Open Access
Translator Disclaimer
2017 Complete embedded complex curves in the ball of $\mathbb{C}^2$ can have any topology
Antonio Alarcón, Josip Globevnik
Anal. PDE 10(8): 1987-1999 (2017). DOI: 10.2140/apde.2017.10.1987

Abstract

In this paper we prove that the unit ball B of 2 admits complete properly embedded complex curves of any given topological type. Moreover, we provide examples containing any given closed discrete subset of B.

Citation

Download Citation

Antonio Alarcón. Josip Globevnik. "Complete embedded complex curves in the ball of $\mathbb{C}^2$ can have any topology." Anal. PDE 10 (8) 1987 - 1999, 2017. https://doi.org/10.2140/apde.2017.10.1987

Information

Received: 27 January 2017; Accepted: 29 June 2017; Published: 2017
First available in Project Euclid: 16 November 2017

zbMATH: 1384.32014
MathSciNet: MR3694012
Digital Object Identifier: 10.2140/apde.2017.10.1987

Subjects:
Primary: 32B15 , 32C22 , 32H02

Keywords: complete bounded submanifolds , complex curves , holomorphic embeddings

Rights: Copyright © 2017 Mathematical Sciences Publishers

JOURNAL ARTICLE
13 PAGES


SHARE
Vol.10 • No. 8 • 2017
MSP
Back to Top