Open Access
2018 Propagation of chaos, Wasserstein gradient flows and toric Kähler–Einstein metrics
Robert J. Berman, Magnus Önnheim
Anal. PDE 11(6): 1343-1380 (2018). DOI: 10.2140/apde.2018.11.1343

Abstract

Motivated by a probabilistic approach to Kähler–Einstein metrics we consider a general nonequilibrium statistical mechanics model in Euclidean space consisting of the stochastic gradient flow of a given (possibly singular) quasiconvex N-particle interaction energy. We show that a deterministic “macroscopic” evolution equation emerges in the large N-limit of many particles. This is a strengthening of previous results which required a uniform two-sided bound on the Hessian of the interaction energy. The proof uses the theory of weak gradient flows on the Wasserstein space. Applied to the setting of permanental point processes at “negative temperature”, the corresponding limiting evolution equation yields a drift-diffusion equation, coupled to the Monge–Ampère operator, whose static solutions correspond to toric Kähler–Einstein metrics. This drift-diffusion equation is the gradient flow on the Wasserstein space of probability measures of the K-energy functional in Kähler geometry and it can be seen as a fully nonlinear version of various extensively studied dissipative evolution equations and conservation laws, including the Keller–Segel equation and Burger’s equation. In a companion paper, applications to singular pair interactions in one dimension are given.

Citation

Download Citation

Robert J. Berman. Magnus Önnheim. "Propagation of chaos, Wasserstein gradient flows and toric Kähler–Einstein metrics." Anal. PDE 11 (6) 1343 - 1380, 2018. https://doi.org/10.2140/apde.2018.11.1343

Information

Received: 28 June 2016; Revised: 9 October 2017; Accepted: 12 January 2018; Published: 2018
First available in Project Euclid: 23 May 2018

zbMATH: 06881245
MathSciNet: MR3803713
Digital Object Identifier: 10.2140/apde.2018.11.1343

Subjects:
Primary: 00A05

Keywords: Kähler–Einstein metrics , Langvin equation , propagation of chaos , statistical mechanics

Rights: Copyright © 2018 Mathematical Sciences Publishers

Vol.11 • No. 6 • 2018
MSP
Back to Top