Translator Disclaimer
2021 Local and global estimates for hyperbolic equations in Besov–Lipschitz and Triebel–Lizorkin spaces
Anders Israelsson, Salvador Rodríguez-López, Wolfgang Staubach
Anal. PDE 14(1): 1-44 (2021). DOI: 10.2140/apde.2021.14.1

Abstract

We establish optimal local and global Besov–Lipschitz and Triebel–Lizorkin estimates for the solutions to linear hyperbolic partial differential equations. These estimates are based on local and global estimates for Fourier integral operators that span all possible scales (and in particular both Banach and quasi-Banach scales) of Besov–Lipschitz spaces B p , q s ( n ) and certain Banach and quasi-Banach scales of Triebel–Lizorkin spaces F p , q s ( n ) .

Citation

Download Citation

Anders Israelsson. Salvador Rodríguez-López. Wolfgang Staubach. "Local and global estimates for hyperbolic equations in Besov–Lipschitz and Triebel–Lizorkin spaces." Anal. PDE 14 (1) 1 - 44, 2021. https://doi.org/10.2140/apde.2021.14.1

Information

Received: 23 March 2018; Revised: 22 August 2019; Accepted: 20 December 2019; Published: 2021
First available in Project Euclid: 23 March 2021

Digital Object Identifier: 10.2140/apde.2021.14.1

Subjects:
Primary: 35L05 , 35S30 , 42B20
Secondary: 35L15 , 42B35

Keywords: Besov–Lipschitz spaces , Fourier integral operators , Hyperbolic equations , Triebel–Lizorkin spaces

Rights: Copyright © 2021 Mathematical Sciences Publishers

JOURNAL ARTICLE
44 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.14 • No. 1 • 2021
MSP
Back to Top