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QUANTITATIVE STABILITY OF THE FREE BOUNDARY
IN THE OBSTACLE PROBLEM

SYLVIA SERFATY AND JOAQUIM SERRA

We prove some detailed quantitative stability results for the contact set and the solution of the classical
obstacle problem in Rn (n ≥ 2) under perturbations of the obstacle function, which is also equivalent to
studying the variation of the equilibrium measure in classical potential theory under a perturbation of the
external field.

To do so, working in the setting of the whole space, we examine the evolution of the free boundary 0t

corresponding to the boundary of the contact set for a family of obstacle functions ht. Assuming that
h = ht (x)= h(t, x) is Ck+1,α in [−1, 1] ×Rn and that the initial free boundary 00 is regular, we prove
that 0t is twice differentiable in t in a small neighborhood of t = 0. Moreover, we show that the “normal
velocity” and the “normal acceleration” of 0t are respectively Ck−1,α and Ck−2,α scalar fields on 0t. This
is accomplished by deriving equations for this velocity and acceleration and studying the regularity of
their solutions via single- and double-layer estimates from potential theory.

1. Introduction

Motivation of the problem. Consider the classical obstacle problem; see for instance [Kinderlehrer and
Nirenberg 1977; Caffarelli 1998]. If the obstacle h is perturbed into h+ tξ with t small and ξ regular
enough, how much does the contact set (or coincidence set) move? The best known answer to this question
is in [Blank 2001], where it is proved that the new contact set is O(t)-close to the old one in Hausdorff
distance, in the setting of a bounded domain with Dirichlet boundary condition. Some results are also
proved in [Schaeffer 1975] in an analytic setting, by Nash–Moser inversion.

Our paper is concerned with getting stronger and more quantitative stability estimates, in particular
obtaining closeness of the contact sets in Ck,α norms with explicitly described first and second derivatives
with respect to t , which come together with an explicit asymptotic expansion of the solution itself. We
believe that such results are of natural and independent interest for the obstacle problem. They are also
for us motivated by an application on the analysis of Coulomb systems in statistical mechanics from
[Leblé and Serfaty 2018], which relies on the present paper.

Let us get into more detail on this aspect. In potential theory, the so-called (Frostman) “equilibrium
measure” for Coulomb interactions with an external “field” Q is the unique probability measure µ on Rn

which minimizes ∫
Rn×Rn

P(x − y) dµ(x) dµ(y)+
∫

Rn
Q(x) dµ(x), (1-1)
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where P is the Newtonian potential in dimension n. If Q grows fast enough at infinity, then setting

u(x)=
∫

Rn
P(x − y) dµ(y), (1-2)

the equilibrium measure µ is compactly supported and uniquely characterized by the fact that there exists
a constant c such that

u ≥ c− 1
2 Q and u = c− 1

2 Q µ− a.e.;

see for instance [Saff and Totik 1997]. We thus find that µ=−1u, where u solves the classical obstacle
problem in the whole space

min{−1u, u− h} = 0

with obstacle h = c− 1
2 Q — the two problems (identifying the equilibrium measure and solving the

obstacle problem) are in fact convex dual minimization problems, as seen in [Ekeland and Temam 1976];
see for instance [Serfaty 2015, Chapter 2] for a description of this correspondence. Thus, the support of
the equilibrium measure is equal to the contact set wherever the obstacle is “active”.

The understanding of the dependence of the equilibrium measure on the external field — which is
thus equivalent to the understanding of the dependence of the solution and its contact set on the obstacle
function — is crucial for the analysis of systems of particles with logarithmic or Coulomb interactions;
in particular it allows one to show that the linear statistics of fluctuations of such systems converge to
Gaussians. Following the method first introduced by [Johansson 1998], this relies on the computation of
the Laplace transform of the fluctuations, which directly leads to considering the same system but with
perturbed external field. Previously, the analysis of the perturbation of the equilibrium measure, as done
in [Ameur et al. 2011], relied on Sakai’s theory [1991], a complex-analytic approach which is thus only
valid in two dimensions and imposed analyticity assumptions on the external field and the boundary of
the coincidence set.

In that context, the evolution of the contact sets sometimes goes by the name “Laplacian growth” or
“Hele-Shaw flow” or the “Hele-Shaw equation”, see [Hedenmalm and Makarov 2004; 2013], and seems
related to the quantum Hele-Shaw flow introduced by the physicists Wiegmann [2002] and Zabrodin. It
has only been examined in dimension 2.

Setting of the study. Both for simplicity and for the applications we have in mind mentioned above, we
consider global solutions to the obstacle problem in Rn, n ≥ 2. We note that the setting in R2 is slightly
different than the setting in Rn for n ≥ 3 due to the fact that the logarithmic Newtonian potential does not
decay to zero at infinity, and this will lead us to often making parallel statements about the two. We also
note that the potential u associated to the equilibrium measure in (1-2) behaves like P at infinity, since µ
is a compactly supported probability measure, i.e., tends to 0 if n ≥ 3 and behaves like − 1

2π log |x | if
n = 2. Specifying the total mass of −1u is equivalent to specifying the ratio of u/−log |x | at infinity in
dimension 2, or to adding an appropriate1 constant to u in dimension n ≥ 3.

1Let ut be defined as (1-3). For n ≥ 3 there is a nonlinear (but monotone and continuous) relation between the mass
∫

Rn 1ut

and value of the constant ct. For ct large enough, the mass is 0, and when ct decreases, the mass increases continuously. This
allows us to solve the equation with prescribed mass by varying the constant ct.
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With the above motivation, in order to consider the perturbations of the obstacle, we thus consider for
each t ∈ [−1, 1], given ct a function of t , the function ut solving the obstacle problem

min{−1ut , ut
− ht
} = 0 in Rn,

{
lim|x |→∞ ut(x)= ct (n ≥ 3),

lim|x |→∞ ut (x)
−log |x | = ct (n = 2).

(1-3)

We assume 1h0 < 0 on {u0
= h0
}, i.e., the obstacle must be “active” in the contact set, and{
lim|x |→∞ ht(x) < ct (n ≥ 3),

lim|x |→∞ ht (x)
−log |x | < ct (n = 2),

(1-4)

h = ht(x)= h(t, x) ∈ Ck−1,α([−1, 1]× BR), (1-5)
while

c = ct
= c(t) ∈ C2([−1, 1]). (1-6)

For n = 2 we assume c > 0.
In addition, we assume

1(ht
− h0) is compactly supported in BR (1-7)

and

ht
− h0
→ 0 as |x | →∞ (n ≥ 3), (1-8a)

ht
− h0

−log |x |
→ 0 as |x | →∞ (n = 2). (1-8b)

In particular, letting ˙ denote the derivative with respect to t , this implies

ḣt
→ 0 as |x | →∞ (n ≥ 3), (1-9a)

ḣt

−log |x |
→ 0 as |x | →∞ (n = 2). (1-9b)

Let us denote by
�t
:= {ut

− ht > 0} and 0t
:= ∂�t

the complement of the contact set and the free boundary, respectively.
We will assume that all points of the “initial” free boundary 00 are regular points in the sense of

Caffarelli [1977; 1998]. In particular we assume that �0 is an open set with smooth boundary.
For the analysis of the paper it is convenient to identify precisely the quantities on which the (constants

in the) estimates depend. To this aim, let us fix ρ > 0 and make the following quantitative assumptions.
First, we assume that, for some U ⊂ BR, we have

1h0
≤−ρ in U and

{
u0
− h0
≥ ρ in Rn

\U (n ≥ 3),
u0
−h0

−log |x | ≥ ρ in Rn
\U (n = 2),

(1-10)

where U ⊂ BR is some open set containing {u0
= 0}.
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Second, we assume

all points of 00 can be touched from both sides by balls of radius ρ. (1-11)

This is a quantitative version of the assumption that all points of 00 are regular points.
Throughout the paper, if C is a set of parameters of the problem, we denote by C(C) a constant

depending only on C. We define

C := {n, k, α, R,U, ρ, ‖h‖Ck+1,α([−1,1]×U ), ‖c‖C2([−1,1])}, (1-12)

C0
:= {n, k, α, R,U, ρ, ‖h0

‖Ck+1,α(U ), c0
}. (1-13)

For n = 2 we also add to C the constant inf[−1,1] c > 0.

Main result. Let t◦ > 0 and let 9 = 9 t(x) = 9(t, x) be a 1-parameter family of diffeomorphisms
9 : (−t◦, t◦)×Rn

→ Rn. We say that 9 fixes the complement of U if 9(x)= x for all x ∈ Rn
\U.

We say 9 is continuously differentiable if for all t ∈ (−t◦, t◦) there exists 9̇ t
∈ C0(Rn

;Rn) such that

‖9 t+s(x)−9 t(x)− s9̇ t(x)‖C0(Rn;Rn) = o(s),

‖9̇ t+s(x)− 9̇ t(x)‖C0(Rn;Rn) = o(1)

as s→ 0.
We say 9 is twice continuously differentiable if, in addition, for all t ∈ (−t◦, t◦) there exists

9̈ t
∈ C0(Rn

;Rn) such that∥∥9 t+s(x)−9 t(x)− s 9̇ t(x)− 1
2 s2 9̈ t(x)

∥∥
C0(Rn;Rn)

= o(s2),

‖9̈ t+s(x)− 9̈ t(x)‖C0(Rn;Rn) = o(1)

as s→ 0.
Throughout the paper, given a function f : (−t◦, t◦)×Y→R we use the notation f = f t(x)= f (t, x),

δt f s
:=

f s+t
− f s

t
and ḟ s

:= lim
t↓0
δt f s
= ∂t f (s, y).

The main result of the paper is the following. In its statement, and throughout the paper, we denote by

νt
: 0t
→ Sn−1

the unit normal vector to 0t pointing towards �t.

Theorem 1.1. Let n ≥ 2, k ≥ 1, α ∈ (0, 1), and ut satisfy (1-3), with h and c satisfying (1-4)–(1-8).
Assume (1-10) and (1-11) hold.

Then, there exists t◦> 0 and a 1-parameter differentiable family of diffeomorphisms 9 t
∈Ck,α(Rn

;Rn)

that fixes the complement of U and which satisfies, for every t ∈ (−t◦, t◦),

9 t(�0)=�t , 9 t(00)= 0t ,

‖9̇ t
‖Ck−1,α(Rn) ≤ C and (9̇ t

◦ (9 t)−1) · νt
=
∂νt V t

1ht on 0t , (1-14)
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where V t
:= u̇t

− ḣt is the solution2 to
1V t
=−1ḣt in �t ,

V t
= 0 on 0t ,

limx→∞ V t(x)= ċt (n ≥ 3),


1V t
=−1ḣt in �t ,

V t
= 0 on 0t ,

limx→∞
V t (x)
−log |x | = ċt (n = 2).

(1-15)

In addition, we have
u̇t
= ḣt
+ V tχ�t in all Rn.

If moreover k ≥ 2 then 9 is twice differentiable and we have

‖9̈ t
‖Ck−2,α(Rn) ≤ C◦ (1-16)

and
‖üt
‖L∞(Rn)+‖∇üt

‖Ck−2,α((�0∪�t )c ∪�0∩�t )
≤ C◦. (1-17)

The constants t◦ and C◦ depend only on3 C.

An informal rephrasing of Theorem 1.1 is as follows. If the moving obstacle h(t, x) is Ck+1,α and c(t)
is C2, then 0t is “twice differentiable” for t in a small neighborhood of 0. Moreover, the “normal velocity”
of 0t and the “normal acceleration” of 0t are respectively Ck−1,α and Ck−2,α scalar fields on 0t, with the
normal velocity precisely identified via a Dirichlet-to-Neumann transformation: to compute it, one finds
the solution V t to the Dirichlet problem in a exterior domain (1-15) and the normal velocity at a point of
0t is given by the normal derivative of V t divided by the Laplacian of the obstacle at that point.

Open questions. It is of course natural to ask whether similar results hold for more general obstacle
problems, such as those associated to fully nonlinear operators or to fractional Laplacians.

In view of our results,4 a natural open question, which we believe to be delicate, is whether one can
improve Theorem 1.1 to

9(t, x) ∈ Ck,α (jointly in t and x).

Structure of the proof and organization of the paper. For the proof, we first reduce to a situation where
the contact set is growing, i.e., �t

⊂�0. We then define a coordinate system near the free boundary 00,
and express the “height” ηt of 0t in these coordinates.

In Section 3, assuming that an expansion of the type ηt
= η0

+ η̇0t + 1
2 η̈

0t2
+ · · · holds as t → 0,

we derive equations for η̇0 and η̈0, which allow us to obtain explicit formulae and Hölder regularity for
these quantities via single- and double-layer potential-theoretic estimates. These regularity estimates are
delicate to obtain because the relations characterizing η̇0 and η̈0 are at first implicit and one needs to show
they can be “closed” for regularity.

2Since we assumed ḣt tends to 0 (resp. is� | log |x || if n = 2) at∞, we have V t is the unique solution such that V t
+ ḣt is

bounded, coincides with ht in the complement of �t and is harmonic in �t. In fact, V t
+ ḣt is the unique bounded harmonic

extension of ḣt outside of (�t )c.
3The set of constants of the problem C was defined in (1-12).
4We establish that if h ∈ Ck+1,α then 9t

∈ Ck,α, 9̇t
∈ Ck,α and 9̈t

∈ Ck−2,α .
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In Section 4, we show that the existence of an expansion in t for ηt, which was previously assumed,
does hold. This is done by using a second set of adapted coordinates near 00 (a sort of hodograph
transform) and again single- and double-layer potential estimates.

Finally, in Section 5 we prove the main result by showing how to treat the general case where the
contact set is not necessarily growing. In the Appendix, we collect the potential-theoretic estimates we
need and some additional proofs.

2. Preliminaries

Known results. Throughout the paper it is useful to quantify the smoothness of the (boundaries of the)
domains �t. Let us introduce some more notation with that aim. Let U be some open set and r > 0. We
write ∂U ∈ Ck,α

r if for all xo ∈ ∂U there are some orthonormal coordinates yi , 1 ≤ i ≤ n, with origin
at xo (these coordinates may vary from point to point), and a function Fxo ∈ Ck,α(B ′r ) such that

U ∩ {|y′|< r, |yn|< r} = {yn < Fxo(y
′)} ∩ {|y′|< r, |yn|< r},

where y′ = (y1, y2, . . . , yn−1).
In this framework we define

‖∂U‖Ck,α
r
:= sup

xo∈∂U
‖Fxo‖Ck,α(B ′r )

<∞, (2-1)

where B ′r = {|y
′
|< r} ⊂ Rn−1.

With the previous assumptions we have in our notation:

Proposition 2.1 [Caffarelli 1977; 1998; Kinderlehrer and Nirenberg 1977; Blank 2001]. There exist
universal constants t◦ > 0 and Co depending only on C such that the following hold:

(i) We have
‖0t
‖Ck,α

ρ/4
≤ Co for all t ∈ (−t◦, t◦).

(ii) For every pair t, s ∈ (−t◦, t◦), the Hausdorff distance between 0t and 0s satisfies

dHausdorff(0
t , 0s)≤ Co |t − s|.

Proposition 2.1 is contained in the results of [Blank 2001]. However, for the sake of completeness,
we briefly sketch the proof in the Appendix. This is done by combining the classical results for the
obstacle problem in [Caffarelli 1977; 1998; Kinderlehrer and Nirenberg 1977] and the key sharp estimate
|�t
4�s
| ≤C |t− s| for the symmetric difference of the positivity sets (or of the contact sets) from [Blank

2001].

Scalar parametrization of deformations (definition of ηt). By Proposition 2.1 the free boundaries 0t

are “uniformly” Ck,α for |t | small and the difference between 0t and 0s is bounded by C |t ′− t | in the
L∞ norm. A goal of the paper is to prove that the difference is bounded C |t ′− t | also in a Ck−1,α norm.
To prove this type of result it is convenient to have a scalar function representing the “difference” between
0t and 0s. This has a clear meaning locally — since both 0t and 0s are graphs, and one can simply
subtract the two functions that define these graphs. We next give a global analogue of this.
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In an open neighborhood U◦ of 00 we define coordinates

(z, s) :U◦→ Z × (−s◦, s◦),

where s◦ > 0 and Z is some smooth approximation of 00.
We assume the vector field

N := ∂s

is a smooth approximation of ν0 on 00. More precisely, we assume

N ∈ C∞(U◦;Rn), |N | = 1 and N · νt
≥ (1− εo) for t ∈ (−t◦, t◦), (2-2)

where εo is a constant that in the sequel will be chosen to be small enough — depending only on C.
In this framework, Proposition 2.1 implies that for all t ∈ (−t◦, t◦) with t◦ small enough there exists

ηt
∈ Ck,α(Z) such that

0t
= {s = ηt(z)} ⊂U◦. (2-3)

Remark 2.2. From the data of 00 we may always construct Z and (z, s) satisfying the previous prop-
erties — for εo arbitrarily small — by taking Z to be a smooth approximation of 00 and N a smooth
approximation of ν0. Once Z and N are chosen, the coordinates (z, s) are then defined respectively as
the projection on Z and the signed distance to Z along integral curves of N.

3. A priori estimates

Roughly speaking, the goal of this section is to show that if an expansion of the type

ηt
= η0
+ η̇0t + 1

2 η̈
0t2
+ · · ·

holds, where
ηt
− η0

t
→ η̇0 and

ηt
− η0
− η̇0t

t2 →
η̈0

2
as t→ 0, in C0(Z),

then η̇0 and η̈0 must satisfy certain equations that have uniqueness of solution and a priori estimates.
From these equations we obtain conditional (or a priori) estimates for ‖η̇0

‖Ck−1,α(Z) and ‖η̈0
‖Ck−2,α(Z).

In the next sections, let us provisionally assume

1(ht
− h0)≥ 0 and ct

− c0
≤ 0 (3-1)

for all t ≥ 0, which is not essential but simplifies the analysis: Assumption (3-1) guarantees that �t
⊂�0

for all t ≥ 0. Indeed, this is an immediate consequence of the characterization of

ũt
:= ut

− ht

as the infimum of all nonnegative supersolutions with the same right-hand side and appropriate condition
at infinity. More precisely, we have the following lemma, whose proof is standard in dimension n ≥ 3
and which we sketch in dimension n = 2 in the Appendix.
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Lemma 3.1. The function ũt can be defined as the infimum of all f satisfying f ≥ 0, 1 f ≤−1ht,

lim
x→∞

( f + ht)≥ ct (n ≥ 3), (3-2a)

lim
x→∞

f + ht

−log |x |
≥ ct (n = 2). (3-2b)

Note that in particular f = ũ0 is included since 1ũ0
=−1h0

≤−1ht, and

lim
x→∞

(ũ0
+ ht)= lim

x→∞
(ũ0
+ h0)+ lim

x→∞
(ht
− h0)≥ c0

≥ ct (n ≥ 3),

lim
x→∞

(ũ0
+ ht)

−log |x |
≥ c(t) (n = 2).

Therefore, applying Lemma 3.1 we obtain ũ0
≥ ũt and

�t
= {ũt > 0} ⊂ {ũ0 > 0} =�0

for all t > 0. Equivalently (3-1) implies ηt
≥ 0 on Z for t > 0.

Later, when we prove Theorem 1.1, we will reduce to this case by decomposing ht as a sum of two
functions, one with nonnegative Laplacian and one with nonpositive Laplacian.

Let us define
vt
:= δt ũ0

=
1
t
(ũt
− ũ0). (3-3)

The function vt is a solution of
1vt
=−1δt h0 in �t ,

vt
=−

1
t ũ0 on 0t ,

limx→∞ v
t
= δt c0 (n ≥ 3),


1vt
=−1δt h0 in �t ,

vt
=−

1
t ũ0 on 0t ,

limx→∞
vt (x)
−log |x | = δt c0 (n = 2).

(3-4)

Since ũ0
= |∇ũ0

| = 0 on 00, using the classical estimate5

‖u0
‖C1,1(Rn) ≤ (n− 1)‖h0

‖C1,1(Rn),

we obtain
|ũ0
| ≤ C‖h‖C1,1(Rn) d2

Hausdorff(0
t , 00)≤ Ct2 on 0t .

Then, using that �t grows to �0 as t ↓ 0 and uniform estimates for vt we find that vt
→ v as t ↓ 0, where

v is the solution of 
1v =−1ḣ0 in �0,

v = 0 on 00,

v(∞)= ċ0 (n ≥ 3),


1v =−1ḣ0 in �0,

v = 0 on 00,

limx→∞
v(x)
−log |x | = ċ0 (n = 2).

(3-5)

Here 1ḣ0
= limt↓01δt h0

= (1∂t h)(0, x).

5Since u0 is a solution of the obstacle problem in the whole Rn with a semiconcave obstacle h0, we know u0 is semiconcave
with D2u0

≥−‖h‖C1,1(Rn)Id and the estimate follows using 1u0
= 0, where u0 > h0.
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Equation and estimate for η̇0. We first prove the following

Proposition 3.2. Let k ≥ 1. Assume that for some tm ↓ 0 there exists η̇0
∈ C0(Z) such that

δtmη
0
→ η̇0 in C0(Z) as m→∞.

Then, the limit η̇0 is given by

η̇0(z)=
(

∂Nv

(N · ν0)21h0

)
(z, η0(z)), (3-6)

with v as in (3-5). As a consequence, η̇0 is independent of the sequence tm and we have η̇ ∈ Ck−1,α(Z)
with the estimate

‖η̇0
‖Ck−1,α(Z) ≤ C(C0)(‖ḣ0

‖Ck,α(BR)+ |ċ
0
|). (3-7)

Proof. We split the proof into two steps.

Step 1. We prove (3-6). Recall that since ũt is a solution of a zero obstacle problem we have

ũt
= |∇ũt

| = 0 on 0t .

Thus,

∂sv
t
=

1
t
(∂s ũt

− ∂s ũ0)=−
∂s ũ0

t
on 0t . (3-8)

From (3-8) we deduce that

∂sv
tm (z, ηtm )=−

1
tm
∂s ũ0(z, ηtm )=−

1
tm

(
∂s ũ0(z, η0)+ ∂ss ũ0(z, η0)(ηtm − η0)+ o(tm)

)
, (3-9)

where η0 and ηtm are evaluated at z (although we omit this in the notation) and where ∂ss ũ0(z, η0) is
understood as the limit from the �0-side. To justify the validity of the previous Taylor expansion we use
that ũ0

∈ C2,α(�0); see Lemma 3.6.
Since ũ0

= |∇̃u0
| = 0 on 00 we obtain

∂eeũ0
= (e · ν)2∂νν ũ0

= (e · ν)21ũ0
=−(e · ν)21h0 on 00

for every vector e, where ν = ν0 is the normal vector to 00 (pointing towards �0). Again, the previous
second derivatives on 00 mean the limits from the �0-side. Hence, we have

∂s ũ0(z, η0(z))= 0 and ∂ss ũ0(z, η0(z))=−((N · ν0)21h0)(z, η0(z)), (3-10)

where ∂ss ũ0(z, η0(z)) is from the �0-side. Dividing (3-10) by tm and taking the limit as tm ↓ 0 in (3-9)
using the assumption, we obtain

∂sv(z, η0(z))=−∂ss ũ0(z, η0(z)) η̇0(z)= ((N · ν0)21h0)(z, η0(z)) η̇0(z), (3-11)

where ∂sv(z, η0(z)) and ∂ss ũ0(z, η0(z)) are from the�0-side. When computing the limit that yields (3-11)
we must check that

∂sv
tm (z, ηtm (z))→ ∂sv(z, η0(z)), (3-12)
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where ∂sv(z, η0) is from the �0-side. To prove this, note that the equation (3-4) for vt , since we have
uniform C1,α estimates for the boundary 0t, implies that ‖∇vt

‖C0,α(�t ) is uniformly bounded (for t > 0
small). This implies that ∇vt converges uniformly to ∇v in every compact set of �0. Then using the
uniform continuity of the derivatives of v on �0 we show that

lim∇vtp(x p)→∇v(x) as p→∞ whenever tp ↓ 0, x p→ x and x p ∈�
tp .

This establishes (3-12) and (3-11). Then, (3-6) follows immediately from (3-11), after recalling that
N = ∂s .

Step 2. We prove (3-7). Indeed, from (3-5), and using that 00
= ∂�0

∈ Ck,α
ρ/4 with norm universally

bounded, we obtain

‖v‖Ck,α(�0) ≤ C(C0)(‖1ḣ0
‖Ck−2,α(�0)+ |ċ

0
|)≤ C(C0)(‖ḣ0

‖Ck,α(�0)+ |ċ
0
|). (3-13)

Now recalling that N is smooth, that ‖ν0
‖Ck−1,α(00) ≤ C‖00

‖Ck,α
ρ/4
≤ C , that −1h0

≥ ρ, and that
‖η0
‖Ck,α(Z) ≤ C , (3-6) and (3-13) imply (3-7). �

Equation and estimate for η̈0. In this section we estimate the second derivative in t of η at t = 0. It is
convenient to introduce here the following notation, which we shall use throughout the paper. Given a
function f : (−t◦, t◦)× Y → R, recall the notation f = f t(y)= f (t, x). Let us also define

δ2
t f s
:= 2

δt f s
− ḟ s

t
and f̈ s

:= lim
t↓0
δ2

t f s
= ∂t t f (y, 0).

From now on let us consider v to be defined in all of Rn by extending the solution of (3-5) by 0 in
Rn
\�0. Note that this is consistent with v = limt↓0 v

t and vt
= δt ũ0

= 0 in Rn
\�0 (since both ũt and

ũ0 vanish there).
We now introduce the function, defined in all of Rn,

wt
:= δtv

0
=

1
t
(vt
− v)= 1

2δ
2
t ũ0.

Using (3-5) and the identity

1vt
=

1
t
1(ũt

− ũ0)=−
1
t
1ũ0
=

1
t
1h0 in �0

\�t ,

we find, in the distributional sense,{
1wt
=

1
t

(
(∂Nv/(N · ν0))Hn−1 �00 +

(1
t 1h0

−1ḣ0
)
χ�0\�t

)
−

1
21δ

2
t h0χ�t in Rn,

wt(∞)= 1
2δ

2
t c0 (n ≥ 3),

(3-14a)

{
1wt
=

1
t

(
(∂Nv/(N · ν0))Hn−1 �00 +

( 1
t 1h0

−1ḣ0
)
χ�0\�t

)
−

1
21δ

2
t h0χ�t in Rn,

limx→∞
wt

−log |x | =
1
2δ

2
t c0 (n = 2),

(3-14b)

where H denotes the Hausdorff measure. Indeed, note also that for ν = ν0 we have

∂Nv = (N · ν0)∂νv on 00
out, while ∂νv = 0 on 00

in.
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Here, “00
out” refers to the limit from the �0-side, while “00

in” refers to the limit from the (Rn
\�0)-side.

Therefore, 1wt has some mass concentrated on 00 which is given by the jump in the normal derivative
of v, namely,

1
t
∂Nv

N · ν0 Hn−1 �00 .

In the following lemma, and throughout the paper, P denotes the Newtonian potential in dimension n,
namely,

P(x)=
1

n(n− 2)|B1|
|x |2−n (n ≥ 3)

or
P(x)=− 1

2π
log |x | (n = 2).

Recall that −1P = δx=0 in the sense of distributions.
We also need to introduce the Jacobian

J (z, s) := |det D (z, s)−1
|

of the coordinates (z, s) defined by∫
A

f (x) dx =
∫
(z,s)(A)

f (z, s) J (z, s) dz ds.

We use the following abuse of notation:

• When f = f (x) we denote by f (z, s) the composition f ◦ (z, s)−1.

• Conversely, when g = g(z, s) we will denote by g(x) the composition g ◦ (z, s).

Finally, let us denote by
π1 :U◦→ Z

the projection map along N, which is defined in the coordinates (z, s) by

(z, s) 7→ (z, 0).

We will need the following:

Lemma 3.3. Given f : 00
→ R continuous we have∫

00
(N · ν0)(x) f (x) dHn−1(x)=

∫
Z

f (z, η0(z)) J (z, η0(z)) dz.

Proof. Let us assume without loss of generality that f is defined and continuous in the neighborhood U◦
of 00. Given ε > 0 let

Aε := {x ∈U◦ : η0(z(x))≤ s(x)≤ η0(z(x))+ ε}.

Recalling that N = ∂s and that |N | = 1, we have∫
00
(N · ν0)(x) f (x) dHn−1(x)= lim

ε↓0

1
ε

∫
Aε

f (x) dHn(x).
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On the other hand, for (z, s)(Aε) := {(z, s) ∈ Z × (−s◦, s◦) : η0(z)≤ s ≤ η0(z)+ ε} we have, by the
definition of J,

1
ε

∫
Aε

f (x) dHn(x)= 1
ε

∫
(z,s)(Aε)

f (z, s) J (z, s) dz ds

=

∫
Z

dz 1
ε

∫ ε

0
ds̄ f (z, η0(z)+ s̄) J (z, η0(z)+ s̄)

=

∫
Z

f (z, η0(z)) J (z, η0(z)) dz+ o(1)

as ε ↓ 0 and the lemma follows. �

Lemma 3.4. Let k ≥ 2. Assume that for some tm ↓ 0 there exist η̇, η̈ ∈ C0(Z) such that

δ2
tmη

0
= 2

ηtm − η0
− η̇0tm

t2
m

→ η̈0 in C0(Z)

as tm ↓ 0. Then,
wtm weakly
−−−→w in Rn,

where w can be decomposed as

w = wsolid+wsingle+wdouble+wimplicit+ constant (3-15)

for

wsolid(x) :=
∫

Rn
dHn(y)(1ḧ0χ�0)(y)P(x−y), (3-16)

wsingle(x) :=
∫
00

dHn−1(y)
(
(N ·ν0)(η̇0

◦π1)1ḣ0
−

1
2(η̇

0
◦π1)

2 N ·ν0

J
∂N (Jh0)

)
(y) P(x−y), (3-17)

wdouble(x) :=
∫
00

dHn−1(y)
(

1
2(η̇

0
◦π1)

2 N ·ν0

J
(J1h0)

)
(y)∂N P(x−y), (3-18)

wimplicit(x) :=
∫
00

dHn−1(y)
2

(N ·ν)
(y) P(x−y), (3-19)

where 2 : 00
→ R,

2 := 1
2(N · ν

0)21h0 (η̈0
◦π1). (3-20)

Proof. Define

Dt
:=1wt

=
1
t
∂N v

N ·ν0 Hn−1 �00 −

(
1
t21h0

+
1
t
1ḣ0

)
χ�0\�t −

1
21δ

2
t h0χ�t .

Let us show that Dtm → D in the sense of distributions, for some distribution D that we compute.
Let us first write

Dt
= Dt

1+Dt
2,

where
Dt

1 := −
1
t
1ḣ0 χ�0\�t −

1
21δ

2
t h0χ�t (3-21)
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and

Dt
2 :=

1
t

(
∂Nv

N · ν0 Hn−1 �00 −
1
t
1h0 χ�0\�t

)
. (3-22)

First we clearly have, for φ ∈ C∞c (R
n),∫

φ(x)
(1

t
1ḣ0 χ�0\�t

)
(x) dx = 1

t

∫
Z

∫ ηt

η0
J (z, s)(1ḣ0 φ)(z, s) dz ds

→

∫
Z
η̇0(z)J (z, η0)(1ḣ0 φ)(z, η0) dz=

∫
00
(N ·ν0)(η̇0

◦π1)1ḣ0 φ dHn−1

as t = tm ↓ 0, where we have used Lemma 3.3, and hence

Dtm
1

weakly
−−−→−(N · ν0)(η̇0

◦π1)1ḣ0 Hn−1 �00 −
1
21ḧ0χ�0 . (3-23)

Next, using (3-6), we compute, for φ ∈ C∞c (R
n),∫

φDt
2 =

1
t

(∫
Z

dz
J (z, η0)

(N · ν0)2(z, η0)
∂Nv(z)φ(z, η0)−

∫
Z

dz 1
t

∫ ηt

η0
ds(J1h0 φ)(z, s)

)
=

1
t

∫
Z

dz
(
(J1h0 φ)(z, η0)η̇0

−
1
t

∫ ηt

η0
ds(J1h0 φ)(z, s)

)
= I1+ I2, (3-24)

where

I1 :=
1
t

∫
Z

dz
(
(J1h0 φ)(z, η0)η̇0

−
1
t

∫ η0
+η̇0t

η0
ds(J1h0 φ)(z, s)

)
and

I2 := −
1
t2

∫
Z

dz
∫ ηt

η0+η̇0t
ds(J1h0 φ)(z, s).

On one hand, letting s = η0
+ η̇0t s̄,

I1 =

∫
Z

dz
∫ 1

0
η̇0(z)t ds̄ s̄

t

(
(J1h0 φ)(z, η0)− (J1h0 φ)(z, η0

+ η̇0t s̄)
s̄t

)
=

∫
Z

dz
∫ 1

0
(η̇0)2(z) s̄ ds̄ ∂s(J1h0 φ)(z, η0)+ o(1)

=

∫ 1

0
s̄ ds̄

∫
Z

dz (η̇0)2(z) ∂s(J1h0 φ)(z, η0)+ o(1)

=
1
2

∫
00
(N · ν0) dHn−1 1

J
(η̇0
◦π1)

2 ∂N (J1h0 φ)+ o(1). (3-25)

as t = tm ↓ 0, where for the last relation we used Lemma 3.3 with

f (x)=
( 1

J
(η̇0
◦π1)

2∂N (J1h0 φ)
)
(x),
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noting also that ∂s = ∂N and (η̇0
◦π1)

2(z, η0(z))= (η̇0)2(z). On the other hand,

I2 =−
1
t2

∫
Z
dz
∫ η0

+η̇0t+ 1
2 η̈

0t2

η0+η̇0t
ds(J1h0 φ)(z, s)+ o(1)

=−
1
2

∫
Z

dz η̈0 (J1h0 φ)(z, η0)+ o(1)

=−
1
2

∫
00

dHn−1(N · ν0) (η̈0
◦π1)1h0φ + o(1) (3-26)

as t = tm ↓ 0. Therefore, Dtm
2 → D2, where∫

φD2 =
1
2

∫
00

dHn−1(η̇0
◦π1)

2 N · ν0

J
∂N (J1h0 φ)−

1
2

∫
00

dHn−1(N · ν0) (η̈0
◦π1)1h0φ. (3-27)

In dimension n ≥ 3 we have

wtm (∞)= 1
2 lim

x→∞
δ2

tm ũ0(∞)= 1
2δ

2
tm c0
→

1
2 c̈0,

and thus
w(∞)= 1

2 c̈0
= constant.

In dimension n = 2 we have instead

lim
x→∞

w(x)
−log |x |

=
1
2 c̈0

and this implies 2π 1
2 c̈0
=
∫

R2 1w and that w can be obtained (up to an additive constant) by convolving
the Newtonian potential P with 1w.

Therefore, combining (3-23) and (3-27), we obtain that (3-15)–(3-19) hold. �

We may now state the final result of this section.

Proposition 3.5. Let k ≥ 2. Assume that for some tm ↓ 0 there exist η̇, η̈ ∈ C0(Z) such that

δ2
tmη

0
= 2

ηtm − η0
− η̇0tm

t2
m

→ η̈0 in C0(Z)

as tm ↓ 0. Assume w ∈ C1(�0) and

lim∇wtm (xm)→∇w(x) as m→∞ for all xm→ x such that xm ∈�
tm . (3-28)

Then, 2 : 00
→ R defined by (3-20) satisfies

2− 1
2∂sssu0(η̇0

◦π1)
2
= ∂ssv η̇

0
+ ∂sw on 00

out. (3-29)

Moreover, η̈0 does not depend on (tm) and

‖η̈0
‖Ck−2,α(Z) ≤ C(C0)Q, (3-30)

where
Q := ‖ḧ0

‖Ck−1,α(Rn)+ |c̈
0
| + (‖ḣ0

‖Ck,α(Rn)+ |ċ
0
|)(‖ḣ0

‖L∞(Rn)+ |ċ0
|).
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As for η̇, the independence of tm and regularity of η̈ will be consequences of the fact that 2 solves
(3-29), for which regularity estimates and uniqueness hold. However, note that (3-29) is an implicit
equation for 2 since wimplicit depends on 2, which makes the analysis more involved.

To prove Proposition 3.5, we will need two auxiliary lemmas with standard proofs.

Lemma 3.6. We have

‖ũ0
‖Ck+1,α(BR∩�t ) ≤ C(C0).

More generally, for t ∈ [0, t◦), where t◦ = t◦(C), we have ũt
∈ Ck+1,α(�t) with

‖ũt
‖Ck+1,α(BR∩�t ) ≤ C(C).

Proof. Note that ∂i ũt solves

1(∂i ũt)=−1(∂i ht) in �t , with ∂i ũt
= 0 on 0t

= ∂�t .

Since −1(∂i ht) ∈ Ck−2,α(Rn) and 0t belongs to Ck,α
ρ , using standard Schauder estimates up to the

boundary we obtain

∂i ũt
∈ Ck,α(BR ∩�t),

and hence

ũt
∈ Ck+1,α(BR ∩�t). �

Lemma 3.7. Let U ⊂ B R ⊂ Rn be bounded with ∂U belonging to Cm+2,α
r for some r > 0 and f ∈

Cm,α
c (B2R), where m ≥ 0. Let W be the solution of{

1W = f χRn\U in Rn,

W (∞)= 0 (n ≥ 3),

{
1W = f χRn\U in Rn,

limx→∞
W (x)
−log |x | = 2π

∫
R2 f χRn\U (n = 2),

which is given in dimension 2 by convolution with the logarithmic Newtonian potential.
Then,

‖W‖Cm+2,α(B2R\U ) +‖W‖Cm+2,α(U ) ≤ C‖ f ‖Cm,α(B2R)
,

where C = C(n,m, α, R, r, ‖∂U‖Cm+2,α
r

).

Proof. Let W̃ be the solution of
1W̃ = f in Rn

\U,
W̃ = 0 on ∂U,
W̃ (∞)= 0 (n ≥ 3),


1W̃ = f in Rn

\U,
W̃ = 0 on ∂U,

limx→∞
W̃ (x)
−log |x | = 0 (n = 2).

We consider W̃ defined in all of Rn by extending it by 0 in U.
Note that by standard Schauder estimates up to the boundary we have

‖W̃‖Cm+2,α(B2R\U ) ≤ C‖ f ‖Cm,α(B2R)
. (3-31)
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On the other hand, the difference (W̃ −W ) solves, in all of Rn,{
1(W̃ −W )= ∂ν, outW̃ H n−1 �∂U in Rn,

(W̃ −W )(∞)= 0 (n ≥ 3),{
1(W̃ −W )= ∂ν, outW̃ H n−1 �∂U in Rn,

limx→∞
(W̃−W )(x)
−log |x | =−2π

∫
R2 f χRn\U = 2π

∫
∂U ∂ν, outW̃ at∞ (n = 2).

Therefore, W̃ −W is a single-layer potential and using Theorem A.1 we obtain

‖(W̃ −W )‖Cm+2,α(B2R\U )+‖(W̃ −W )‖Cm+2,α(U ) ≤ C‖∂ν, outW̃‖Cm+1,α(∂U )

≤ C‖W̃‖Cm+2,α(B2R\U ) ≤ C‖ f ‖Cm,α(B4)
.

Using (3-31) and recalling that by definition W̃ ≡ 0 in U we obtain

‖W‖Cm+2,α(B2R\U ) +‖W‖Cm+2,α(U ) ≤ C‖ f ‖Cm,α(B2R)
. �

Proof of Proposition 3.5. Step 1. We first prove (3-29).
Expanding (3-8) as in (3-9) but up to the next order, we find

∂sv
t(z, ηt)=−∂ss ũ0(z, η0)

(
η̇0
+

1
2 η̈

0t + o(t)
)
−

1
2∂sss ũ0(z, η0)(η̇0)2t + o(t) (3-32)

as t = tm ↓ 0.
Here η, η̇ and η̈ are evaluated at z (although we omit this in the notation) and ∂ss ũ0(z, η0) and

∂sss ũ0(z, η0) mean the limits from �0. To obtain the Taylor expansion up to the third order of ũ0 we are
using that, by Lemma 3.6, u0

∈ Ck+1,α(BR ∩�0) where k ≥ 2. Recall here that {u0
= 0} = Rn

\�0
⊂

U ⊂ BR.
Subtracting from both sides of (3-32) the quantity

∂sv(z, η0)=−∂ss ũ0(z, η0)η̇0 (3-33)

and dividing by t , we obtain

∂sv
t(z, ηt)− ∂sv(z, η0)

t
=−

1
2∂ss ũ0(z, η0)η̈0

−
1
2∂sssu0(z, η0)(η̇0)2+ o(1). (3-34)

Recall that by Lemma 3.4 we have wt
→w in the sense of distributions with w given by (3-15)–(3-19).

Then, the assumption (3-28) allows us to compute the limit of the left-hand side in (3-34), namely,

lim
t=tm↓0

∂sv
t(z, ηt)− ∂sv(z, η0)

t
= lim

t=tm↓0

∂sv(z, ηt)− ∂sv(z, η0)

t
+
∂sv

t(z, ηt)− ∂sv(z, ηt)

t

= ∂ssv(z, η0) η̇+ lim
t=tm↓0

(N (z, ηt) · ∇wt(z, ηt)

= ∂ssv(z, η0) η̇+ ∂sw
t(z, η0), (3-35)

where we have used the assumption (3-28).
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Taking t = tm ↓ 0 in (3-34) and using (3-35) we obtain

−
1
2∂ss ũ0(z, η0)η̈0

−
1
2∂sssu0(z, η0)(η̇0)2 = ∂ssv(z, η0) η̇+ ∂sw

t(z, η0).

Recalling the definition of 2 in (3-20) and the fact that ∂ss ũ0
= −1h0 on 00 — and in particular at

(z, η0)— we obtain (3-29).

Step 2. We use (3-29) to prove uniqueness and regularity of η̈. Recall that

∂sw = ∂Nw = ∂Nwsolid+ ∂Nwsingle+ ∂Nwdouble+ ∂Nwimplicit,

and while ∂Nwsolid, ∂Nwsingle, ∂Nwdouble depend only on “known” functions — see (3-16), (3-17), (3-18) —
the term ∂Nwimplicit introduces a “implicit” dependence on 2— see (3-19). We therefore need to “solve
for 2” in (3-29) in order to prove the uniqueness and regularity of its solutions 2.

For this, we write

∂Nwimplicit = (N · ν)∂νwimplicit+ (N − (N · ν)ν) · ∇wimplicit on 00
out,

where ν = ν0. Recall that by a standard result on single layer potentials — see Theorem A.1 — we have

(N · ν)∂νwimplicit(x)= 1
22(x)+ 2̃(x) on 00

out, (3-36)

where

2̃(x) :=
∫
00

dHn−1(y)
(
−

2

(N · ν)

)
(y) ν(x) · ∇P(x − y). (3-37)

Note that the first term in the right-hand side of (3-36) is exactly the half of the first (and main) term in
the left-hand side of (3-29). Using this and defining

ω(x) := (N − (N · ν)ν)(x) for x on 00

we obtain

1
22=

1
2∂sssu0(η̇0

◦π1)
2
+η̇0 ∂s N ·∇v+∂s(wsolid+wsingle+wdouble)+ω·∇wimplicit+2̃ on 00

out. (3-38)

Step 3. From (3-38), we may deduce optimal regularity estimates for 2, and hence for η̈0. To do so we
will bound each of the five terms in the right-hand side of (3-38) separately.

From here on, the constant C means C = C(n, k, α, ρ, ‖h0
‖Ck+1,α(Rn)).

For the first term, we use that h0
∈ Ck+1,α, and we obtain that 00

∈ Ck,α
ρ/4, that ν0

∈ Ck−1,α(00), and
that η0

∈Ck,α(Z) with estimates — here we are using the regularity estimates on 00 from Proposition 2.1.
In particular,

‖π1‖Ck,α(00)+‖ν
0
‖Ck−1,α(00) ≤ C. (3-39)

Observe also that the vector field N is smooth and hence ∂sssu0 — the third derivative of u0 along an
integral curve of N — is regular as D3u0.
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Therefore,∥∥1
2∂sssu0(η̇0

◦π1)
2∥∥

Ck−2,α(00)

≤ C
(
‖u0
‖Ck+1,α(BR∩�0)

‖(η̇0
◦π1)

2
‖L∞(00)+‖u

0
‖L∞(BR∩�0)‖(η̇

0
◦π1)

2
‖Ck−2,α(00)

)
≤ C‖(η̇0)2‖Ck−2,α(Z)

≤ CQ. (3-40)

For the second term, we use again that N is smooth and recalling the estimate (3-13) for v and the
estimate η̇ in (3-7), we obtain

‖(η̇0
◦π1) ∂ssv‖Ck−2,α(�0) ≤ C

(
‖η̇0
‖Ck−2,α(Z)‖v‖L∞(BR∩�0)+‖η̇

0
‖L∞(Z)‖v‖Ck,α(BR∩�0)

)
≤ CQ, (3-41)

where we used (3-7) and (3-13).
For the third term, we proceed as follows. From Lemma 3.7 we obtain that

‖∇wsolid‖Ck−2,α(BR∩�0) ≤ C‖1ḧ0
‖Ck−2,α ≤ CQ.

Next, since N and J are smooth, 1h0
∈Ck−1,α , 00

∈Ck,α , and ν0
∈Ck−1,α we obtain by Theorem A.1(i)

that
‖wsingle‖Ck−1,α(�0) ≤ C

(
‖(η̇0
◦π1)1ḣ0

‖Ck−2,α(00)+‖(η̇
0
◦π1)

2
‖Ck−2,α(00)

)
≤ CQ

and by Theorem A.1(iii)

‖wdouble‖Ck−1,α(�0) ≤ C‖(η̇0
◦π1)

2
‖Ck−1,α(00) ≤ CQ.

Hence,
‖∂s(wsolid+wsingle+wdouble)‖Ck−2,α(00) ≤ CQ. (3-42)

For the term ω · ∇wimplicit we use that Theorem A.1(i) yields

‖wimplicit‖Ck−1,α(BR∩�0) ≤ C‖2‖Ck−2,α(00),

and thus
‖ω · ∇wimplicit‖Ck−2,α(00) ≤ C‖ω‖Ck−2,α(00)‖2‖Ck−2,α(00). (3-43)

Also, recalling the definition of 2̃ in (3-37) and using Theorem A.1(iii) we obtain

‖2̃‖Ck−2,α(00) ≤ C‖2‖Ck−3,α(00). (3-44)

Inserting (3-40)–(3-44) into (3-38), we obtain

‖2‖Ck−2,α(00) ≤ C
(
Q+‖ω‖Ck−2,α(00)‖2‖Ck−2,α(00)+‖2‖Ck−3,α(00)

)
.

Note that we may take ‖ω‖Ck−2,α(00) arbitrarily small by taking εo in (2-2) small enough. Then, by a
standard interpolation argument we obtain

‖2‖Ck−2,α(00) ≤ CQ. (3-45)
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Finally we recall the definition of 2 in (3-20), use that ν0
∈ Ck−1,α, −1h0

≥ ρ and 1h0
∈ Ck−1,α,

and observe that π−1
0 : Z→ 00 satisfies ‖π−1

0 ‖Ck,α(Z) ≤ C with C universal, to obtain

‖η̈0
‖Ck−2,α(Z) ≤ CQ. �

4. Removing the a priori assumptions

In Section 3 we assumed the existence of the limits

ηtm − η0

tm
→ η̇0 and 2

ηtm − η0
− η̇0tm

t2
m

→ η̈0 in C0(Z) (4-1)

and we have shown that η̇0 and η̈0 must then satisfy certain equations for which uniqueness and regularity
estimates were proven.

The purpose of the next section is to prove that under our assumptions, (4-1) indeed holds for every
sequence tm ↓ 0.

The setup. We start by introducing a new system of coordinates in U◦ ∩�0 that are adapted to u0.
Let us define

σ = σ(x) := ∂N ũ0(x). (4-2)

Note that σ is defined in U◦ ∩�0 and takes positive values in that neighborhood of 00 if U◦ is chosen
small enough. An application of the implicit function theorem gives that (z, σ ) are Ck,α coordinates in
U◦ ∩�0 (up to taking a smaller neighborhood U◦). Indeed, for ν = ν0

∂σ

∂s
= ∂ss ũ0

= (N · ν)2∂νν ũ0
= (N · ν)21ũ0

=−(N · ν)21h0 (4-3)

on 00
out and where by assumption −1h0

≥ ρ > 0 in a neighborhood of 00. Note in addition that the new
coordinates (z, σ ) are indeed Ck,α since ũ0

∈ Ck+1,α(�0).
Let us also introduce

π̄1 :U◦ ∩�0
→ Z

to be the projection defined in the coordinates (z, σ ) by

(z, σ ) 7→ (z, 0).

These coordinates are clearly related to the hodograph transform of the obstacle problem introduced
in [Kinderlehrer and Nirenberg 1977]. Note also that for the case of the model solution to the obstacle
problem 1

2(xn)
2
+

, and with N = en the coordinate σ would simply be xn .
In view of Proposition 2.1 there exists λt

∈ Ck,α(Z) such that

0t
= {σ = λt(z)} for t ∈ (0, t◦). (4-4)

In the coordinates (z, σ ) we have
λ0
≡ 0 (4-5)
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since σ = ∂N u0
≡ 0 on 00. In addition, from (3-8) and the definition of the coordinate σ we have

∂Nv
t
=−

∂N ũ0

t
=−

σ

t
=−

λt

t
◦ π̄1 on 0t

;

hence
λt

t
(z)=−∂Nv

t(z, λt(z)). (4-6)

Indeed to prove (4-6) we use (3-8) and the definition of the coordinate σ to obtain

∂Nv
t
=−

∂N ũ0

t
=−

σ

t
=−

λt

t
◦ π̄1 on 0t .

The relation (4-6) will allow us to prove uniform Ck−1,α estimates for λt/t , leading to the existence of the
limit as t ↓ 0 of λt/t , which will be denoted by λ̇0. Later on, we will prove uniform Ck−2,α estimates for

1
2
λt
− λ̇0t
t2 =

1
2
λt/t − λ̇0

t
,

which will lead to the existence of its limit as t→ 0, denoted by λ̈0. These estimates will be deduced
from the equation

λt/t − λ̇0

t
=−

∂Nv(z, λt(z))− ∂Nv(z, 0)
t

− ∂Nw
t(z, λt(z)), (4-7)

obtained from (4-6) by subtracting λ̇0(z)=−∂Nv(z, 0) from both sides, dividing by t on both sides, and
recalling that by definition wt

= (vt
− v)/t .

Estimate on λt/ t. The goal of this subsection is to prove a regularity result (without a priori assumptions)
on λt/t . We state it next.

Proposition 4.1. For t ∈ (0, t◦) we have ∥∥∥∥λt

t

∥∥∥∥
Ck−1,α(Z)

≤ C(C).

Before proving Proposition 4.1, let us state its main corollary

Corollary 4.2. There exist η̇0 and λ̇0 such that

ηt
− η0

t
→ η̇0 and

λt

t
→ λ̇0 in C0(Z)

as t ↓ 0.

Proof. Let tp ↓ 0. Note that both coordinate systems (z, s) and (z, σ ) are Ck,α. Hence, the estimate in
Proposition 4.1 implies ∥∥∥∥ηt

− η0

t

∥∥∥∥
Ck−1,α(Z)

≤ C

and by Arzelà–Ascoli there is a subsequence tm such that

ηtm − η0

tm
→ `1 and

λtm

tm
→ `2 in C0(Z)
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for certain limit functions `1 and `2 in Ck−1,α(Z). Applying Proposition 3.2, we must have `1 = η̇
0,

where η̇0 is the function given by (3-6). Then, either using the change of variables between s and σ or
passing to the limit in (4-6) we obtain

`2(z)= λ̇0(z) := ∂Nv(z, σ = 0).

Therefore, we have proven that each sequence has a subsequence converging to a limit that is indepen-
dent of the sequence. In other words the limits as t ↓ 0 exist and are given by η̇0 and λ̇0. �

In view of (4-6), Proposition 4.1 is an immediate consequence of the following:

Lemma 4.3. For t ∈ (0, t◦) we have∥∥∥∂Nv
t( · , λt( · ))−

1
2
λt

t

∥∥∥
Ck−1,α(Z)

≤ C(C)+ 1
100

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

.

Next we state a sequence of lemmas aimed at proving Lemma 4.3. To study the regularity of ∂Nv
t, let

us write down (for the first time) the equation for vt
=

1
t (ũ

t
− ũ0) in all of Rn. We have{

1vt
=−

1h0

t χ�0\�t+1δt h0χ�t in Rn,

vt(∞)= δt c0 (n≥ 3),

{
1vt
=−

1h0

t χ�0\�t+1δt h0χ�t in Rn,

limx→∞
vt (x)
−log |x | = δt c0 (n= 2).

(4-8)

Hence, we may decompose vt as

vt
= vt

1+ v
t
2+ constant,

where

vt
1(x) := −

∫
Rn

dy
(
1h0

t
χ�0\�t

)
(y)P(x − y), (4-9)

vt
2(x) := −

∫
Rn

dy1δt h0χ�t (y)P(x − y). (4-10)

To prove Lemma 4.3 we will deal separately with the two contributions ∂Nv1 and ∂Nv2 to ∂Nv.
Note that ∂Nv1 is an “approximate single-layer potential”. To study its regularity we need the next

lemma. Before giving its statement, we need to introduce some notation.
We denote by

J (z, σ ) := |det D (z, σ )−1
|

the Jacobian of the coordinates (z, σ ) defined by∫
A

f (x) dx =
∫
(z,σ )(A)

f (z, σ )J (z, σ ) dz dσ. (4-11)

Also, for θ ∈ (0, 1) we define

�t
θ := {x ∈U ∩�0

: σ(x) > θλt(z(x))} ∪ (�0
\U ),

0t
θ := ∂�

t
θ = {σ = θλ

t(z)},
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and denote by νt
θ the unit normal to 0t

θ towards �t
θ . Although the following lemma will be used in this

subsection for F ≡−1h0, we write it for general F for later use.

Lemma 4.4. Let V be the single-layer potential

V (x)=
∫

Rn
dy
(1

t
F χ�t\�0

)
(y)P(x − y). (4-12)

We may write

V =
∫ 1

0
V θ dθ, (4-13)

where

V θ
=

∫
0t
θ

Hn−1(y)
(

F λt

t
◦ π̄1

(N · νt
θ )

∂ssu0

)
(y)P(x − y)

and for all θ ∈ (0, 1) we have

‖∇V θ
‖Ck−1,α(�t ) ≤ C(C)

∥∥∥F λ
t

t
◦ π̄1

∥∥∥
Ck−1,α(0t

θ )
. (4-14)

Before giving the proof of the previous lemma let us give the analogue to Lemma 3.3 in the present
context.

Lemma 4.5. Given f : 0t
θ → R continuous we have∫

0t
θ

(N · νt
θ )

∂σ/∂s
(x) f (x) dHn−1(x)=

∫
Z

f (z, θλt(z)) J (z, θλt(z)) dz.

Proof. Let us assume without loss of generality that f is continuously extended in a neighborhood of 0t
0

contained in U◦ ∩�0. Given ε > 0 let

Aε := {x ∈U◦ : θλt(z(x))≤ σ(x)≤ θλt(z(x))+ ε}.

Recalling that (∂σ/∂s)∂σ = N = ∂s and that |N | = 1, we have∫
00

(N · νt
θ )

∂σ/∂s
(x) f (x) dHn−1(x)= lim

ε↓0

1
ε

∫
Aε

f (x) dHn(x).

On the other hand, for

(z, σ )(Aε) := {(z, σ ) ∈ Z × (−σ◦, σ◦) : θλt(z)≤ σ ≤ θλt(z)+ ε}

we have, by the definition of J,

1
ε

∫
Aε

f (x) dHn(x)= 1
ε

∫
(z,s)(Aε)

f (z, s) J (z, s) dz ds

=

∫
Z

dz 1
ε

∫ ε

0
ds̄ f (z, θλt(z)+ s̄) J (z, θλt(z)+ s̄)

=

∫
Z

f (z, θλt(z)) J (z, θλt(z)) dz+ o(1)

as ε ↓ 0 and the lemma follows. �
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Proof of Lemma 4.4. The key idea in the proof is to think of an approximate single-layer potential as an
average (or integral) of exact single-layer potentials. More precisely, using (4-11) we may write∫

φ1V := 1
t

∫
Z

dz
∫ λt (z)

0
dσ (Fφ J )(z, σ )

=

∫
Z

dz 1
t

∫ 1

0
dθ λt(z) (Fφ J )(z, θλt(z))

=

∫ 1

0
dθ
∫
{σ=θλt (z)}

λt

t
(Fφ)(y)

(N · νt
θ )(y)

∂σ/∂s(y)
dHn−1(y),

where we used Lemma 4.5.
Recalling that σ = ∂su0, this proves (4-13).
To prove (4-14) we use that V θ is a single-layer potential on the surface 0t

θ , with charge density(
λt

t
◦ π̄1

)
F
(N · νt

θ )

u0
ss

.

Note that Proposition 2.1 yields ‖λt
‖Ck,α(Z) ≤C and hence {σ = θλt(x)} is Ck,α and its normal vector νt

θ

is Ck−1,α. Recall also that u0
∈ Ck+1,α(�0) and that u0

ss ≈−(N · ν
0)21h0 > 0 in a neighborhood of 00.

Then, if

F λt

t
◦ π̄1 ∈ Ck−1,α,

it follows from Theorem A.1 that V θ is Ck,α(�t
θ ) and in particular V θ is Ck,α(�t) with the estimate

(4-14). �

Recalling (4-9), and using Lemma 4.4 with F =−1h0, we may now write

vt
1(x)=

∫ 1

0
V θ (x) dθ, (4-15)

where

V θ (x) :=
∫
0t
θ

(
−1h0 λ

t

t
◦ π̄1

(N · νt
θ )

∂ssu0

)
(y)P(x − y) dy. (4-16)

The following lemma is a straightforward consequence of Theorem A.1 in the Appendix.

Lemma 4.6. Let V θ be as in (4-16). We have

−∂νt
θ ,outV

θ
=

1
2(N · ν

t
θ )
−1h0

∂ssu0

λt

t
◦ π̄1+ ∂νt

θ ,0
V θ on 0t

θ , (4-17)

where

‖∂νt
θ ,0

V θ
‖Ck−1,α(0t

θ )
≤ C(C)

∥∥∥λt

t

∥∥∥
Ck−2,α(Z)

.

Proof. We recall that (N ·νt
θ ), −1h0, ∂ssu0>ρ/2> 0, and π̄−1

1 :Z→0t
θ ,−1h0 are all Ck−1,α functions.

Then, the lemma follows from Theorem A.1(ii)–(iii). �
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The next lemma will be used to control the “difference”

−∂N V θ (z, ηt(z))− 1
2
λt

t
(z).

Lemma 4.7. Let V θ be as in (4-16). We have∥∥∥−∂N V θ ( · , ηt( · ))−
1
2
λt

t

∥∥∥
Ck−1,α(Z)

≤ C(C)+ 1
100

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

.

Proof. Step 1. We estimate the Ck−1,α(Z) norm of

I1(z) := ∂N V θ (z, λt(z))− ∂N ,outV θ (z, θλt(z)).

To do it we write this difference as

I1 = t
∫ 1

θ

d θ̄ ∂σ ∂N V s(x ′, θ̄λt(x ′)) λ
t

t
(x ′).

Then, using Lemma 4.4 we obtain

‖I1‖Ck−1,α(Z) ≤ Ct
(
‖V θ
‖Ck+1,α(�t

θ )

∥∥∥λt

t

∥∥∥
L∞(Z)

+‖V θ
‖L∞(�t

θ )

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

)
≤ Ct

∥∥∥λt

t

∥∥∥
Ck,α(Z)

∥∥∥λt

t

∥∥∥
L∞(Z)

≤ C‖λt
‖Ck,α(Z)

∥∥∥λt

t

∥∥∥
L∞(Z)

≤ C, (4-18)

where C = C(C). Here we have used the fact that ‖λt/t‖L∞(Z) ≤ C and information that follows from
Proposition 2.1.

Step 2. We next estimate the Ck−1,α(Z) norm of

I2(z) := ∂N ,outV θ (z, θλt(z))− 1
2
λt

t
(z).

Using (4-17) we have

I2(z)= (N − νt
θ ) · ∇outV θ (z, θλt(z))+ 1

2

(
(N · νt

θ )
−1h0

∂ssu0 − 1
)
λt

t
◦ π̄1+ ∂νt

θ ,0
V θ .

Using the estimates from Lemma 4.6 and 4.4 we have

‖∇V θ
‖Ck−1,α(0t

θ )
≤ ‖V θ

‖Ck,α(�t
θ )
≤ C

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

.

In addition,

|N − νt
θ | ≈ 0, (N · νt

θ )≈ 1, and
−1h0

∂ssu0 ≈ 1 on 0t
θ

for t ∈ (0, t◦), where X ≈ Y means that “X is arbitrarily close to Y ” provided that t◦ and εo are chosen
small enough depending only of C.

Therefore, using the estimate in Lemma 4.6 and an interpolation inequality, we obtain

‖I2‖Ck−1,α(Z) ≤
ε

2

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

+C
∥∥∥λt

t

∥∥∥
Ck−2,α(Z)

≤ ε

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

+C
∥∥∥λt

t

∥∥∥
L∞(Z)

≤ ε

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

+C, (4-19)

where ε > 0 can be taken arbitrarily small by decreasing, if necessary, t◦ and εo.
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Step 3. We conclude by the triangle inequality that∥∥∥∂N V θ ( · , ηt( · ))−
1
2
λt

t

∥∥∥
Ck−1,α(Z)

≤ ‖I1‖Ck−1,α(Z)+‖I2‖Ck−1,α(Z)

and the lemma follows from (4-18) and (4-19), setting ε = 1
100 . �

Lemmas 4.4, 4.6, and 4.7 will be used to treat the term ∂Nv1. As a counterpart, the next lemma will be
used to treat the term ∂Nv2.

Lemma 4.8. We have

‖vt
2‖Ck,α(�t ) ≤ C(C).

Proof. Recalling that1vt
2=1δt h0χ�t and that 0t

= ∂�t are (uniformly) Ck,α, it follows from Lemma 3.7
that

‖vt
2‖Ck,α(�t ) ≤ C(C)‖1δt h0

‖Ck−2,α(Rn).

Using the trivial estimate

‖1δt h0
‖Ck−2,α(Rn) ≤ ‖h‖Ck+1,α([−1,1]×Rn)

the lemma follows. �

Proof of Lemma 4.3. We have

∂Nv
t(z, λt(z))= (∂Nv

t
1+ ∂Nv

t
2)(z, λ

t(z)),

and by (4-15)–(4-16) we have

∂Nv
t
1(z, λ

t(z))=
∫ 1

0
∂N V θ (z, λt(z)) dθ.

Hence, by the triangle inequality, and using Lemmas 4.7 and 4.8,∥∥∥∂Nv
t( · , λt)−

1
2
λt

t
(z)
∥∥∥

Ck−1,α(Z)
≤

∫ 1

0
dθ
∥∥∥∂N V θ ( · , λt)−

1
2
λt

t

∥∥∥
Ck−1,α(Z)

+‖∂Nv
t
2( · , λ

t)‖Ck−1,α(Z)

≤ C + 1
100

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

+C‖∂Nv
t
2‖Ck−1,α(0t )

≤ C + 1
100

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

,

where C = C(C). �

Proof of Proposition 4.1. Recall (4-6), that is, (λt/t)(z)=−∂Nv
t(z, λt(z)). Subtracting 1

2(λ
t/t)(z) from

both sides and using Lemma 4.3 we obtain

1
2

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

≤

∥∥∥−∂Nv
t( · , λt( · ))−

1
2
λt

t

∥∥∥
Ck−1,α(Z)

≤ C(C)+ 1
100

∥∥∥λt

t

∥∥∥
Ck−1,α(Z)

as desired. �
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Estimate on 1
t (λ

t/ t− λ̇0). The goal of this subsection is to prove the following regularity result (without
a priori assumptions).

Proposition 4.9. We have ∥∥∥1
t

(
λt

t
− λ̇0

)∥∥∥
Ck−2,α(Z)

≤ C(C).

Before proving Proposition 4.9, let us give its main corollary.

Corollary 4.10. There exist η̈0 and λ̈0 such that

2
ηt
− η0
− t η̇0

t2 → η̈0 and 2
λt
− t λ̇0

t2 → λ̈0 in C0(Z)
as t ↓ 0.

Proof. Let tp ↓ 0. Note that since both coordinate systems (z, s) and (z, σ ) are Ck,α, the estimate of
Proposition 4.9 yields ∥∥∥∥ηt

− η0
− t η̇0

t2

∥∥∥∥
Ck−2,α(Z)

≤ C(C).

Hence, by Arzelà–Ascoli there is a subsequence tm such that

2
ηtm − η0

− tm η̇0

tm2 → `1 and 2
λtm − tm λ̇0

tm2 → `2 in C0(Z)

for certain limit functions `1 and `2 in Ck−2,α(Z).
Applying Proposition 3.5 the limit `1 must be η̈0, the unique solution to (3-20)–(3-29). Using the

change of variables between s and σ we obtain that there is also a unique possible limit `2(z)= λ̇0(z)
which is independent of the subsequence.

In other words, the limits as t ↓ 0 exist and they are denoted by η̈0 and λ̈0. �

In view of (4-7) and the regularity of ∂Nv, Proposition 4.9 is a consequence of the following:

Lemma 4.11. We have∥∥∥∥∂Nw
t( · , λt( · ))−

1
2
λt/t − λ̇0

t

∥∥∥∥
Ck−2,α(Z)

≤ C(C)+ 1
100

∥∥∥∥λt/t − λ̇0

t

∥∥∥∥
Ck−2,α(Z)

.

Let us state a sequence of lemmas which will prove Lemma 4.11. To study the regularity of ∂Nw
t we

will use the equation for wt in all of Rn that was obtained in (3-14).
As in Step 2 of the proof of Proposition 3.5 we take the decomposition

wt
= wt

1+w
t
2+ constant,

where, for n ≥ 3,

wt
1(x)=

∫ (1
t
1ḣ0χ�0\�t −

1
21δ

2
t h0χ�t

)
(dy)P(x − y), wt

1 = 0,

and

wt
2(x)=−

∫
1
t

(
∂Nv

N · ν0 Hn−1 �00 −
1
t
1h0 χ�0\�t

)
(dy)P(x − y).

Respectively, for n = 2 we define wt
1 and wt

2 as the potentials of the previous Laplacians.
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The analysis of the regularity in �t of wt
1 is done using Lemmas 4.4 and 3.7, which straightforwardly

imply:

Lemma 4.12. We have
‖∇wt

1‖Ck−2,α(�t ) ≤ C(C).

To study wt
2 let us further split it as

wt
2 = w

t
21+w

t
22+ constant,

where

wt
21(x)=

∫
1

t (N · ν0)

(
∂Nv+ (N · ν0)2

1h0

∂σ/∂s
λt

t

)
Hn−1 �00 (dy) P(x − y),

wt
22(x)=−

∫
1
t

(
(N · ν0)

1h0

∂σ/∂s
λt

t
Hn−1 �00 −

1
t
1h0 χ�0\�t

)
(dy)P(x − y).

The study of ∂Nw
t
21 is done by observing that wt

21 is a single-layer potential and using Theorem A.1.
Indeed we have:

Lemma 4.13. We have∥∥∥∥∂Nw
t
21( · , σ = 0)− 1

2
λt/t − λ̇0

t

∥∥∥∥
Ck−2,α(Z)

≤ C(C)+ 1
100

∥∥∥∥λt/t − λ̇0

t

∥∥∥∥
Ck−2,α(Z)

.

Proof. Let

f (x) :=
1

t (N · ν0)

(
∂Nv+ (N · ν0)2

1h0

∂σ/∂s
λt

t

)
(x)=

1
t (N · ν0)

(
λ̇0
−
λt

t

)
(x)

for x ∈ 00. Here we have used that ∂Nv =−λ̇ ◦ π̄1 and (4-3).
On one hand, by Theorem A.1(iii) we have

∂ν0,outw
t
21 =

1
2 f + ∂ν0,0w

t
21 on 00,

with
‖∂ν0,0w

t
21‖Ck−2,α(00) ≤ C‖ f ‖Ck−3,α(00)

and
‖wt

21‖Ck−1,α(�0) ≤ C‖ f ‖Ck−2,α(00) (n ≥ 3),

‖∇wt
21‖Ck−2,α(�0) ≤ C‖ f ‖Ck−2,α(00) (n = 2),

where C = C(C). Therefore, using that |N − ν0
| ≤ ε we have∥∥∂Nw

t
21−

1
2 f
∥∥

Ck−2,α(00)
≤ Cε‖wt

21‖Ck−1,α(�0)+‖∂ν0,0w
t
21‖Ck−2,α(00)

≤ Cε‖ f ‖Ck−2,α(00)+C‖ f ‖Ck−3,α(00),

and the lemma follows using interpolation and choosing ε small enough. �

It thus remains to study the regularity of wt
22, which we treat as an approximate double layer.
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Lemma 4.14. We have

‖∇wt
22‖Ck−2,α(�t ) ≤ C(C).

Proof. We will first write our approximate double layer as an average of double layers and we will then
use the regularity results for the single layers to deduce the regularity of double layers.

Let us compute

−

∫
φ1wt

22 =

∫
φ(x)

1
t

(
(N · ν0)

1h0

∂σ/∂s
λt

t
Hn−1 �00 −

1
t
1h0 χ�0\�t

)
(x) dx

=
1
t

∫
Z

dz
λt

t
(z)(J1h0 φ)(z, 0)−

1
t2

∫
Z

dz
∫ λt (z)

0
dσ(J1h0 φ)(z, σ )

=

∫ 1

0
dθ
∫
Z

dz
λt

t
(z)

1
t

(
(J1h0φ)(z, 0)− (J1h0 φ)(z, θλt)

)
=−

∫ 1

0
dθ
∫ θ

0
dθ ′

∫
Z

(
λt

t

)2

(z) dz ∂σ (J1h0 φ)(z, θ ′λt)

=−

∫ 1

0
dθ
∫ θ

0
dθ ′

∫
0t
θ ′

(
λt

t

)2

◦ π̄1∂σ (J1h0 φ)
(N · νt

θ ′)

∂σ/∂s
,

where we have used Lemma 4.5. Changing the order of integration we find

−

∫
φ1wt

22 =−

∫ 1

0
(1− θ) dθ

∫
0t
θ

(
λt

t

)2

◦ π̄1∂σ (J1h0 φ)
(N · νt

θ )

∂σ/∂s

=−

∫ 1

0
(1− θ) dθ

∫
0t
θ

(
λt

t

)2

◦ π̄1∂s(J1h0 φ)
(N · νt

θ )

(∂σ/∂s)2
.

Therefore, we have

wt
22(x)=−

∫ 1

0
(1− θ) dθ Iθ (x) (4-20)

for

Iθ (x) := −
∫
0t
θ

dHn−1(y)
(
λt

t

)2

◦ π̄1(y) ∂N
(
(J1h0)(y) P(x − y)

) (N · νt
θ )

(∂σ/∂s)2
(y).

Note that

Iθ (x)= I θ1 (x)+ I θ2 (x)=:
∫
0t
θ

dHn−1(y)
((
λt

t

)2

◦ π̄1 ∂N (J1h0)
(N · νt

θ )

(∂σ/∂s)2

)
(y) P(x − y)

+ divx

(∫
0t
θ

dHn−1(y)
((
λt

t

)2

◦ π̄1(y) (J1h0)
(N · νt

θ )

(∂σ/∂s)2
N
)
(y)P(x − y)

)
.

Therefore, recalling that

0t
θ ∈ Ck,α,

λt

t
∈ Ck−1,α(Z), π̄1 ∈ Ck,α(0t

θ ), νt
θ ∈ Ck−1,α(0t

θ ), J1h0
∈ Ck−1,α,
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and ∂σ/∂s = u0
ss positive and Ck−1,α and using Theorem A.1 we obtain

‖∇ I1‖Ck−2,α(�t
θ )
+‖∇ I2‖Ck−2,α(�t

θ )
≤ C(C).

The estimate of the lemma then follows from (4-20) observing that �t
⊂�t

θ for all θ ∈ (0, 1). �

Lemma 4.11 is now an immediate consequence of Lemmas 4.12, 4.13, and 4.14, and Proposition 4.9
follows.

5. Proof of the main result

In this section we conclude the proof of Theorem 1.1. If one assumes hτ+t
−hτ satisfies1(hτ+t

−hτ )≥ 0
and cτ+t

− cτ ≤ 0 for τ, t ∈ (0, t◦) then Theorem 1.1 is a straightforward consequence of the results
developed in Sections 2–5. Hence, the main issue that needs to be addressed is how to remove these
technical sign assumptions. This is done by using a decomposition of the form

ht
− h0
= ξ t
+
+ ξ t
−
, (5-1)

where1(ξ τ+t
+ −ξ

τ
+
)≥ 0 and limx→∞(ξ

τ+t
+ −ξ

τ
+
)≥ 0 and the same with ξ+ replaced by ξ− and ≥ replaced

by ≤. This decomposition is defined as follows. We let

φ+(z) := 1+
1+ zez

ez + e−z and φ−(z)=−1+
−1+ ze−z

ez + e−z

and note that
φ++φ− = z (5-2)

and that φ+ is similar to x+ (the positive part), while φ− is similar to −x− (minus the negative part) at
large scales.

Let ζ be a radial smooth cutoff function with ζ ≡ 1 in BR and ζ ≡ 0 outside of B2R. For t ∈ (−t◦, t◦)
and x ∈ Rn let us define

ξ t
+
(x) := −

∫
Rn

P(x − y) tφ+
(1

t
1(ht

− h0)
)
ζ (y),

ξ t
−
(x) := −

∫
Rn

P(x − y) tφ−
(1

t
1(ht

− h0)
)
ζ (y)

Note that by definition we have, for τ and t small,

1(ξ τ+t
+
− ξ τ
+
)=

(
(τ + t)φ+

( 1
τ+t

1(hτ+t
− h0)

)
− τφ+

(1
τ
1(hτ − h0)

))
ζ

=

( d
dt ′

∣∣∣
t ′=τ
{t ′φ+(1δt ′h0)} t + O(t1+α)

)
ζ

=

(
φ+(1δτh0)t + τ φ̇+(1δτh0)

d
dt ′

∣∣∣
t ′=τ

(1δt ′h0)t + O(t1+α)
)
ζ

=

(
φ+(1δτh0)t + τ φ̇+(1δτh0)

1
τ

O(τα)+ O(t1+α)
)
ζ

≥ t (1−Cτα −Ctα)ζ ≥ 0, (5-3)
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where in the passage from the third to the fourth line we have used that, since h ∈ C3,α,

d
dt ′

∣∣∣
t ′=τ

(1δt ′h0)=1
d

dt ′

∣∣∣
t ′=τ

(
ht ′
− h0

t ′

)
=1

(
−

hτ − h0

τ 2 +
ḣτ

τ

)
=

(
−
1ḣτ + O(τ 1+α)

τ 2 +
1ḣτ

τ

)
=

1
τ

O(τα).

A similar inequality (with opposite sign) holds when + is replaced by −. Moreover, by (5-2),

1(ξ t
+
+ ξ t
−
)= tφ+

(1
t
1(ht

− h0)
)
ζ + tφ−

(1
t
1(ht

− h0)
)
ζ =1(ht

− h0)

since 1(hs+t
− hs)= 0 outside of BR and ζ = 1 in BR. Therefore (5-1) follows.

Next, for t, t̄ ∈ (−t◦, t◦) we consider the two-parameter family of solutions to obstacle problems ut,t̄

defined as

min{−1ut,t̄ , ut,t̄
− ht,t̄

} = 0 in Rn,

{
lim|x |→∞ ut,t̄(x)= ct,t̄ (n ≥ 3),

lim|x |→∞ ut,t̄ (x)
−log |x | = ct,t̄ (n = 2),

(5-4)

where

ht,t̄
:= h0

+ ξ t
+
+ ξ t̄
−

and

ct,t̄
:= tφ−

(1
t
(ct
− c0)

)
+ t̄φ+

(1
t̄
(ct̄
− c0)

)
.

Note that

ut
= ut,t and ηt

= ηt t .

Let us define

�t,t̄
:= {ut,t̄

− ht,t̄ > 0} and 0t,t̄
:= ∂�t,t̄

and let ηt,t̄
∈ Ck,α(Z) be defined by

0t,t̄
= {s = ηt,t̄(z)} ⊂U◦. (5-5)

In the proof of Theorem 1.1 the following observation will be useful.

Remark 5.1. For e = (e1, e2) ∈ S1 making a small enough angle with (1, 0) a computation similar to
(5-3) shows that

1(ht+e1 t̃, t̄+e2 t̃
− ht,t̄)≥ 0 and ct+e1 t̃, t̄+e2 t̃

− ct,t̄
≤ 0 (5-6)

for (t, t̃ ) in a small neighborhood of (0, 0). Thanks to this observation, the results developed in
Sections 2–5 can be applied to obtain, in a neighborhood of (0,0), estimates for the derivatives of
ut,t̄ and ηt,t̄ in a cone of directions (t, t̄). As a consequence, we obtain estimates for all the first and
second derivatives ∂t , ∂t̄ , ∂t t , ∂t̄ t̄ , ∂t t̄ of ut,t̄ and ηt,t̄ in a neighborhood of (0, 0). In particular we obtain
estimates in the direction (1, 1) which are equivalent to estimates for ut

= ut,t and ηt
= ηt,t .
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Proof of Theorem 1.1. Step 1. Assuming that k ≥ 1 we prove that ηt,t̄ is once differentiable (jointly) in
the two variables (t, t̄) in a neighborhood of (0, 0) with the estimate

‖∂eη
t,t̄
‖Ck−1,α(Z) ≤ |e|C(C) (5-7)

and the formula

∂eη
t,t̄
=

(
∂N (∂eut,t̄)

(N · νt,t̄)21ht,t̄

)
(z, ηt,t̄(x)), (5-8)

which holds true for every vector e in the (t, t̄)-plane.
Indeed, let e1 = (1, 0) and let e2 be some different unit vector making a small enough angle with e1 as

in Remark 5.1.
By Remark 5.1, for fixed (t, t̄) in a small enough neighborhood of (0, 0) and for i = 1, 2, the one

parameter family (ut+e1
i t̃, t̄+e2

i t̃)t̃ satisfies the assumptions of Sections 2–4. Applying Corollary 4.2 to it,
we find that

∂eiη
t,t̄
:=

d
dt̃

∣∣∣∣
t̃=0
ηt+e1

i t̃, t̄+e2
i t̃

exists in the sense that the limit defining this derivative exists in C0(Z).
Then, Proposition 3.2 yields the estimate

‖∂eiη
t,t̄
‖Ck−1,α(Z) ≤ C(C)

and the formula

∂eiη
t,t̄
=

(
∂N∂ei (u

t,t̄
− ht,t̄)

(N · νt,t̄)21ht,t̄

)
(z, ηt,t̄(x)).

Since ∂t = ∂e1 and ∂t̄ is a linear combination of ∂ei we obtain that ηt,t̄ is continuously differentiable
(jointly) in the two variables (t, t̄) in a neighborhood of (0, 0) with the estimate (5-7) and formula (5-8).

Step 2. Applying (5-7) and formula (5-8) for (t, t̄) restricted to the “diagonal” t = t̄ (still in a neighborhood
of (0, 0)) — i.e., with e= (1, 1)— we obtain that ηt is differentiable with respect to t , with the estimate

‖η̇t
‖Ck−1,α(Z) ≤ C(C) (5-9)

and the formula

η̇t
=

(
∂N (u̇t

− ḣt)

(N · νt)21ht

)
(z, ηt(x)). (5-10)

Note that (5-9) and (5-10) are identical to those of Proposition 3.2 but now they are valid under more
general assumptions (we do not need to assume the sign condition that implies that the contact sets are
ordered).

Step 3. Similarly we obtain
‖∂eeη

t,t̄
‖Ck−1,α(Z) ≤ |e|2C(C). (5-11)

Indeed, let e1 and e2 be as in Step 1 and let e3 be a third vector such that the ei are pairwise linearly
independent and the angle of e3 with (1, 0) is small enough.
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Using again Remark 5.1, for fixed (t, t̄) in a small enough neighborhood of (0, 0) and for i = 1, 2, 3, the
one parameter family (ut+e1

i t̃, t̄+e2
i t̃)t̃ satisfies the assumptions of Sections 2–4. Applying Corollary 4.10

we find that

∂ei eiη
t,t̄
:=

d2

dt̃ 2

∣∣∣∣
t̃=0
ηt+e1

i t̃, t̄+e2
i t̃

exists in the sense that the limit defining this derivative exists in C0(Z).
Then, Proposition 3.2 yields the estimate

‖∂ei eiη
t,t̄
‖Ck−1,α(Z) ≤ C(C).

Since for all e in the (t, t̄)-plane ∂ee is a linear combination of {∂ei ei }i=1,2,3, we obtain that ηt,t̄ is twice
differentiable (jointly) in the two variables (t, t̄) in a neighborhood of (0, 0) with the estimate (5-11).

Step 4. Applying (5-11) or (t, t̄) restricted to the “diagonal” t = t̄ (still in a neighborhood of (0, 0)) —
i.e., with e= (1, 1)— we obtain that ηt is twice differentiable with respect to t , with the estimate

‖η̈ t
‖Ck−1,α(Z) ≤ C(C). (5-12)

Again note that (5-11) is identical to that of Proposition 3.5 but now it is valid under more general
assumptions.

Step 5. Finally, we complete the proof of Theorem 1.1 by defining the diffeomorphisms 9 t from the
coordinates (z, s) and the function ηt. Let φ ∈C∞c (U◦) be some function such that φ≡1 in a neighborhood
of 00. Let us define

9 t(x)=
{
(z, s)−1

(
z(x), s(x)+ η0(z(x))+φ(x){ηt(z(x))− η0(z(x))}

)
, x ∈U◦,

x, x ∈ Rn
\U◦.

Since we may take U◦ ⊂ U we have that 9 t fixes the complement of U. By the definition of ηt we easily
show that 9 t(ω0)=�t — and thus 9 t(00)= 0t.

It not difficult to check that (5-9), (5-10), and (5-12) yield (1-14), (1-15) and (1-16) when rewritten in
terms of 9. On the other hand, estimate (1-17) follows from the estimates for w obtained in Step 3 of the
proof of Proposition 3.5. �

Appendix: Single-layer potentials and auxiliary proofs

We recall here classical regularity properties and the formula for the jump in the normal derivative for a
single-layer potential.

Theorem A.1. Let U ⊂ BR ⊂Rn be a domain such that ∂U ∈Cm,α
r for some r > 0, m ∈N and α ∈ (0, 1).

Given f ∈ Cm−1,α(∂U ) let us define

w(x) :=
∫
∂U

dHn−1(y) f (y)P(x − y),

where P is the Newtonian potential.
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We then have:

(i) w ∈ C0(Rn), w ∈ Cm,α(U ) and w ∈ Cm,α(Rn \U ) with the estimate

‖w‖Cm,α(U )+‖w‖Cm,α(Rn\U ) ≤ C‖ f ‖Cm−1,α(∂U ),

where C depends only on n, m, α, r , and ‖∂U‖Cm,α
r

.

(ii) Denoting by ∂ν, outw and ∂ν, inw the (outward) normal derivatives of w from outside and inside U
respectively we have, for all x ∈ ∂U,

∂ν, outw(x)= ∂ν,0w(x)− 1
2 f (x),

∂ν, inw(x)= ∂ν,0w(x)+ 1
2 f (x),

where

∂ν,0w(x) :=
∫
∂U

dHn−1(y) f (y) ν(x) · ∇P(x − y).

(iii) The linear operator T : f 7→ ∂ν,0w maps continuously Cm−2,α(∂U ) to Cm−1,α(∂U ). More precisely,

‖∂ν,0w‖Cm−1,α(∂U ) ≤ C‖ f ‖Cm−2,α(∂U ),

where C depends only on n, m, α, R, r , and ‖∂U‖Cm,α
r

. In particular T is compact in Hölder spaces.

We provide the following for completeness.

Bibliographic references and sketch of the proof of Theorem A.1. Properties of single-layer potentials in
the spirit of (i)–(iii) — and related ones for double-layer potentials — are very classical results in potential
theory. They are key tools in proving the existence of solutions for the Dirichlet and Neumann problems
in C1,α domains by the method of boundary potentials (by solving in Hölder spaces Fredholm integral
equations on the boundary of the domain). For more information on the topic, see for instance the classical
books [Sobolev and Dawson 1964; Dautray and Lions 1990].

The proofs of (i), (ii) are given in [Dautray and Lions 1990, Section II.3]. The proof of (i) is given in
full detail only for m = 1 but the proof for general m is similar. The result for all m is stated in [Dautray
and Lions 1990, p. 303].

The compactness property of T in (iii) is in the core of the theory for solving the Dirichlet and Neumann
problems by the method of boundary potentials. Indeed, by (ii), the Neumann problem 1w = 0 in U,
∂ν = g on ∂U is equivalent to T f + 1

2 f = g, where f is the charge on the boundary. Since T is compact,
this equation can be solved by Fredholm’s alternative;6see [Sobolev and Dawson 1964, Lectures 15–19].

Roughly speaking, the reason why T f increases the order of differentiability of f by 1 is that the
integral kernel (x ∈ ∂U ) satisfies

k(x, y) := ν(x) · ∇P(x − y)= cnν(x)
x − y
|x − y|n

= O(|x − y|n−2)

6In this case the orthogonality condition of Fredholm’s alternative requires
∫
∂U g = 0.
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as y → x , y ∈ ∂U, while ∂U is an (n−1)-dimensional surface. The extra factor |x − y| comes from
ν(x) · (x − y)= O(|x − y|2) since ∂U is smooth enough. Thus, T f behaves similarly to

f 7→
∫

Rd
f (y)

e · y
|y|d

dy,

which maps Ck−1,α
c (Rd) to Ck,α(Rd).

Since it is not easy to find complete references for (iii), although these types of estimates are very
classical, for the sake of completeness we provide next a detailed proof of a nearly optimal estimate like
(iii) in the case m = 2 (the proof for other m is more involved but similar). For the purposes of this paper
the optimal estimate is not necessary — we just state the optimal result for the convenience of the reader.
In our proofs, we do not need to gain a full derivative but just obtain a control in a finer Hölder norm to
control the corresponding term by interpolation. Let us prove that if ∂U ∈ C2,α

r then, for all β ∈ (0, 1),

‖T f ‖C0,β (∂U ) ≤ C‖ f ‖C0,α(∂U ) (A-1)

(note that the optimal estimate would be with C1,α instead of C0,β).
As a matter of fact we will prove the stronger (and almost sharp) estimate

‖T f ‖C0,β (∂U ) ≤ C‖ f ‖L∞(∂U ), (A-2)

which clearly yields (A-1).
Indeed, we start by showing that

k(x, y) := ν(x)
x − y
|x − y|n

(A-3)

satisfies
|k(x, y)− k(x̄, y)| ≤ C |x − x̄ ||ξ − y|−n+1, (A-4)

where ξ is a point of a curve on ∂U joining x and x̄ .
Indeed, if γ ⊂ ∂U is a smooth curve joining x and x̄ and of length comparable to |x − x̄ | we have, at

ξ = γ (t),
d
dt

k(γ (t), y)= ν ′(ξ)
ξ − y
|ξ − y|n

+ νi (ξ) γ
′

j (t)
|z|2δi j − nzi z j

|z|n+2 for z = ξ − y.

Choosing an appropriate frame, we may assume νi (ξ)= δ1i and γ ′j (t)= Cδ2 j — since the former vector
is normal to ∂U and the latter is tangent. Therefore∣∣∣∣νi (ξ)γ

′

j (t)
|z|2δi j − nzi z j

|z|n+2

∣∣∣∣= C
|z1z2|

|z|n+2 ≤ C
|z|2|z|
|z|n+2 ≤ C |z|1−n

= C |ξ − y|1−n,

where we have used that the first axis is normal to ∂U and hence we have |z1| ≤ |z|2 — by C2 regularity
of ∂U and recalling that z = ξ − y with both ξ and y on ∂U. Therefore, an application of the mean value
theorem gives

|k(x, y)− k(x̄, y)| ≤ C |x − x̄ |
∣∣∣ d
dt

k(γ (t), y)
∣∣∣≤ C |x − x̄ ||ξ − y|1−n

and proves (A-4).
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Finally, recalling that

|k(x, y)| ≤ C |x − y|2−n and |k(x̄, y)| ≤ C |x̄ − y|2−n

and combining this with (A-4), we obtain

|k(x, y)− k(x̄, y)| ≤ C |x − x̄ |β |ξ − y|(1−n)β(
|x − y|(2−n)(1−β)

+ |x̄ − y|(2−n)(1−β)).
Therefore

|T f (x)− T f (x̄)| =
∣∣∣∣∫
∂U

f (y)(k(x, y)− k(x̄, y)) dHn−1(z)
∣∣∣∣

≤

∫
∂U
| f (y)||k(x, y)− k(x̄, y)| dHn−1(z)

≤ C‖ f ‖L∞(∂U )

∫
∂U
|x − x̄ |β |ξ − y|(1−n)β(

|x − y|(2−n)(1−β)
+ |x̄ − y|(2−n)(1−β))

≤ C‖ f ‖L∞(∂U )|x − x̄ |β,

which proves (A-2). �

Sketch of the proof of Proposition 2.1. For the sake of clarity we give a proof assuming that, for t > 0,
we have 1(ht

− h0)≥ 0 and ht
− h0
≥ 0 and thus �t

⊂ ω0. We give the proof in dimension n = 2. The
proof for n ≥ 3 is similar; see [Blank 2001].

Step 1. We show that for some t◦ > 0 and C◦ depending only on C we have

|�0
\�t
| ≤ C(C)t. (A-5)

Indeed, from (4-8) we know that (recall that vt
:= δt ũ0){

1vt
=−(1h0/t)χ�0\�t +1δt h0χ�t in R2,

limx→∞
vt (x)
−log |x | = δt c0.

Note that by (1-10) we have 0t
⊂ BR for t ∈ [0, t◦), where t◦ > 0 is a small enough constant depending

only on C. Recalling that by assumption 1δt h0 is supported in BR, we have

δt c0
=

∫
R2
1vt
=

∫
R2
−
1h0

t
χ�0\�t +1δt h0χ�t .

Therefore, since −1h0
≥ ρ, we find

ρ

t
|�0
\�t
| ≤ |δt c0

| +

∫
BR

|1δt h0
| ≤ C(C).

Step 2. We first show (i); that is, we prove that for t◦ small enough we have

‖0t
‖Ck,α

ρ/4
≤ Co for all t ∈ [0, t◦). (A-6)
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Indeed, by Step 1, |�0
\�t
| ↓ 0 as t→ 0 and hence, for t small enough, all points of 0t are regular points.

More precisely, for all p ∈ 0t,
Bρ(p)∩ {ũt

= 0} ≥ c◦(C) > 0.

Then, we apply:

(1) C1,α free boundary estimates near regular points [Caffarelli 1977; 1998].

(2) C1,α
⇒ Ck,α estimates for obstacle h ∈ Ck+1,α [Kinderlehrer and Nirenberg 1977].

We thus obtain (A-6).

Step 3. From (A-5) and (A-6) deduce that for t ∈ (0, t◦), the Hausdorff distance between 0t and 0s

satisfies
dHausdorff(0

t , 00)≤ Co t. �

Sketch of the proof of Lemma 3.1. The lemma for n ≥ 3 is very standard. Let us prove it in the case n = 2.
Assume n = 2. We want to prove that ut

= f∗, where

f∗(x) := inf
{

f (x) : f ∈ C(R2), f ≥ ht , 1 f ≤ 0, lim
x→∞

f
−log |x |

= ct
}
. (A-7)

The admissible class in (A-7) is nonempty since the function

f1(x) := ct min{0,−log |x |} +C1

is a member, provided we take C1 > 0 large enough that log |x |+C > ht(x) for all x ∈R2 — here we are
using (1-4). Hence, f∗(x) ∈ [ht(x),+∞) is finite for all x .

We now check that ut
= f∗ is a solution of (1-3) (n = 2). First, as an infimum of superharmonic

functions, it is superharmonic. To check that it is a subsolution of the obstacle problem, we argue by
contradiction. Suppose on the contrary that there exist r, ε, δ > 0 (as small as we like) and x◦ ∈ R2 such
that f∗ > ε+ ht in Br (x◦) and f∗(x◦) > δ+

∫
∂Br (x◦)

f∗. By changing (slightly) x◦ and making r and δ
smaller, if necessary, we may assume δ < ε and

oscBr (x◦)h
t
≤ ε =⇒ f∗ > sup

Br (x◦)
ht .

Let f̃ ∈ C(Br (x◦)) be the unique harmonic function in Br (x◦) with Dirichlet boundary condition f̃ =
1
2δ+ f∗ on ∂Br (x◦). Note that f̃ > ht in Br (x◦), and set

f (x) :=
{

f∗(x), x /∈ Br (x◦),
min{ f̃ , f∗(x)}, x ∈ Br (x◦).

Then f is admissible in (A-7) and hence f∗ ≤ f . But then by the mean value formula for f̃ we have

f∗(x◦)≤ f (x◦)≤ f̃ (x◦)= 1
2δ+

∫
Br (x◦)

f∗ ≤ 1
2δ+ f∗(x◦)− ε < f∗(x◦) ,

a contradiction. �
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