Translator Disclaimer
2015 Height estimate and slicing formulas in the Heisenberg group
Roberto Monti, Davide Vittone
Anal. PDE 8(6): 1421-1454 (2015). DOI: 10.2140/apde.2015.8.1421

Abstract

We prove a height estimate (distance from the tangent hyperplane) for Λ-minimizers of the perimeter in the sub-Riemannian Heisenberg group. The estimate is in terms of a power of the excess (L2-mean oscillation of the normal) and its proof is based on a new coarea formula for rectifiable sets in the Heisenberg group.

Citation

Download Citation

Roberto Monti. Davide Vittone. "Height estimate and slicing formulas in the Heisenberg group." Anal. PDE 8 (6) 1421 - 1454, 2015. https://doi.org/10.2140/apde.2015.8.1421

Information

Received: 7 October 2014; Accepted: 11 May 2015; Published: 2015
First available in Project Euclid: 16 November 2017

zbMATH: 1326.49068
MathSciNet: MR3397002
Digital Object Identifier: 10.2140/apde.2015.8.1421

Subjects:
Primary: 49Q05, 53C17

Rights: Copyright © 2015 Mathematical Sciences Publishers

JOURNAL ARTICLE
34 PAGES


SHARE
Vol.8 • No. 6 • 2015
MSP
Back to Top