. From a normal approxi-

mation theorem in Petrov (1975), which is Theorem A, Section 6, in Komlós, Major and Tusnády (1975), and using
exactly the same arguments as in the proof of inequality (2.6), p. 118 of the same paper (this inequality does not need
a Cramér type condition on X1), one obtains that there are positive constants C and c such that

∣∣Un − √
vnY

∣∣ ≤ C
(
1 + n−1U2

n

)
if |Un| ≤ cn. (2.3)

It follows that, for any positive constant c′ ≤ c,

∣∣Un − √
vnY

∣∣ ≤ C + CU2
n1|Un|≤c′n + |Un|1|Un|>c′n + √

vn|Y |1|Un|>c′n.

Hence

∥∥Un − √
vnY

∥∥
ψ

≤ (C/ log 2) + C
∥∥n−1U2

n1|Un|≤cn

∥∥
ψ

+ ‖Un1|Un|>c′n‖ψ + √
vn‖Y1|Un|>c′n‖ψ.

Now, from Lemma 4(ii), p. 276, in Massart (1989), applied to the random variables Xi with wi = 1, there exist some
positive constants c′ and C′ such that

∥∥n−1U2
n1|Un|≤c′n

∥∥
ψ

≤ C′. (2.4)

Clearly, we may assume that c′ ≤ c, reducing c′ if necessary. To bound up the last terms on right-hand side in (2.3), it
will be convenient to apply the elementary lemma below.

Lemma 2.1. For any real-valued r.v. Z with mean 0 and any measurable set Γ ,

E
(
exp

(
a|Z|1Γ

) − 1
) ≤ (

P(Γ )E
(
e2aZ

)
E

(
e−2aZ

))1/2
.
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Proof. From the elementary equality exp(a|Z|1Γ ) − 1 = 1Γ (ea|Z| − 1) together with the Schwarz inequality, we get
that

E
(
exp

(
a|Z|1Γ

) − 1
) ≤ (

P(Γ )E
((

ea|Z| − 1
)2))1/2

.

Now (e|u| − 1)2 ≤ (eu − e−u)2, which ensures that

E
((

ea|Z| − 1
)2) ≤ E

(
e2aZ

) + E
(
e−2aZ

) − 2.

To complete the proof, apply the inequality x + y − 2 ≤ xy − 1 (valid for x ≥ 1 and y ≥ 1) to x = E(e2aZ) and
y = E(e−2aZ) (observe that x ≥ 1 and y ≥ 1 since E(Z) = 0). �

We now apply Lemma 2.1 to Γ = (|Un| ≥ c′n). From the Chernoff bound for sums of i.i.d. random variables with
finite Laplace transform, P(Γ ) ≤ 2 exp(−nb) for some positive constant b. Now there exists some positive constant a

such that

E
(
exp(2aUn)

)
E

(
exp(−2aUn)

) ≤ exp(nb) and exp
(
4a2vn

) ≤ exp(nb).

For this choice of a, and either Z = Un or Z = √
vnY , Lemma 2.1 ensures that

E
(
exp

(
a|Z|1Γ

) − 1
) ≤ √

2 ≤ 3/2,

which implies that

‖Un1|Un|>c′n‖ψ + √
vn‖Y1|Un|>c′n‖ψ ≤ 3a.

Hence Theorem 2.1 holds. �

We now give an application of Theorem 2.1 to the minimal distances between the Poisson distribution and the
Gaussian distribution with the same expectation and the same variance. This corollary will be used to prove Theo-
rem 4.1 in Section 4.

Corollary 2.2. Let P (λ) denote the Poisson law with mean λ and N (m,v) denote the Gaussian law with mean m

and variance v. Then supλ≥0 Wψ(P (λ), N (λ,λ)) < ∞.

Proof. Let n = [λ]. By the triangle inequality,

Wψ

(
P (λ), N (λ,λ)

) ≤ Wψ

(
P (n), N (n,n)

) + Wψ

(
P (n), P (λ)

) + Wψ

(
N (n,n), N (λ,λ)

)
≤ A + Wψ

(
P (n), P (λ)

) + Wψ

(
N (n,n), N (λ,λ)

)
, (2.5)

by Theorem 2.1 applied to i.i.d. random variables with common law P (1).
Set x = λ − n. Then P (λ) = P (n) ∗ P (x) and N (λ,λ) = N (n,n) ∗ N (x, x). Hence, by Lemma 3, p. 382, in

Zolotarev (1976),

Wψ

(
P (n), P (λ)

) ≤ Wψ

(
δ0, P (x)

)
and Wψ

(
N (n,n), N (λ,λ)

) ≤ Wψ

(
δ0, N (x, x)

)
.

Let Nx be an r.v. with distribution P (x) and Bx be an r.v. with distribution N (0, x):

Wψ

(
δ0, P (x)

) = ‖Nx‖ψ and Wψ

(
δ0, N (x, x)

) = ‖x + Bx‖ψ ≤ x‖1‖ψ + √
x‖B1‖ψ.

Now

E
(
ψ(Nx/a)

) = exp
(
x
(
exp(1/a) − 1

)) − 1 ≤ E
(
ψ(N1/a)

)
,
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which implies that ‖Nx‖ψ ≤ ‖N1‖ψ . Hence, from the above facts,

Wψ

(
P (n), P (λ)

) + Wψ

(
N (n,n), N (λ,λ)

) ≤ ‖N1‖ψ + (1/ log 2) + ‖B1‖ψ. (2.6)

Both (2.5) and (2.6) imply Corollary 2.2. �

3. A functional inequality for Wasserstein distances and Zolotarev distances

The main result of this section provides a comparison between the Wasserstein distance Wr and Zolotarev’s ideal
distance of order r .

Definition 3.1. For r > 1, let l = sup N ∩ [0, r[ and Λr be the class of l-times continuously differentiable functions
f : R → R such that |f (l)(x)−f (l)(y)| ≤ |x −y|r−l for any (x, y) in R

2. The ideal distance Zr of Zolotarev is defined
by

Zr(μ, ν) = sup

{∫
R

f dμ −
∫

R

f dν: f ∈ Λr

}
.

Theorem 3.1 below is Theorem 1 in Rio (1998) with different constants.

Theorem 3.1. For any r > 1 there exists a positive constant cr such that, for any pair (μ, ν) of laws on the real line
with finite absolute moments of order r ,

(
Wr(μ, ν)

)r ≤ crZr(μ, ν).

Furthermore cr = 2r for r in ]1,2] and cr = (r − 1)2r+1 for r in ]2,3].

For large and entire values of r , Proposition 3.1 below provides estimates of cr .

Proposition 3.1. For r ≥ 4 integer and l = r − 1, Theorem 3.1 holds true with

cr = √
πl

(
π2/e

)l/2
ll
(
1 + (1/l)

)
for r even and cr = √

πl
(
π2/e

)l/2
ll exp

(
1/(6l)

)
for r odd.

Remark 3.1. From Proposition 3.1, for any integer r ≥ 4,

Wr(μ, ν) ≤ πe−1/2r
(
Zr(μ, ν)

)1/r
.

Proof of Theorem 3.1. Let φσ denote the density of the normal law N(0, σ 2) and μσ = μ ∗ φσ .λ. Clearly

Wr(μ, ν) = lim
σ↘0

Wr(μσ , νσ ) and Zr(μ, ν) = lim
σ↘0

Zr(μσ , νσ ).

Consequently it is enough to prove Theorem 3.1 for probability laws with strictly positive and smooth densities. So,
let μ and ν be probability laws with distributions function F and G, respectively, and assume that F and G are C∞
diffeomorphisms from R on ]0,1[. Recall that, for U r.v. with the uniform distribution over [0,1], the random vector
(F−1(U),G−1(U)) has respective marginal laws μ and ν. Consequently, in order to prove Theorem 3.1, it is enough
to prove that there exists some function h in Λr such that, for any u in ]0,1[,

cr

(
h
(
G−1(u)

) − h
(
F−1(u)

)) ≥ ∣∣G−1(u) − F−1(u)
∣∣r . (3.1)

Let A be the closed set of reals x such that F(x) = G(x). By definition, F(A) = G(A) and F(A) is the set of reals u

in ]0,1[ such that F−1(u) = G−1(u). Throughout the proof, S is the sign function: S(t) = 1t>0 − 1t<0.
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If A is empty, then F(x) > G(x) for any real x or F(x) < G(x) for any real x. In that case, we choose

h(x) = 2r−l−1 S(F − G)x|x|r−1

r(r − 1) · · · (r − l + 1)
. (3.2)

Then h(l)(x) = 2r−l−1(S(x))l−1|x|r−lS(F − G) and consequently h belongs to Λr . By definition of h,

(
h
(
G−1(u)

) − h
(
F−1(u)

)) = 2r−1−l |G−1(u)|G−1(u)|r−1 − F−1(u)|F−1(u)|r−1|
r(r − 1) · · · (r − l + 1)

. (3.3)

Now, for any r > 1 and any positive a, the function (a + u)|a + u|r−1 − u|u|r−1 achieves its infimum for u = −a/2.
Hence

∣∣G−1(u)
∣∣G−1(u)

∣∣r−1−F−1(u)
∣∣F−1(u)

∣∣r−1∣∣ ≥ 21−r
∣∣G−1(u) − F−1(u)

∣∣r ,
which, together with (3.3), implies (3.1) with cr = 2lr(r − 1) · · · (r − l + 1).

Suppose now that A is not empty. Let m = infA and M = supA. If M is finite, we define h on [M,∞[ by

r(r − 1) · · · (r − l + 1)
(
h(x) − h(M)

) = 2r−l−1S
(
F(x) − G(x)

)
(x − M)r. (3.4)

In the same way, if m is finite, we define h on ]−∞,m] by

r(r − 1) · · · (r − l + 1)
(
h(x) − h(m)

) = −2r−l−1S
(
F(x) − G(x)

)
(m − x)r . (3.5)

If u > F(M), then F−1(u) > M and G−1(u) > M . Now the sign of F − G is constant over ]M,∞[. Hence, for any
u > F(M), from the superadditivity of xr , (3.1) holds with cr = r(r − 1) · · · (r − l + 1)2l+1−r . In the same way, if m

is finite, from the definition (3.5), inequality (3.1) holds for u < F(m) with the same constant.
We now define h(x) on [m,M] ∩ R. Let the function ψr be defined on [0,1] in the following way. For r > 3, we

set

ψr(x) = ar

(
sin(πx)

)r−1
, (3.6a)

where ar is the largest positive real such that ψr ∈ Λr−1. Then ψ
(k)
r (0) = ψ

(k)
r (1) = 0 for any integer k in [0, l[.

For r in ]2,3], we define ψr by

ψr(x) = (r − 1)−1xr−1 for x ∈ [0,1/4], (3.6b)

ψr(x) = 2ψr(1/4) − ψr((1/2) − x) for x in [1/4,1/2] and ψr(x) = ψr(1 − x) for x in [1/2,1]. The function ψr

satisfies ψr(0) = ψr(1) = 0 and ψ ′
r (0) = ψ ′

r (1) = 0.
For r in ]1,2], we set

ψr(x) = min
(
xr−1, (1 − x)r−1). (3.6c)

It is easy to check that the so defined functions ψr belong to Λr−1.
For x real in [m,M], we define the function h by

h(x) =
∫ x

c

f (t)dt, (3.7a)

where c is some fixed number in ]m,M[, f (t) = 0 for t in A and

f (t) = 2r−l−1(b − a)r−1ψr

(
(t − a)/(b − a)

)
S
(
F(t) − G(t)

)
(3.7b)

for t in Ac ∩]m,M[, with a = supA∩ ]−∞, t] and b = infA ∩ [t,∞[.
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We now prove that h belongs to Λr . By definition h is absolutely continuous on R l-times continuously differen-
tiable on Ac and, for k in [1, l] and t in Ac ∩]m,M[,

h(k)(t) = 2r−l−1(b − a)r−kψ(k−1)
r

(
(t − a)/(b − a)

)
S
(
F(t) − G(t)

)
(3.8)

with a = supA∩ ]−∞, t] and b = infA∩[t,∞[. Since ψr and the derivatives of ψr up to order l −1 vanish for x = 0
and x = 1, we get, by induction on k, that

∣∣ψ(k−1)
r (x)

∣∣ ≤ min(xr−k, (1 − x)r−k)

(r − k) · · · (r − l + 1)

for any integer k in [1, l]. It follows that

∣∣h(k)(t)
∣∣ ≤ 2r−l−1 min((t − a)r−k, (b − t)r−k)

(r − k) · · · (r − l + 1)
.

Hence, for any integer k in [1, l], any t in Ac ∩]m,M[ and any x in A,

∣∣h(k)(t)
∣∣ ≤ 2r−l−1 |t − x|r−k

(r − k) · · · (r − l + 1)
. (3.9)

Furthermore, from (3.4) and (3.5), inequality (3.9) still holds for t > M or t < m. Applying (3.9) to k = 1, we get
that f is continuous, which ensures that h is C1 and h′ = f . Next, from (3.9), proceeding by induction on k, we get
that, for any k ≤ l, h is k times differentiable and h(k)(x) = 0 for x in A. From (3.9) again, h(l) is continuous. Now
let x and y be two reals with x < y. If [x, y] ∩ A �= ∅, from (3.9),

∣∣h(l)(y) − h(l)(x)
∣∣ ≤ 2r−l−1 sup

t∈[x,y]
(
(t − x)r + (y − t)r

) ≤ |y − x|r .

If [x, y] does not intersect A and x > M , from (3.4),
∣∣h(l)(y) − h(l)(x)

∣∣ ≤ |y − x|r . (3.10)

In the same way, if y < m, (3.10) holds. If [x, y] ⊂]m,M[, x and y are in the same connex component of Ac, and
consequently (3.8) holds true with a < x < y < b. Then (3.10) follows from (3.8) and the fact that ψr belongs to
Λr−1. Hence h belongs to Λr .

It remains to prove (3.1) for u in ]F(m),F (M)[. Since F−1(u) = G−1(u) for any u in F(A), it is sufficient to
prove (3.1) for u /∈ F(A). Let x = F−1(u) and y = G−1(u). Clearly x does not belong to A and m < x < M . Setting
a = supA∩ ]−∞, x] and b = infA ∩ [x,∞[, we have: a < F−1(u) < b and F(a) < u < F(b). Since F(a) = G(a)

and F(b) = G(b), it implies that G(a) < u < G(b) and a < G−1(u) < b. Hence x and y are in the same connex
component of A. Suppose, for example, that G−1(u) > F−1(u). Then F(t) > G(t) for any t in ]a, b[ and

h(y) − h(x) = 2r−l−1
∫ y

x

(b − a)r−1ψr

(
(t − a)/(b − a)

)
dt.

Now, from the definition of ψr , it can be proven that, for t in [x, y],
(b − a)r−1ψr

(
(t − a)/(b − a)

)
> (y − x)r−1ψr

(
(t − x)/(y − x)

)
.

Hence, for x = F−1(u) and y = G−1(u),

h(y) − h(x) ≥ 2r−l−1(y − x)r
∫ 1

0
ψr(t)dt. (3.11)

For r in ]1,2],

Ir =
∫ 1

0
ψr(t)dt = 2

∫ 1/2

0
t r−1 dt = 1

r
21−r .
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Hence, from (3.4), (3.5) and (3.11), inequality (3.1) holds with cr = 2r .
For r in ]2,3], from the symmetry properties of ψr ,

Ir =
∫ 1

0
ψr(t)dt = ψr(1/4) = 1

r − 1
41−r .

Hence, from (3.11), inequality (3.1) holds for u in ]F(m),F (M)[ with cr = (r −1)2r+1. For u /∈]F(m),F (M)[, from
the definitions (3.4) and (3.5), inequality (3.1) holds with the constant 4r(r − 1). Since 4r ≤ 2r+1 for r > 2, we infer
that (3.1) holds for any u in ]0,1[ with cr = (r − 1)2r+1. Finally, for r > 3, inequality (3.1) holds with cr = (arIr )

−1.

Proof of Proposition 3.1. Recall that l = r − 1. Consequently

a−1
r = sup

{∣∣ψ(l)
r (t)

∣∣: t ∈ [0,1]}.
Now, by the De Moivre formula,

ψr(t) = (2i)−lar

l∑
k=0

l!
(l − k)!k! (−1)keiπ(l−2k)t .

Hence

ψ(l)
r (t) = πlar

l∑
k=0

l!
(l − k)!k!2−l(−1)k(l − 2k)leiπ(l−2k)t ,

which implies that

a−1
r ≤ πl

l∑
k=0

l!
(l − k)!k!2−l |l − 2k|l = πl

E
(|ε1 + ε2 + · · · + εl |l

)
, (3.12)

if (εk)k>0 is a sequence of i.i.d. random variables with P(εk = 1) = P(εk = −1) = 1/2.
Let Tn = ε1 + ε2 + · · · + εn. Suppose now that r is odd: r = 2m + 1 for some integer m > 1. If Y is a standard

normal, it is known that

E
(
T 2m

n

) ≤ nm
E

(
Y 2m

) = nm (2m)!
2mm! . (3.13)

Next

Ir =
∫ 1

0

(
sin(πt)

)2m dt = 1 · 3 · 5 · · · (2m − 1)

2 · 4 · 6 · · ·2m
= 2−2m (2m)!

m!m! . (3.14)

Equations (3.12), (3.13) with n = 2m and (3.14) ensure that

(arIr )
−1 ≤ (

4π2m
)m

m! with m = (r − 1)/2 = l/2.

Now, recall that the sequence (n−1/2(e/n)n exp(−1/(12n))n!)n is non-decreasing and converges to
√

2π. Conse-
quently m! ≤ √

2πm(m/e)m exp(1/12m) and (3.1) holds with

cr = √
πl

(
π2/e

)l/2
ll exp

(
1/(6l)

)
. (3.15)

If r is even, r = 2m, then l = 2m − 1. By the Cauchy–Schwarz inequality,

E
(|Tl |l

) ≤ (
E

(
T 2m

l

)
E

(
T 2m−2

l

))1/2 =
(

ll

2l

2m!(2m − 2)!
m!(m − 1)!

)1/2

. (3.16)
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Next

Ir =
∫ 1

0

(
sin(πt)

)2m−1 dt = 2 · 4 · · · (2m − 2)

3 · 5 · · ·2m − 1

2

π
= 22m−1 (m − 1)!(m − 1)!

(2m − 1)!π . (3.17)

Equations (3.12), (3.16) and (3.17) ensure that

(arIr )
−2 ≤ π2(2m − 1)2

(
π2l

8

)l
(2m)!(2m − 2)!

m!(m − 1)!
(

(2m − 2)!
(m − 1)!(m − 1)!

)2

. (3.18)

Now, recall that the sequence (n−1/2(e/n)nn!)n is non-increasing and converges to
√

2π. Hence

(2m)!(2m − 2)!
m!(m − 1)! ≤ 24m−1

e2m−1
mm(m − 1)m−1 and

(
(2m − 2)!

(m − 1)!(m − 1)!
)2

≤ 24m−4

π(m − 1)
.

Putting these inequalities in (3.18), one can prove that

(arIr )
−1 ≤ √

πl
(
π2/e

)l/2
(l + 1)ll−1,

which completes the proof of Theorem 3.1. �

4. Upper bounds for the Wasserstein distances under moment assumptions

In this section we extend (1.3) to Wasserstein distances of order r for r in ]1,2]. The main result is Theorem 4.1 below,
which provides optimal rates of convergence for independent random variables under minimal moment conditions.

Theorem 4.1. Let r in ]1,2]. There exists some positive constant C0 depending only on r such that, for any positive
n and any sequence (Xi)i>0 of independent real-valued random variables in L

r+2 with mean 0

(
Wr(μn, γ1)

)r ≤ C0Lr+2,n, where Lr+2,n = v
−(r+2)/2
n

n∑
i=1

E
(|Xi |r+2).

Remark 4.1. Sakhanenko (1985) proved that for any positive r there exists some constant c0 depending only on r

such that

(
Wr+2(μn, γ1)

)r+2 ≤ c0Lr+2,n. (4.1)

Suppose that the random variables Xi are identically distributed. From (4.1),

Wr+2(μn, γ1) ≤ c
1/(r+2)

0

(‖X1‖r+2/‖X1‖2
)
n−r/2(r+2). (4.2)

Hence (4.1) provides some rate of convergence in the CLT for the metric Wr+2. However, in order to reach the optimal
rate O(n−1/2), one needs to consider the weaker metric Wr , as shown by Theorem 4.1, which gives

Wr(μn, γ1) ≤ C
1/r

0

(‖X1‖r+2/‖X1‖2
)(r+2)/r

n−1/2. (4.3)

Now, from Theorem 4.1 and Sakhanenko’s estimate (4.1), we get upper bounds for the Wasserstein distances of
order p, for p in [r, r + 2] in Corollary 4.2 below.
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Corollary 4.2. Under the assumptions of Theorem 4.1, for any p in [r, r + 2],
(a)

(
Wp(μn, γ1)

)p ≤ max(C0, c0)Lr+2,n.

Consequently, for i.i.d. random variables,

(b) Wp(μn, γ1) ≤ (
max(C0, c0)

)1/p(‖X1‖r+2/‖X1‖2
)(r+2)/p

n−r/2p.

Proof of Theorem 4.1. Our proof is mainly based on Theorem 3.1 and on asymptotic expansions of smooth functions
in the CLT. By Theorem 1, p. 294 in Barbour (1986), for any function f in Λr ,

E
(
f

(
v

−1/2
n Sn

)) = E
(
f (Y )

) − 1

2
βE

(
D2Θf (Y )

) + η, (4.4a)

where β = v
−3/2
n E(S3

n), Y is a standard normal r.v. and D2Θf is a function depending only on f , and

|η| ≤ CrLr+2,n. (4.4b)

If E(S3
n) = 0, then (4.4) ensures that Zr(μn, γ1) ≤ CrLr+2,n, where Zr is the Zolotarev distance as defined in

Definition 3.1. From Theorem 3.1, we get that
(
Wr(μn, γ1)

)r ≤ 2rCrLr+2,n,

which implies Theorem 4.1 in that case.
Suppose now that E(S3

n) �= 0. Let (Πt )t>0 denote the homogeneous Poisson process on R
+ with Lebesgue measure

as intensity. Take

N = βΠβ−2 − β−1. (4.5)

Then E(N) = 0, VarN = 1 and E(N3) = β . From the infinite divisibility of the Poisson process, for any positive
integer m, N is the sum of m independent distributed random variables with the common law of βΠ1/mβ2 − (mβ)−1.
Hence, by (4.4) applied with n = m and vn = 1

E
(
f (N)

) = E
(
f (Y )

) − 1

2
βE

(
D2Θf (Y )

) + ηm, (4.6a)

with

ηm ≤ Crm|β|r+2
E

(∣∣Π1/mβ2 − (
1/mβ2)∣∣r+2)

. (4.6b)

As m tends to infinity, the upper bound in (4.6b) converges to Cr |β|r . Hence, by (4.4) and (4.6),

Zr(μn,PN) ≤ Cr

(
Lr+2,n + |β|r). (4.7)

In order to bound up |β|r , define μ̄ = n−1 ∑n
k=1 P

v
−1/2
n Xk

and let X̄ be a random variable with law μ̄. Then

E(X̄3) = β/n and

∣∣E(
X̄3)∣∣r = (

E
(|X̄|2(r−1)/r+(r+2)/r

))r ≤ (
E

(
X̄2))r−1

E
(|X̄|r+2)

by the Hölder inequality. Since E(X̄2) = 1/n and E(|X̄|r+2) = n−1Lr+2,n, we have:

|β|r ≤ Lr+2,n. (4.8)

By (4.7), (4.8) and Theorem 3.1, we get that

Wr(μn,PN) ≤ (4rCr)
1/rL

1/r

r+2,n. (4.9)
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It remains to bound the Wasserstein distance between PN and γ1. From Corollary 2.2 together with the symmetry of
the Gaussian law,

Wψ(PN,γ1) ≤ |β|B with B = sup
λ≥0

Wψ

(
P (λ), N (λ,λ)

)
. (4.10)

Next, note that exp(x) − 1 ≥ max(x, x2) for any positive x, which ensures that ψ(x) ≥ xr for any r in [1,2]. Hence,
for any r in [1,2],

Wr(PN,γ1) ≤ Wψ(PN,γ1) ≤ B|β| ≤ BL
1/r

r+2,n

by (4.8). Both the above inequality and (4.9) imply Theorem 4.1. �

Proof of Corollary 4.2. From the results of Dall’Aglio (1956) and Fréchet’s remark (1957), for any s ≥ 1,

Ws(μn, γ1) = ‖Zn‖s , where Zn = v
−1/2
n F−1

n

(
�(Y)

) − Y. (4.11)

Now from the convexity properties of Hölder norms, for any p in [r, r + 2],

E
(|Zn|p

) ≤ (
E|Zn|r

)(r+2−p)/2(
E|Zn|r+2)(p−r)/2 ≤ max(c0,C0)Lr+2,nv

(p−r−2)/2
n (4.12)

by (4.1) and Theorem 4.1. Hence Corollary 4.2(a) holds true; (b) follows immediately from (a). �

5. Lower bounds for minimal distances in the CLT for i.i.d. random variables

In this section we give a converse to inequality (1.7). Theorem 5.1 below proves that the estimate (1.7) cannot be
improved.

Theorem 5.1. For any a ≥ 1, there exists a sequence (Xi)i>0 of i.i.d. random variables with mean zero, satisfying
E(|X|r+2) = ar for any r ≥ 0, such that, for any r ≥ 1,

lim inf
n→∞

(√
nWr(μn, γ1)

)r ≥ bra
r with br = 2−r/(r + 1).

Remark 5.1. For r = 1 the constant appearing in Theorem 5.1 is 1/4, when Zolotarev’s constant is 1/2. In the case
a = 1, Theorem 5.1 holds with the better constant br = 1/(r + 1) (see the proof below).

Proof of Theorem 5.1. Define the law of X1 by

P(X1 = a) = P(X1 = −a) = 1/
(
2a2) and P(X1 = 0) = 1 − 1/a2.

Then the distribution of Sn is a lattice distribution supported by aZ (for a = 1, the support is 1 + 2Z). Hence, if Y is
an N(0,1)-distributed random variable,

√
nWr(μn, γ1) ≥ ∥∥d

(√
nY,aZ

)∥∥
r
,

where d(x, aZ) denotes the distance from x to the set aZ. It follows that
√

nWr(μn, γ1) ≥ a
∥∥d

(√
n(Y/a),Z

)∥∥
r

(for a = 1, one can take 1 + 2Z instead of Z in this inequality). Now the random variable d(
√

n(Y/a),Z) has the
density

fn(x) = a√
2πn

∑
k∈Z

exp

(
− a2

2n
(x − k)2

)
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over [−1/2,1/2]. Hence fn(x) converges to 1 as n tends to ∞, for any x in [−1/2,1/2], and the sequence of random
variables (d(

√
n(Y/a),Z))n converges in law to the uniform distribution over [−1/2,1/2] as n tends to ∞ (for a = 1,

the sequence converges to the uniform distribution over [−1,1]). Since these random variables take their values in
[−1/2,1/2], the convergence of the L

r norms also holds. Consequently

lim
n→∞

∥∥d
(√

n(Y/a),Z
)∥∥r

r
=

∫ 1/2

−1/2
|x|r dx,

which implies Theorem 5.1. �

6. Transportation costs in the CLT under moment assumptions

In this section, we extend the results of Section 4 to more general transportation costs. The tool is some extension of
Theorem 3.1 to weighted Zolotarev type metrics. We first introduce some cost function between laws.

Definition 6.1. Let r ≥ 1 and p ≥ 0. For μ and ν laws in the set Mr+p of probability laws with finite absolute
moment of order r + p, with respective distribution functions F and G, we set

κr,p(μ, ν) =
∫ 1

0

(
1 + 2−p

(∣∣F−1(u)
∣∣ + ∣∣G−1(u)

∣∣)p)∣∣F−1(u) − G−1(u)
∣∣r du.

In oder to state the extension of Theorem 3.1, we need to introduce weighted Hölder spaces and the corresponding
Zolotarev type distances.

Definition 6.2. For r in ]1,2] and p > 0, let Λr,p be the class of continuously differentiable functions f : R → R such
that f (0) = f ′(0) = 0 and

∣∣f ′(x) − f ′(y)
∣∣ ≤ |x − y|r−1(1 + |x|p + |y|p)

for any (x, y) in R
2. For r = 1, let Λ1,p denote the class of absolutely continuous functions such that f (0) = 0 and

|f ′(x)| ≤ 1 + |x|p almost everywhere. For μ and ν in Mr+p , we set

Zr,p(μ, ν) = sup

{∫
f dμ −

∫
f dν: f ∈ Λr,p

}
.

Proposition 6.1 below is a modified version of Theorem 3.1.

Proposition 6.1. Let r in ]1,2] and p ≥ 1. For any laws μ and ν in Mr+p ,

κr,p(μ, ν) ≤ 2r+prpZr,p(μ, ν).

The main result of the section is Theorem 6.1 below, which gives estimates of the rate of convergence of
κr,p(μn, γ1) to 0. The proof of this result is based on Proposition 6.1.

Theorem 6.1. Let r in ]1,2] and p ≥ 1. Set p∗ = max(p,2). There exists some positive constant C depending only
on r and p such that, for any positive n and any sequence (Xi)i>0 of independent real-valued random variables in
L

r+p∗
with mean 0,

κr,p(μn, γ1) ≤ C(Lr+2,n + Lr+p∗,n),

provided that Lr+2,n ≤ 1.

From Theorem 6.1, we can derive the result below, which gives estimates of the Wasserstein distances between the
distributions of smooth functions of the random variables Sn/

√
vn and the standard normal r.v. Y .
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Corollary 6.2. Let r in ]1,2] and p ≥ 1. Set p∗ = max(p,2). There exists some positive constant C depending only
on r and p such that, for any positive n and any sequence (Xi)i>0 of independent real-valued random variables in
L

r+p∗
with mean 0,

sup
f ∈Λ1,p/r

(
Wr(Pf (Sn/

√
vn),Pf (Y ))

)r ≤ C(Lr+2,n + Lr+p∗,n),

provided that Lr+2,n ≤ 1.

Remark 6.1. The additional condition Lr+2,n ≤ 1 is not too restrictive, since the estimates in Theorem 6.1 and Corol-
lary 6.2 are not efficient if Lr+2,n > 1. Let f be defined by f (x) = x(1 + r(p + 2r)−1|x|p/r ). Then the function f

is in Λ1,p/r and furthermore f is an expanding map. Consequently Corollary 6.2 gives sharper estimates than Theo-
rem 4.1.

Proof of Proposition 6.1. As in Section 3, we may assume that the probability laws have strictly positive and smooth
densities. To prove Proposition 6.1, it is enough to prove that there exists some function g in Λr,p such that, for any u

in ]0,1[ with F−1(u) �= G−1(u),

2r+prp
g(G−1(u)) − g(F−1(u))

|G−1(u) − F−1(u)|r ≥ 1 +
( |F−1(u)| + |G−1(u)|

2

)p

. (6.1)

Let A0 = A ∪ {0}, where A is the set of reals x such that F(x) = G(x). The function g is defined by

g(x) = 2r

4p

∫ x

0

(
1 + |t |p)(

d(t,A0)
)r−1

S
(
F(t) − G(t)

)
dt. (6.2)

By definition g is continuously differentiable and

g′(t) = 2r

4p

(
1 + |t |p)(

d(t,A0)
)r−1

S
(
F(t) − G(t)

) = 1

p

(
1 + |t |p)

h′(t),

with h in Λr . The fact that g belongs to Λr,p follows from Lemma 6.1 below.

Lemma 6.1. Let h be a function in Λr satisfying h′(0) = 0 and g be defined by g(0) = 0 and pg′(x) = h′(x)(1+|x|p)

for any real x. Then g belongs to Λr,p .

Proof. Let x and y reals with |y| ≥ |x|. By definition of g,

p
(
g′(y) − g′(x)

) = (
h′(y) − h′(x)

)(
1 + |x|p) + h′(y)

(|y|p − |x|p)
.

Now |y|p − |x|p ≤ p|y|p−1(|y| − |x|) ≤ p|y|p+1−r |y − x|r−1 and |h′(y)| ≤ |y|r−1. It follows that

p
∣∣g′(y) − g′(x)

∣∣ ≤ |y − x|r−1(1 + |x|p + p|y|p)
,

which implies Lemma 6.1. �

We now prove (6.1). Let u be any real in ]0,1[. Set x = F−1(u) and y = G−1(u). If x = y then (6.1) holds true.
Suppose that x �= y. For example, take x < y. Then F − G is positive over [x, y] which ensures that A does not
intersect [x, y].

Let us distinguish two cases. If 0 /∈]x, y[, then A0 does not intersect ]x, y[ and consequently

g(y) − g(x) =
∫ y

x

g′(t)dt ≥ 2r

4p

∫ y

x

(
1 + |t |p)

inf
(
(t − x)r−1, (y − t)r−1)dt. (6.3)
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Now the function t → 1 + |t |p is convex, whence

1 + |t |p ≥ 1 + 2−p|x + y|p + p2−p|x + y|p−1S(x + y)(2t − x − y).

Putting this inequality in (6.3), integrating and noting that
∫ y

x

(2t − x − y) inf
(
(t − x)r−1, (y − t)r−1)dt = 0,

we get that

g(y) − g(x) ≥ 2r

4p

(
1 + 2−p|x + y|p)∫ y

x

inf
(
(t − x)r−1, (y − t)r−1)dt,

which ensures that

g(y) − g(x) ≥ (y − x)r
(
1 + 2−p

(|x| + |y|)p)
/(2rp). (6.4)

If 0 ∈]x, y[, then g(y) − g(x) = g(y) − g(0) + g(0) − g(x). Arguing as in the proof of (6.4)

g(y) − g(0) ≥ 2r

4p

∫ y

0

(
1 + |t |p)

inf
(
t r−1, (y − t)r−1)dt ≥ 1

2rp
yr

(
1 + 2−pyp

)

and

g(0) − g(x) ≥ |x|r(1 + 2−p|x|p)
/(2rp).

Hence

rp
(
g(y) − g(x)

) ≥ 1

2

(
yr + |x|r + 2−p

(
yr+p + |x|r+p

)) ≥
(

y − x

2

)r

+ 2−p

(
y − x

2

)r+p

,

which ensures that

2r+prp
(
g(y) − g(x)

) ≥ (y − x)r
(
1 + 2−p

(|x| + |y|)p)
. (6.5)

From (6.4) and (6.5), we get (6.1), which implies Proposition 6.1. �

Proof of Theorem 6.1. By Theorem 3 in Borisov, Panchenko and Skilyagina (1998), the expansion (4.4a) holds for f

in Λr,p with

|η| ≤ C(Lr+2,n + Lr+p∗,n) (6.6)

for some constant C depending only on r and p.
If E(S3

n) = 0, then both Proposition 6.1 and (6.6) ensure that

κr,p(μn, γ1) ≤ rp2r+pZr,p(μn, γ1) ≤ Crp2r+p(Lr+2,n + Lr+p∗,n).

Hence Theorem 6.1 holds true in that case.
If E(S3

n) �= 0, then, repeating the arguments of Section 4, we get that, for the random variable N defined in (4.5),

κr,p(μn,PN) ≤ C′(Lr+2,n + Lr+p∗,n) (6.7)

for some constant C′ depending only on r and p. Since the cost function κr,p satisfies the triangle type inequality
κr,p(μ, ν) ≤ C(κr,p(μ,π) + κr,p(π, ν)) for some constant C depending only on r and p, the proof of Theorem 6.1
will be achieved if we prove that

κr,p(PN,γ1) ≤ cLr+2,n (6.8)
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for some constant c depending only on r and p. Now, for any laws μ and ν with respective d.f. F and G, from the
definition of κr,p , Dall’Aglio’s result and elementary convexity inequalities,

κr,p(μ, ν) ≤ Wr
r (μ, ν) + 1

2
W

r+p
r+p (μ, ν) + 2p−1

∫ 1

0

(∣∣G−1(u)
∣∣)p∣∣F−1(u) − G−1(u)

∣∣r du

≤ Wr
r (μ, ν) + 1

2
W

r+p
r+p (μ, ν) + 2p−1Wr

r+p(μ, ν)W
p
r+p(δ0, ν) (6.9)

by the Hölder inequality. We now apply this inequality to μ = PN and ν = γ1. By (4.10), Wψ(PN,γ1) ≤ B|β|,
which implies that Wq(PN,γ1) ≤ cqB|β| for some constant cq depending only on q , for any q ≥ 1. Hence, by (6.9),
κr,p(PN,γ1) ≤ c′|β|r (1 +|β|p) for some constant c′ depending only on r and p. Finally, if Lr+2,n ≤ 1, then, by (4.8),
|β|r ≤ Lr+2,n ≤ 1. Hence, from the above inequality, (6.8) holds with c = 2c′, which completes the proof of Theo-
rem 6.1. �

Proof of Corollary 6.2. Let μ and ν be laws in Mr+p with respective d.f. F and G, and U be an r.v. with the uniform
distribution over [0,1]. Set T = F−1(U) and Z = G−1(U). Then T and Z have respective laws μ and ν, and

sup
f ∈Λ1,p/r

(
Wr(Pf (T ),Pf (Z))

)r ≤ E

(
sup

f ∈Λ1,p/r

|f (T ) − f (Z)|r
)
.

Now, for any f in Λ1,p/r ,

∣∣f (T ) − f (Z)
∣∣r ≤ |T − Z|r(1 + (|T | ∨ |Z|)p/r)r

.

It follows that

sup
f ∈Λ1,p/r

(
Wr(Pf (T ),Pf (Z))

)r ≤ cκr,p(μ, ν) (6.10)

for some constant c depending only on r and p. Corollary 6.2 follows immediately from Theorem 6.1 via (6.10). �
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