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THE A.-PROPERTY OF THE KOLMOGOROV MEASURE
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We consider the Kolmogorov—Fokker—Planck operator

m m

K= 0y + Y _xidy, — 0,
i=1 i=1

in unbounded domains of the form

Q={(x, X, ¥y yms ) € RV | x> ¥ (x, v, 1))

Concerning ¥ and €2, we assume that Q2 is what we call an (unbounded) admissible Lipy-domain:
Y satisfies a uniform Lipschitz condition, adapted to the dilation structure and the (non-Euclidean) Lie
group underlying the operator K, as well as an additional regularity condition formulated in terms of
a Carleson measure. We prove that in admissible Lip,-domains the associated parabolic measure is
absolutely continuous with respect to a surface measure and that the associated Radon—Nikodym derivative
defines an A, weight with respect to this surface measure. Our result is sharp.

1. Introduction

A major breakthrough in the study of boundary value problems for the heat operator
Hi=) O — 0, (1-1)

in R™*! m > 1, in (unbounded) Lipschitz-type domains
Q={()C,)Cm,l‘)GlRm+1 | Xm > ¥ (x, 1)}, (1-2)

was achieved in [Lewis and Silver 1988; Lewis and Murray 1995; Hofmann and Lewis 1996; Hofmann
1997]; see also [Hofmann and Lewis 2001b]. In these papers the correct notion of time-dependent
Lipschitz-type cylinders, correct from the perspective of parabolic measure, parabolic singular integral
operators, parabolic layer potentials, as well as from the perspective of the Dirichlet, Neumann and
regularity problems with data in L? for the heat operator, was found. In particular, in [Lewis and Silver
1988; Lewis and Murray 1995] the mutual absolute continuity of the parabolic measure, with respect
to surface measure, and the Ao-property was studied/established and in [Hofmann and Lewis 1996]
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the authors solved the Dirichlet, Neumann and regularity problems with data in L2 The Neumann and
regularity problems with data in L? were considered in [Hofmann and Lewis 1999; 2005]. For further
and related results concerning the fine properties of parabolic measures we refer to the impressive and
influential work [Hofmann and Lewis 2001a].

The assumptions on the time-dependent function i underlying the analysis in all of the papers
mentioned can be formulated as follows: there exist constants 0 < M, M, < oo such that

[W(x, 1) — Y (E, )| < Mi(]x — %]+ |t —7]'/%) (1-3)

whenever (x, t), (x,7) € R™ and such that

_ 4 . dx di d
sup e oo 7" [ g S <o (1-4
0 By (x,1)

In (1-4), B;.(x, t) is the parabolic ball centered at (x, ) € R", with radius A, and

yy (X, 1,0 = (A—“”*” /
By (%,1)

where P € C;°(B1(0, 0)) is a standard approximation of the identity, P;.(x, 1) = A~FEDP Oy, A2,
for A > 0, and P, (V,¢) denotes the convolution of V. with P,. Inequality (1-3) is sufficient for the
validity of the doubling property of the caloric/parabolic measure, while the additional regularity imposed

YD) =Y 1) = Pu(Vap)(F D —F)
A

2 172
di dz‘) . (1-5)

through (1-4) is necessary and sufficient for the A..-property of caloric measure, with respect to the
surface measure do; dt, to hold: this is a consequence of [Lewis and Silver 1988; Lewis and Murray
1995; Hofmann 1997; Hofmann et al. 2003; 2004].

In this paper we initiate the corresponding developments for the Kolmogorov—Fokker—Planck operator

m m
K= O+ Y xidy, — 0, (1-6)
1 i=1

i=

inRVtL N =2m, m>1, equipped with coordinates (X, Y, ) := (X1, ..., Xm, Y1, ---»> Ym, 1) ER"XR" xR,
in unbounded domains of the form

Q= {(x, Xm, ¥, Ym, 1) € RN | x> ¥ (x, y, 1)}, (1-7)

The function ¥ : R"~!'x R"~!x R — R is, for reasons to be explained, assumed to be independent of the
variable yy,.

The operator K, referred to as the Kolmogorov or Kolmogorov—Fokker—Planck operator plays a
central role in many application in analysis, physics and finance. K was introduced and studied by
Kolmogorov [1934] as an example of a degenerate parabolic operator having strong regularity properties.
Kolmogorov proved that K has a fundamental solution I' =T'(X, Y, ¢, X , Y , ) which is smooth on the
set {(X,Y,t) # ()N(, 17, f)}. As a consequence,

Ku:=feC® = uecC® (1-8)
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for every distributional solution of Ku = f. The property in (1-8) can also be stated as

KC is hypoelliptic; (1-9)
see (2-3) below.
Kolmogorov was originally motivated by statistical physics and he studied K in the context of stochastic
processes. Indeed, the fundamental solution I'(-, -, -, X , )7, t) describes the density of the stochastic
process (X, ¥;), which solves the Langevin system

dX, =~2dW,, X;=X,

- (1-10)
dYt=Xtdt, Yi’=Y,

where W, is an m-dimensional Wiener process. The system in (1-10) describes the density of a system with
2m degrees of freedom. Given Z := (X, Y) € R>", the variables X = (x1, ..., X,;) and ¥ = D1y ey Ym)
are, respectively, the velocity and the position of the system. The model in (1-10) and the equation in
(1-6) are of fundamental importance in kinetic theory as they form the basis for Langevin-type models
for particle dispersion, see [Bernardin et al. 2009; 2010; Chauvin et al. 2010; Bossy et al. 2011; Pope
2000], but they also appear in many other applied areas including finance [Barucci et al. 2001; Pascucci
2011], and vision [Citti and Sarti 2006; 2014].

In this paper we are concerned with the solvability of the Dirichlet problem for the operator X in
unbounded domains of the form (1-7), and throughout the paper we will assume that €2 is a Lip x-domain
in the sense of Definition 1.1 below. Given ¢ € C(9€2) with compact support, we consider the boundary
value problem

{ICM =0 ing,

1-11
u=¢ ond2. ( )

Using the Perron—Wiener—Brelot method one can prove the existence of a solution to this problem and,
in the sequel, u = u, will denote this solution to (1-11). Using the results of [Manfredini 1997], and
assuming that 2 is a Lipg-domain in the sense of Definition 1.1, it follows that all points on 92 are
regular for the Dirichlet problem for K, i.e.,
lim uy,(Z,t) =@(Zp, t for an e C(0Q2 1-12
zoim o(Z,1) = ¢(Zo, 1) y ¢ € C(0%2) (1-12)
(Z,1)eQ

whenever (Zy, ty) € 02. Moreover, there exists, for every (Z,t) € 2, a unique probability measure
w(Z,t,-) on 0L such that

u(Z, 1) =f o(Z, Ddw(Z,t,Z,7). (1-13)
Q2

We refer to w(Z, ¢, -) as the Kolmogorov measure, or parabolic measure, associated to /C, relative to
(Z,t) and Q2. In this paper we are particularly interested in scale- and translation-invariant estimates
of w(Z,t,-) in terms of a (physical) surface measure, do, on dQ2. In particular, assuming that €2 is
an admissible Lip,-domain in the sense of Definition 1.1 below, we establish a scale-invariant form of
mutual absolute continuity of w(Z, ¢, - ) with respect to do on 9€2.
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Despite the relevance of the operator K to analysis, stochastics, physics, and in the applied sciences,
the analysis of its properties is in several respects fundamentally underdeveloped. Indeed, geometry, the
fine properties of the Dirichlet problem in (1-11) and the Kolmogorov measure, the boundary behavior
of nonnegative solutions and the Green function, are currently only modestly studied and explored in
the literature. One reason for this may be the intrinsic and intricate complexity built into the operator X
through the lack of diffusion in the coordinates (yy, ..., ¥, ) and through the presence of the lower-order
drift term ) /", x;dy, — 9;. These two features of K, which make this operator decisively different from
the heat operator 7, have the consequence that the Lie group of translations (R¥*!, o) underlying K is
different from the standard group of Euclidean translations and that already fundamental principles like
the Harnack inequality and the construction of appropriate Harnack chains under geometrical restrictions
become issues; see [Nystrom and Polidoro 2016].

To briefly outline the current state of the literature, in our context, it is fair to mention that the first
proof of the scale-invariant Harnack inequality, which constitutes one of the building blocks for our
paper, can be found in [Garofalo and Lanconelli 1990]. In that paper the Harnack inequality is expressed
in terms of level sets of the fundamental solution; hence it depends implicitly on the underlying Lie
group structure. This fact was used in [Lanconelli and Polidoro 1994], where the group law, see (1-15)
below, was used explicitly and the Harnack inequality, in the form we use it, was proved for the first time.
The Perron—Wiener—Brelot method in the context of the Dirichlet problem in (1-11), as well as criteria
based on which boundary points can be proved to be regular, were developed in the important work
[Manfredini 1997]. In [Cinti et al. 2010; 2012; 2013], the author, together with Chiara Cinti and Sergio
Polidoro, developed a number of important preliminary estimates concerning the boundary behavior of
nonnegative solutions to equations of Kolmogorov—Fokker—Planck type in Lipschitz-type domains. These
papers were the result of our ambition to establish scale- and translation-invariant boundary comparison
principles, boundary Harnack inequalities and doubling properties of associated parabolic measures,
results previously established for uniformly parabolic equations with bounded measurable coefficients
in Lipschitz-type domains, see [Fabes and Safonov 1997; Fabes et al. 1986; 1999; Safonov and Yuan
1999; Nystrom 1997; Salsa 1981], for nonnegative solutions to the equation Cu = 0 and for more general
equations of Kolmogorov—Fokker—Planck type. In [Nystrom and Polidoro 2016], the author together
with Sergio Polidoro took the program started in [Cinti et al. 2010; 2012; 2013] a large step forward
by establishing several new results concerning the boundary behavior of nonnegative solutions to the
equation Cu = 0 near the noncharacteristic part of the boundary of local versions of the Lipx-domains
defined in Definition 1.1 below. Generalizations to more general operators of Kolmogorov—Fokker—Planck
type were also discussed. In particular, in [Nystrém and Polidoro 2016] scale- and translation-invariant
quantitative estimates concerning the behavior, at the boundary, for nonnegative solutions vanishing on a
portion of the boundary were proved as well as a scale- and translation-invariant doubling property of the
Kolmogorov measure. The results in that paper are developed under the regularity condition stated below
in (1-25) in Definition 1.1; in particular, for reasons that they explain in detail, the results, including the
translation-invariant doubling property of the Kolmogorov measure, were derived using the assumption
that the defining function for 2 in (1-7), ¥, was assumed to be independent of the variable y,,. This
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assumption gave us a crucial additional degree of freedom at our disposal when building Harnack chains
to connect points: we could freely connect points in the x,,-variable, taking geometric restriction into
account, accepting that the path in the y,,-variable will most likely not end up in “the right spot”. This is
one reason why we also in this paper consider domains which are constant in the y,,-direction.

The main achievement of this paper is that we take the analysis in [Nystrom and Polidoro 2016] one
step further by proving, see Theorem 1.6 below, that if €2 is an admissible Lipg-domain with constants
(M, M) in the sense of Definition 1.1 below, then w is mutually absolutely continuous with respect to
a (physical) surface measure o on €2 and w € A (9€2, do) with constants depending only on N, M;
and M. This gives a generalization of [Lewis and Silver 1988; Lewis and Murray 1995] to the operator K
and in the case of graphs which are independent of all y-variables, our assumptions coincide with the
geometrical conditions underlying [Lewis and Silver 1988; Lewis and Murray 1995; Hofmann and Lewis
1996; Hofmann 1997]; see (1-3) and (1-4) above.

1A. Notation. The natural family of dilations for K, denoted by (§,),~0, on RN+ is defined by
(X, Y, 1) = (rX,r’Y, r’) (1-14)

for (X,Y,t) e RY +1 r > 0. Due to the presence of nonconstant coefficients in the drift term of /C, the
usual Euclidean change of variable does not preserve the Kolmogorov equation. Instead the Lie group on
RN*! preserving Ku = 0 is defined by the group law

(Z.Do(Z.)=X,Y.Do(X.V, ) =X+ X, Y +Y —1X,i+1) (1-15)
whenever (Z, 1), (Z,7) € R¥N+!. Note that

Z,H'=X, Y, )" '=(=X, =Y —1X, —1), (1-16)

and hence
Z. D) o Z, =X, Y, D) o X, Y, ) =(X-X,Y-Y+(t—DX,1—17) (1-17)
whenever (Z, 1), (Z,7) € RN Given (Z, 1) = (X, Y, 1) € RV ! we let
IZ. Dl =X Y. 0l =X )+ [t]'% (X, )] =X +]¥]'> (1-18)
Note that ||8,(X, Y, t)|| =r|(X, Y, t)| when (X, Y, 1) € RVt r > 0. We define
d(2.0).(Z. 1) =3(Z. D) o (Z. D+ 1(Z.) " o (Z. D). (1-19)

Then, as discussed in the bulk of the paper, d is a symmetric quasidistance on RV*!. Based on d we
introduce the balls
BAZ,1):={(Z, ) e RN |d(Z,D),(Z,1) <) (1-20)

for (Z,t) € R¥*! and r > 0. The measure of the ball B,(Z, ), denoted by |B,(Z, t)|, is approximately r?,
where ¢ := 4m + 2, independent of (Z, ¢). Similarly, given (z,1) = (x, y, 1) e R¥ ' = R* I x R""Ix R
we let

Br(z, 1) :={(E, 1) eR" " d(&,0,7,0,7), (x,0,y,0,1) <r}. (1-21)
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The measure of the ball B, (z, t), denoted by |B,(z, t)|, is approximately ri—4, independent of (z, ¢). With
a slight abuse of notation we will by B,(Z, ), note the capital Z, always denote a ball in R¥*!, and by
B,(z, 1), note the lowercase z, we will always denote a ball in R¥ 1.

1B. Geometry. Our geometrical setting is that of unbounded domains of the form
Q= {(x, Xm, ¥, Y, 1) € RV | x> ¥ (x, y, 1)}, (1-22)

and here we define the restrictions that we impose on the function ¥ : R"!x R""!x R — R. Let
P e C5(B1(0,0)), where B1(0,0) C RN—1 be a standard approximation of the identity. Let P, (x, y, t) =
A4 Hp~1x, A3y, A7%¢) for A > 0. Given a function f defined on R¥~! we let

Pof ey, 1) = / 5D PG o,y 1) dR dy i
.
= fGE Y DP(x—%,y—y+@—0)X,t—1)dxdydi. (1-23)
RN—I

P, f represents a regularization of f. Given (Z,7) € RN=1 X\ > 0, we introduce

~ _7_75_ ~9~$;_ \Y ~9~$; X —X 2 —1/2
VoG TRy = (A—<q-4>/ VEID Y ESD - PVNETDE=D o dt)
By(G.0) A
(1-24)
We are now ready to formulate our conditions on ¥ : R"~!x R"~!x R — R and Q.
Definition 1.1. Assume that there exist constants O < M7, M, < oo such that
Wz, 1) =G DI < MG D ozl (1-25)
whenever (z, 1), (Z,7) € R¥~! and such that
—a-a [ L dzdt di
SUP(. et oo 74V f / (ry G. 7. 0)? =—— < Ma. (1-26)
0 JBi(z.1)

Let 2 = Qy be defined as in (1-22). We say that 2, defined by a function v satisfying (1-25), is a
Lipg-domain with constant M. We say that €2, defined by a function v satisfying (1-25) and (1-26), is
an admissible Lipg-domain with constants (M7, M>).

Remark 1.2. Inequality (1-25) implies
[ (x, v, 1) — ¥ (X, y, 1) < My ||(x —%,0,0)| = M|x — %[,
[ (x, y,6) =¥ (x, 5,0 < Mi[|(0,y — 5, 00| = M|y — 5|'73, (1-27)
[ (x, y, ) — ¥ (x,y, D) < M0, (t —D)x, (t =) = My (|t — D)x|' + |t —1]1/?)

uniformly with respect to the remaining variables. From the perspective of dilations and translations,
Lipg-domains are, assuming y,,-independence, the natural replacement in the context of the operator X
of the Lip(l, %)—domains considered in the context of the heat operator.
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Remark 1.3. Inequality (1-26) states that the measure
, dzdi dx

(yy (2,1, 1)) 3

is a Carleson measure on RV ~!x R, In this paper we prove, from the perspective of the finer properties
of the Kolmogorov measure, that admissible Lip-domains are, assuming y,,-independence, the natural
replacements in the context of the operator IC of the admissible time-varying domains discovered and
explored in [Lewis and Murray 1995; Hofmann 1997; Hofmann and Lewis 1996; 2001b] in the context
of the heat operator.

Remark 1.4. Assume that Q@ = Q, C RN+1is a Lip-domain, with constant M;. We define a (physical)
measure o on 0€2 as

do(X,Y,t):= \/1 + Vi (x, y, t)|2dx dydt, (X,Y,t)eo. (1-28)
We will refer to o as the surface measure on 9<2.

1C. Statement of the main result. Given ¢ > 0 and A > 0, we let

ALy =1(0,A0,0,—3A0% o) e R" "X Rx R" 'x R x R. (1-29)
We let
AzA(Zo, 10) = (Zo, to) © AZA (1-30)

whenever (Zg, to) € RVt Using the main result of [Nystrom and Polidoro 2016], see Lemma 4.12 below,
one can prove the following theorem.

Theorem 1.5. Assume that Q = Q. C RN+ is a (unbounded) Lip x -domain with constant M. Then
there exist A = A(N, M), 1 < A <oo,and c =c(N, M), 1 <c < oo, such that the following is true.
Let (Zy, ty) € 092, 0 < o9 < oo. Then

o(AL, A (Zo. 10), 92N Byo(Zo. 1)) < coo(A,

doon (Zo, 10), 02N By(Zo, o))

for all balls By(Zo, 1), (Zo, 1) € 92 such that By(Zo, fo) C Bagy(Zo, 10).
The following is the main new result proved in this paper.

Theorem 1.6. Assume that @ C RN*! is an (unbounded) admissible Lipy-domain with constants
(M1, M>) in the sense of Definition 1.1. Then there exist A = A(N, M1), 1 < A <00, and ¢ = c(N, My),
1<c<oo,andc=c(N, My, M), 1 <¢ <oo,and n=n(N, M, M), 0 <n <1, such that the following
is true. Let (Zy, ty) € 02, 0 < g9 < 00. Then

~_1< o (E) )1/’7 B (AL, A (Zos 1), E) B ( o (E) )"
c —— =< ~ = =cC ~ -
o (082N By(Zo, 1o)) (AL, A(Zo, 10), 02N By(Zo, ) 0 (082N By(Zo, 10))

whenever E C 3Q2NBy(Zo, fo) for some ball By(Zo, iv), (Zo, i) € 82 such that Bo(Zo, o) C By, (Zo, to)-
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Remark 1.7. A short formulation of the conclusion of Theorem 1.6 is that
w(AfQO,A(Zo, 1), ) € A (02N By (Zo, 19), do)
for all (Zy, tp) € 92, 0 < pg < 00, and with constants independent of (Zy, tp) and .

Remark 1.8. Theorem 1.6 states that a sufficient condition for the conclusion that a)(AjQO’ A (Zo, 1), ) €
Ao (02N By, (Zo, 1), do) uniformly is that & C RN+ is an (unbounded) admissible Lipg-domain with
constants (M7, M>) in the sense of Definition 1.1. In fact, the condition in (1-26) in Definition 1.1 is also
necessary in the following sense. Using [Lewis and Silver 1988; Hofmann et al. 2003] one can conclude
that there exists a function ¥ : R”~!x R — R which satisfies (1-3) for some M, but violates (1-4) for all

M, < 00, and such that the parabolic measure associated to the heat operator in
{0 X, 0 € R 2 > Yr(x, 1), (1-31)

denoted by wy, is singular with respect to the surface measure do; dt. Obviously this i also satisfies
(1-25) with constant M1, but violates (1-26) for all M, < co. Consider now the domain

Q= {(x, X, ¥s Ym» 1) € R¥"T | x> ¥ (x, 1)), (1-32)

which is constant as a function of (y, y,,). Using that solutions to Hu = 0 also satisfy Ku = 0, estimates for
nonnegative solutions to Hu = 0, see [Hofmann et al. 2004] for example, and Lemma 4.11, Theorem 4.8
and Theorem 4.9 stated below, it can then be proved that the Kolmogorov measure in €2 must be singular
with respect to the surface measure do defined in Remark 1.4.

1D. Discussion of the proof. To prove Theorem 1.6 it suffices to prove Theorem 5.1 below. To prove
Theorem 5.1 we use, and expand on, results from [Nystrom and Polidoro 2016] and we implement ideas
similar to the ideas in the recent paper [Kenig et al. 2016], where similar types of results are established
but in the context of elliptic measure and second-order elliptic operators in divergence form. The final
part of our proof of Theorem 1.6 is based on a crucial square function estimate, Lemma 5.3 below. The
lemma states that if u(Z,t) :=w(Z,t, S), where S C 92 is a Borel set, and if ¢ = ¢(N, M) > 1, then
there exists ¢ = ¢(N, My, M), 1 < ¢ < oo, such that

f/ (IVxul*8 +|Vyul*8 + (X - Vy — 3)w)|*8%) dZ dt < éo(Qo),
TCQ0

where T.g, is a Carleson box associated with cQg, where Q¢ C € is a (dyadic) surface cube, see
Section 5A and (5-13), and where § = §(Z, ¢) is the relevant distance from (Z, t) € 2 to 0€2. To prove
Lemma 5.3 and to enable partial integration, we use a Dahlberg—Kenig—Stein-type of mapping adapted to
the underlying group law,

(w’ wm: y7 yI’H7 t) e U - (wa wm + wa,,,w(wy y7 t)v yv yn‘la t)’ (1_33)
where
U={W.,Y,)=w, wn, y, ym, 1) ER" 'x Rx R" 'x Rx R | w,, > 0}. (1-34)
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Then u satisfies Ku = 0 in  if and only if v(W, Y, 1) = u(w, wy, + Pyy, ¥ (w, y, 1), y, ym, t) satisfies
Vi - (AVyv) + B - Vv + ((w, wy + Py, ¥ (w, y,1)) - Vy —9)v=0 inU. (1-35)

Using this change of coordinates, it turns out to be sufficient to prove Lemma 5.3 below for solutions to
the equation in (1-35) and our proof explores, as a consequence of our assumptions on ¥ and as discussed
in Section 2, that the coefficients A and B are independent of the variable y,, and that A and B define
certain Carleson measures on U; see (6-10) below.

1E. Organization of the paper. In Section 2 we give additional preliminaries and we discuss implications
of the assumptions in (1-25) and (1-26). In particular, considering a Dahlberg—Kenig—Stein-type of
mapping as in (1-33), (1-34), we prove, as a consequence of the assumptions on 1, that certain measures
defined based on v are Carleson measures; see Lemma 2.2. In Section 3 we discuss the Dirichlet problem
(1-11). In Section 4 we state, and elaborate on, some crucial estimates from [Nystrom and Polidoro 2016].
In Section 5 we prove Theorem 1.6, assuming the square function estimate referred to above. The proof
of the square function estimate is then given in Section 6.

2. Preliminaries

As discussed in Section 1A, see (1-14)—(1-17), the natural family of dilations for C, denoted by (3, ),0,
on R¥*!, and the Lie group on RN*! preserving Ku = 0 are different from standard parabolic dilations
and Euclidean translations applicable in the context of the heat operator. Using the notation of Section 1A,
the operator K is 8,-homogeneous of degree two, i.e., K 08, = r2(8,0 K), for all » > 0, and the operator
KC can be expressed as

m
K=>X}+Xo.
i=1
where
m
Xi=0y, i=1....m,  Xo=) xdy,—0, (2-1)
i=1
and the vector fields X1, ..., X,;, and X are left-invariant with respect to the group law (1-15) in the
sense that
X,(u((Z,f)o))=(X,u)((Z,f)o), l=0’7m’ (2'2)

for every (Z , 1) € RN*1. Consequently,
K@w((Z,)o )= (Ku)(Z, D)o ).

Taking commutators we see that [ X;, Xo]=0,, fori €{l, ..., m} and that the vector fields { X, ..., X,,, X0}
generate the Lie algebra associated to the Lie group (R¥*!, o). In particular, (1-9) is equivalent to the
Hormander condition,

rank Lie(X|, ..., X, X0)(Z, ) =N +1 forall (Z,1) e RV*!; (2-3)
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see [Hormander 1967]. Furthermore, while X; represents a differential operator of order one, 9y, acts as a
third-order operator. This fact is also reflected in the dilations group (§,),~o defined above.

2A. A symmetric quasidistance. Recall the notation ||(Z, 1)|| = ||(X, Y, )| for (Z,t)= (X, Y, 1) e RN *],
introduced in (1-18). We recall the following pseudotriangular inequality: there exists a positive constant ¢
such that

Z. O™ <ell(Z. DNl IZ, 0o (Z. DIl <c((Z. DI+ I(Z. D) (2-4)

whenever (Z, 1), (Z,7) € RN*L. Using (2-4) it follows directly that
IZ, D) o (Z, Dl <cl(Z,n" o (Z, D) (2-5)

whenever (Z, 1), (Z, 7) € RV, Furthermore, defining d((Z, 1), (Z, 7)) as in (1-19), and using (2-5), it
follows that
Z, D) o (Z, O ~d(Z, 1), (Z, D) ~(Z,t) ' o(Z,D)] (2-6)

with constants of comparison independent of (Z, t), (2 , 1) € RVNF1. Again using (2-4) we also see that
d(Z,0),(Z, 1)) <c(d(Z,1), (Z, 1)) +d(Z,1).(Z,1))) 2-7)

whenever (Z, 1), (Z, ), (Z, ) € RV*!, and hence that d is a symmetric quasidistance. Based on d, in
(1-20) we introduced the balls B, (Z, t) for (Z,t) € R¥*! and r > 0, and in (1-21) we introduced the
balls B, (z, t) for (z,1) e R¥~! and r > 0. Note that

BAZ,t)=(Z,1)o {(Z, 1) e RNV | W(Z, DI+ I1(Z, D)7 < 7],

N ) i (2-8)
B(z,t)=(z,)o{G D eRY G DI+ NGO <r}

We emphasize that throughout the paper we will stick to the convention that B, (Z, t), with a capital Z,
always denotes a ball in RN+1 and that B, (z, 1), with a lowercase z, always denotes a ball in RN-1,

2B. Geometry and Carleson measures. Assume 1 satisfies (1-25) and (1-26) for some constants 0 <
M, M, < oo. Let y € (0, 1) and consider the change of coordinates/mapping

(Wv Y7 t) = (wv wmv y’ ym’ t) e U — (wa wm +wamw(w; ya t)7 y’ Ym, t)

defined in (1-33), where P, ¥ (x, y, ) is defined in (1-23), and where U is defined in (1-34). This
mapping is a version of the Dahlberg—Kenig—Stein mapping used in elliptic and parabolic problems. The
purpose of this section is to prove properties of this change of coordinates assuming that i satisfies (1-25)
and (1-26). In particular, we prove that if ¢ satisfies (1-25) and (1-26), then certain measures, naturally
associated to Py, v, are Carleson measures. Throughout the section and the paper P will denote a
parabolic approximation of the identity chosen based on a finite stock of functions and fixed throughout
the paper. Let P € CJ°(B1(0, 0)), where B;(0, 0) C R¥~1, P > 0 be real-valued, and [ Pdzdt = 1. We
will assume, as we may by imposing a product structure on P, that P is even in the sense that

/x,-P(z,t) dzdz‘:/yl-??(z, t)dzdt:/tP(z,t) dzdt =0 (2-9)
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fori e{l,...,m—1}. Weset Py (z,1) = Pr(x, y, 1) = A~ 9 PP"x, A3y, A72¢) whenever A > 0.
Given P, we let P, define a convolution operator as introduced in (1-23). Similarly, we will by O,
denote a generic approximation to the zero operator, not necessarily the same at each instance, but
chosen from a finite set of such operators depending only on our original choice of P;. In particular,
Qu(z, 1) = Qu(x,y, 1) = A" 4PV x, A3y, A7%1), where Q € C°(B1(0,0)), [Qdzdt =0. We
first prove the following lemma.
Lemma 2.1. Let v be a function satisfying (1-25) for some constant 0 < M| < oo, let y € (0, 1)
and let Py, be defined as above for w, > 0. Let 0, ] > 0 be integers and let (¢1, ..., Pnm—1) and
(@1, ..., Im_1) denote multi-indices. Let £ := (0 + |¢| + 3|p| +260). Then
90+11+9]

dw? dwodyd

whenever (W, Y, t) € U.

(- Vy = 3)° Py, ¥ (w, y, 1)) | < cm, Dy~ Dw! =1y, (2-10)

Proof. We first consider the case 8 =1, ¢ =0, qg =0, 6 = 0. In this case, simply using that P, is an
approximation of the identity operator, we see that (1-25) immediately implies

9
—— Py, ¥ (w, y,1))| < c(m)y M. (2-11)
0w,
By similar considerations we have
0—1 89
Wn |5 Py, W (W, 3, D) < cOm, Dy My,
wm
NEL .
w5 Py, ¥ (w, v, 0)| < cm, Dy My, (2-12)
St 919l A
wy?! og Pt (w,y. )| < c(m, Dy My
y

whenever 0 > 1, |¢| > 1, |q~>| > 1. Furthermore,
(Y wm)(w - Vy - 3,)('wam¢(w, y, 1) = (Vwm)_l(w : Vy'P - at’P)yme(wa v, 0, (2-13)
and hence, again arguing as above, we can conclude that
wlilé\—l

W Vy — ) (P, ¥ (w, y, )| < c(m, Dy "2 M. (2-14)

Combining the above, the lemma follows. O

Lemma 2.2. Let  be a function satisfying (1-25) and (1-26) for some constants 0 < My, M, < o0, let
vy €(0, 1) and let P, ¥ be defined as above for w,, > 0. Let 6, 6 > 0 be integers and let (¢, . .., Pm—1)
and (¢, ..., Gm_1) denote multi-indices. Let € := (0 + |¢| + 3|p| +26). Let

2

90+191+19l
w3 aw dydr,  (2-15)

du=du(W,Y, 1) ::‘ (w-V, —8;)5(7>ywmw(w, . 1))

dw? dwedy?
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defined on U. Then
w(UNBy) <clm, 1, My, Myy?>2=0pa!

for all balls B, = B,(Zy, to) C RN*! centered on dU, r > 0.
Proof. As in the proof of Lemma 2.1, we first consider the case 6 =1, ¢ =0, (,5 =0, 6 = 0. Then

0 1
m(wa,,,)(w,y,t):Em(gywm)(w’ v, 1), (2-16)

where Q is such that [ w; Q. (w, y, t)dwdydt =0foralli € {1,...,m— 1}. Let

lgv,y,,)(lbv V. =y, y, 1) —yw,y, 1) =Py, (Vo) (w, y, ) (W —w). (2-17)
Then,

a
m(wamw)(w’ y7t)

1 _ 7 -
= Em‘fwl Y (W, ¥,7) Qyu, (W, 5,1) Lo(w, y, 1)) dwdydr

1 _ _ _

v - | -
< o /RNl(l(wﬁy,,)(w,y,t))Qywm((w,y,t) o(w,y,t))dwdydt
<cyyy(a,t,cwy) (2-18)

for some ¢ = c(m), 1 <c < o0o. Hence, using (1-26) we have
/o5

for all balls B, C R¥*! centered on U, r > 0. By similar considerations, using (1-26), we have

[

—— Py, ¥)(w, y,t) 1deydt§cy2// (yy (W, y, t, cwy))*w, ' dW dy dt
owy, UNB,

<cMoy?ri! (2-19)

2
w3 dw dy dt < c(m, D)y*r?™!,

39
W(wamW(w’ Y, t))

919! 2
[ s Py on| w3 aw ay e < cam. yy> 200
UNB, : (2-20)
/ / O 1,3, 00| W89 W dyd < cm, 1?5901,
UnB, | dy?
~ 2 ~ ~
J[ w9 =007y .y | il aw dydr < com ny? e
UnB,
for all balls B, C RN*! centered on U, r > 0, whenever 6 > 1, |¢| > 2, || > 1, 1. Combining the
above, the lemma follows. O

Remark 2.3. Using Lemma 2.1 we see that there exists y = y(m, M) € (0, 1) such thatif y € (0, p)
then

1 0 3
=1+ m(wamW)(w, v, =<3
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whenever (w, wy,, ¥, ym,t) € U. This implies, in particular, that the map (w, wy,, y, yu,t) € U —
(w, wy, + Pyy, ¥ (w,y,1),y, ym, t) is one-to-one.

2C. A Poincaré inequality. We introduce the open cube
Q:(0,0)={(Z.0)=(X, Y. 0) e RN | ;| <r, Iyl <7, |t] <r?}, (2-21)

where i € {1, ..., m}. Given (Z, ty) € RV*!, we let Q,(Zo, ty) = (Zo, to) o O, (0, 0). We will need the
following Poincaré inequality.

Lemma 2.4. Consider Q, := Q,(Zy, ty) C RNt and ler p, 1 < p < o0, be given. Let u be a (smooth)
function defined on Q, and let E denote the mean value of u on Q,. Then there exists a constant
c=c(N, p), 1 <c < oo, such that

// lu—E|"dZdt < c// (r?|Vxul? +r*? |Vyul? +r*? | Xo(u)|?) dZ dt.
T Q}"

Proof. Assume first that (Z, tp) = (0, 0) and let & be a (smooth) function defined on Q, (0, 0). Then,
using the mean value theorem and arguing, for example, as in the proof of Lemma 6.12 in [Lieberman
1996], we see that

// |l — E(, Q,(0,0)|”dZ dt
»(0,0)

< c(N, p)// (r?|Vxii|? + P |Vya|? +r*P)9,a|P)dZ dt, (2-22)

»(0,0)

where E (i1, Q,(0, 0)) denotes the mean value of & on Q, (0, 0). Next, consider a function u defined on
Q,(Zy, ty) for some (Zy, ty) # (0,0). Let u(Z,t) = u((Zy, ty) o (Z, t)). Then u is a function defined
on Q,(Zo, to), E(u, Q,(0,0)) = E(u, Q-(Zo, 10)) and (2-22) applies to u. Applying (2-22) to u# and
expressing the result in terms of u the conclusion of the lemma follows. (Il
2D. Interior regularity.

Lemma 2.5. Assume that Ku = 0 in By, = Bo,(Zo, to) C RNTL Then there exists a constant ¢ = ¢(N),
1 <c¢ < oo, such that

i) ¥ (supg, [ul)® < c// wPdz d,
BZr

(i) // |vxu|2dzmg%/f W2 dZ di,
Br r BZV

(iti) supg (r|Vxul+r?|Vyul| +r*|Xo)|) < csupg, |ul.
Proof. For (i) and (iii) we refer to [Lanconelli and Polidoro 1994]; (ii) is an energy estimate which can be

proved by standard arguments. O

Lemma 2.6. Assume that Ku =0 in By, = Boy(Zo, ty) C RN Let ¢ € Cy°(Bay) be such that 0 < ¢ <1,
¢ =1on By, and such that r|Vx¢| +r3|Vy | + 1?1 Xo(&)| < c(N). Leti € {1, ..., m}. Then there exists
a constant c = c¢(N), 1 < c¢ < 00, such that
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(i) /f |vx(ay,.u)|2;6d2dz5%// |dy,ul*¢* dZ dt,
BZr r BZr

(i) /f o ulPctdzde < 5 |x0(u)|2g2d2dz+i4f \Vyul?dZ dr,
BZV r BZV r

BZr
(iif) // |X0(u)|242d2dt552// \Vyul2dZ dt.
Bzr r BZr

Proof. Let

A1=// |VX(3yiM)|2§6dZdl, Az:/ |3yiu|2§4dzd;, A3=/ |X0(M)|2§2dZdt. (2-23)
BZV BZr Bzr

As it := d,,u solves Ku = 0, we see that (i) follows immediately from Lemma 2.5(ii) and its proof. To
prove (ii) we first note, integrating by parts,

t2= [[ @0 (Xota,0 - 8, (Xotw)e* dz as
By

=— // Xo(dy,u)(dyu)*dZ dt — 4/[ (By,1) (D, u) > Xo(¢) d Z dt
Bzr Bay
+ f[ (1) Xo(u)c* dZ dt +4f/ By, 1) Xo)230,,(0)dZ dt.  (2-24)
BZV BZr
Next, writing X (9,,u) = dy,(Xo(u)) and integrating by parts in the first term, we see that

AZZ// Xo(u)3y;x,~uC4dZdt+4// Xo(u)ax,-u§33y,-§dzdt—4// 3y, 1) (B, 1) Xo(¢) dZ dt
BZr BZV BZr

+// By, yu0) Xo () dZ dt+ 4[/ By, 1) Xo)s30,,(¢)dZ dt.  (2-25)
82y BZr
Using this we see that

C
Azs/f |VX(3y,-M)||X0(M)|C4dZdl+}3// XoG)| Vxulg> dZ dr
BZr BZr

C C
+—2// |ay,.u||vxu|;3dzc1t+—ff |3y,ul | Xo(w)|g3dZ dt.  (2-26)
r B2r r B2r

Hence, using Cauchy—Schwarz we see that

1 1
Az§er2A1+€A2+c(e,€,n)(—2A3+—4/ IVXu|2dZdt>, (2-27)
r r

BZr
where € > 0 and € > 0 are degrees of freedom. Furthermore, using the conclusion established in (i) we
see that

1 1
Ar <ceAy+EAr+E(e, €, n)(—2A3 +— / |Vxul>dZ dt). (2-28)
r r BZr

Part (ii) now follows by elementary manipulations. To prove (iii) we use the equation u = 0 and write

As=— Z// Xo(u) Dy, u)¢>dZ dt = Az + Azy + Az, (2-29)
i=1" 7B
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where
a=2y [ /B Xo() (3 1) 84y (0) dZ d,
i=1 2r
A ::Z/f Xo(dy,u)(Dy,u)e>dZ dt, (2-30)
i=1 " B
Az :=Z/f (By,u) (D, u)C* dZ dt.
i=1 BZr
Then

c(e, €)
2

\Vxul>dZ dt, (2-31)
BZr

|A31] 4 |Az3] < €As +Er2A; +

where € > 0 and € > 0 are degrees of freedom. To handle A3, we simply note, lifting the vector field X
by partial integration, that

2A3 =2 Z // 19, u|?¢ Xo(2) dZ dt. (2-32)
i=1 " /B
Hence,
A3 <€Az +Er*A| + 0(6’26) f |Vxul>dZ dt. (2-33)
r BZr
Combining (2-33) and (i), (ii) of the lemma, we see that (iii) follows. O

Remark 2.7. To construct ¢ as in the statement of Lemma 2.6, simply choose ¢ (Z, t) := g: ((Zo, ty)o(Z, 1)),
where ¢ € C°(B2, (0, 0)) is such that 0 < ¢ < 1, £ = 1 on B,(0, 0), and such that

rIVxZ|+r3|VyZ | +7%19,5] < c(N).
We can construct E in a standard manner by smoothing out the indicator function of say B3,2(0, 0).

Lemma 2.8. Assume that Ku =0 in Ba, = Bar(Zo, t0) C RVNTL Leti € {1, ..., m}. Then there exists a
constant c = c(N), 1 < ¢ < o0, such that

/f (r4|VX(8y,.u)|2+r2|Vyu|2+IXo(u)Iz)dZdt5%// \Vxu|>dZ dr.
B, r Bar

Proof. The lemma is an immediate consequence of Lemma 2.6. (Il

3. The Dirichlet problem

Let Q = Q4 C RV *! be an unbounded Lip-domain in the sense of Definition 1.1. We consider here the
well-posedness of the boundary value problem

{}CuzO in Q,

3-1
u=g¢ onoadf2. -1
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Note that we can without loss of generality assume that (0, 0, 0) = 0 and hence that (0, 0, 0, 0, 0) € 9€2.
To conform with the notation used in [Nystrom and Polidoro 2016] we let

Q =Qy, = {X. Y, 0) | x| <r% |yl <7 1t] <20 Jyml <7 Y(x, v, 1) <xp <4Mir} (3-2)

for r > 0 and where i € {1, ..., m — 1}. As outlined in Subsection 2.4 of that paper, using the Perron—
Wiener—Brelot method, the existence of a solution to the problem in (3-1) with €2 replaced by €2, can be
established. In Definition 3 of the same paper, we introduced what we here refer to as the Kolmogorov
boundary of 2,, denoted by dx €2,. The notion of the Kolmogorov boundary replaces the notion of the
parabolic boundary used in the context of uniformly parabolic equations and by definition 0k €2, C 9€2, is
the set of all points on the topological boundary of €2,, which is contained in the closure of the propagation
of at least one interior point in €2,. The importance of the Kolmogorov boundary of €2, is highlighted in
the following lemma; see Lemma 2.2 in [Nystrom and Polidoro 2016].

Lemma 3.1. Consider the Dirichlet problem in (3-1), with Q replaced by ., with boundary data
¢ € C(0R2,) and let u = u, be the corresponding Perron—Wiener—Brelot solution. Then

supg |u| <supy, o l¢|.
In particular, if ¢ =0 on dx 2, then u =0 in ;.

The set dg €2, is the largest subset of the topological boundary of €2, on which we can attempt to
impose boundary data if we want to construct nontrivial solutions to the Dirichlet problem in (3-1), with
2 replaced by €2,. The notion of regular points on 92, for the Dirichlet problem only makes sense for
points on the Kolmogorov boundary and we let 02, be the set of all (zg, #p) € dx 2, such that

lim u,(Z,t) = @(Zy, t for any ¢ € C(02,). 3.3
(Z,t)—>(Zo,10) (p( ) (p( 0 O) yo ( r) ( )

We refer to 0z €2, as the regular boundary of €2, with respect to the operator K. By definition, 0g 2, € 0k 2,.

Lemma 3.2 [Nystrom and Polidoro 2016, Lemma 2.2]. Let Q@ C R¥N*! be a Lip g -domain with constant M
and let 2, be as defined in (3-2). Then

RS2 = 0k 2,
i.e., all points on the Kolmogorov boundary of 2, are regular for the operator K.

Lemma 3.3. Let Q C R¥*! be a Lip g -domain with constant My, consider the Dirichlet problem in (3-1)
and assume that ¢ € C(32) N L*°(02) is such that p(Z,t) — 0 as ||(Z, t)|| — oco. Then there exists a
unique solution to the Dirichlet problem in (3-1) in Q such that u € C(Q), u = ¢ on 3. Furthermore,

lell L) < ll@llLe(g)-

Proof. This can be proved by exhausting €2 with the bounded domains €2,,, j € Z,, r; = j, for example,
and by constructing u as the limit of {u;}, where Ku; = 0 in €2,;, and with u; having appropriate data
on 852,/.. We here omit the routine details. |
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Remark 3.4. The operator adjoint to /X is

K* = 8x, — Y _xidy, + 0. (3-4)
i=1

i=1
In the case of the adjoint operator K* we denote the associated Kolmogorov boundary of €2, by 9z €,.

The above discussion, lemmas and Lemma 3.2 then apply to * subject to the natural modifications.

Lemma 3.5. Ler @ C RVt pe a Lip g -domain with constant M. Let ¢ € C(9S2) N L*°(0R2) be such
that o(Z,t) — O as ||(Z, t)|| — oo. Then there exist unique solutions u =uy, u € C(Q), and u* = Uy,
u* € C(R), to the Dirichlet problem in (3-1) and to the corresponding Dirichlet problem for K*, respectively.
Moreover, there exist, for every (Z,t) € 2, unique probability measures w(Z,t, ) and w*(Z,t,-) on 02
such that

u(z,r>=/ o(Z,1)do(Z, 1, Z,1), u*(Z,o:/ o*(Z, D) do (Z,1,Z,1). (3-5)
I 02

Proof. The lemma is an immediate consequence of Lemma 3.2. U
Definition 3.6. Let (Z,¢) € Q. Then w(Z, ¢, -) is referred to as the Kolmogorov measure relative to

(Z,t) and 2, and w*(Z, t, -) is referred to as the adjoint Kolmogorov measure relative to (Z, ) and 2.

3A. The fundamental solution and the Green function. Following [Kolmogorov 1934] and [Lanconelli
and Polidoro 1994], it is well known that an explicit fundamental solution, I', associated to K can be
constructed. Indeed, let

0 I, _ o p
B .= (0 0), E(s) =exp(—sB")

for s € R, where I,,,, 0, represent the identity matrix and the zero matrix in R™, respectively. Here * denotes
the transpose. Furthermore, let

1 i1, —L1i%1,
c(t) ::/ E(s) <I’" 0) E*(s)yds=| | ’
0 00 —El‘zlm §t3lm

whenever ¢t € R. Note that detC(¢) = %t“m and that

cort (i )
Sty Ty
Using this notation, a fundamental solution, with pole at (2 D), T(-, -, 7 , 1), can be defined by
I(Z,t,Z,0)=0(Z—E(t—1)Z,1—1,0,0), (3-6)
where I'(Z,¢,0,0)=01ifr <0, Z #0, and

(4mr)~N/2

F(Z,t,O, 0) - \/TC(;)

exp(—3(C(1)7'Z,2)) ift>0. (3-7)
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Here (-, -) denotes the standard inner product on R". We also note that

c(N)

TN forall (Z,1), (Z,7) e RN, 1 > 1. (3-8)
b o ’

T(Z,t,Z,7) <

We define the Green function for €2, with pole at (2 f) e Q, as
G(Z,t,Z2,1)=T(Z,t,Z,f)— f NZ,i,Z,D)dw(Z,t,Z,7), (3-9)
0Q
where I' is the fundamental solution to the operator C introduced in (3-6). If we instead consider (Z, t) €
as fixed, then, for (2, f)eq,

G(z,t,f,f)zr(z,t,zf)—/ Tzt Z,i)do*(Z,1,7,7), (3-10)
IR

where a)*(f, f,-) is the associated adjoint Kolmogorov measure relative to (Z 7) and Q. Given 6 €
Cg° (RVN*+1) we have the representation formulas

0(Z, z)=/ 0(Z,Hdw(Z,t,Z, f)+/G(z, t,Z,0)K0(Z,1)dZ di,
I

(3-11)
0(Z, f):/ 0(Z,7)dw*(Z,1,Z, f)+/G(Z, t,Z,1)K*0(Z,t)dZ dt
aQ
whenever (Z, t), (/Z\, 1) € Q. In particular,
/G(z,t,f, $YKO(Z, f)d?df:-/e(i, Hdw(Z,t,Z,7),
(3-12)

/G(Z, t. 7. f)ic*e(z,t)dzm:—/e(i, Hdo*(%,1,Z,7)

whenever 6 € CSO(RY T\ {(Z, 1)}) and 6 € CP(RNF1\ ((Z, F)}), respectively.

Remark 3.7. Recall that ¢ = 4m + 2. However, we note that in [Nystrém and Polidoro 2016] a different
definition of ¢ (¢ = 4m) was used. Hence, in this paper some statements containing g differ slightly
compared to the corresponding statements in that paper.

4. Estimates for nonnegative solutions

In this section we develop and state a number of estimates concerning nonnegative solutions, the Kol-
mogorov measure as well as the kernel function. Throughout this section we assume that Q = Q, C RN+!
is a Lipg-domain, with constant M1, in the sense of Definition 1.1. Given ¢ > 0 and A > 0 we let

Al =(A0.0,-3A0°,0,0°) eRxR"'x Rx R"'xR,
Apn =(A0,0,0,0,0) e Rx R 'x Rx R"'x R, (4-1)

Ay =(00,0,3A0%,0,—0") e RXR" 'x Rx R"'x R.
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Given (Zo, 1) € RV*! we let

A5\ (Zo, 10) = (Zo. 10) 0 Ay n Ap.a(Zo, 10) = (Zo, 1) 0 Ag .
Furthermore, given (Z, o) = (Xo, Yo, t0) = (x0, ¥ (x0, Yo, t0), Yo, to) € 92y and r > 0 we let 2, (Zo, t9) =
Qy - (Zo, to) be the set of all points (X, Y, t) = (X, Xy, ¥, Ym, t) wWhich satisfy the conditions

Ixi —x0il <r  |yi— Yo+t —to)xoi|l <r’ foriefl,...,m—1},
|t —tol <2r% | ym — Yom + (t — 10)¥ (x0, Yo, )| < 1, (4-2)
l//(x9 Yy, t) <Xm < 4M17" + w(x()v Yo, t0)~
Note that if we let (?, ?, ) :=(Xo, Yo, 10) "' o (X, Y, 1), and if we define
V(% 5. 7) =¥ ((x0, yo. f0) o (%, 7, 1)) — ¥ (x0, Yo, f0).

then

Q,(Zo, 10) = Qy (Zo, 1)) = Q2 (4-3)

b
with €2 defined as in (3-2). To be consistent with the notation used and the estimates proved in [Nystrom
and Polidoro 2016], we here simply note that there exists ¢ = c(N), 1 < ¢ < oo, such that

QN B, jc(Zo, to) C 2 (Zo, to) C RN Ber(Zo, to) (4-4)

for all (Zy, tp) € 02y, r > 0.

4A. The Harnack inequality. To formulate the Harnack inequality we first need to introduce some
additional notation. We let, for » > 0 and (Zy, tp) € RV*1,

0~ = (B(Ler, 1) NB(=Ler, 1)) x[=1,01, 0} (Zo, t0) = (Zo, 1) 08,(Q7), 4-5)

where e is the unit vector pointing in the direction of x,,, and B (%e 1, 1) and B(—%el, 1) are standard
Euclidean balls of radius 1 in R", centered at %el and —%el, respectively. Similarly, we let

Q= (B(3er. 1)NB(—3er, 1)) x [=1,11,  Qr(Zo. to) = (Zo, t0) 08, (Q). (4-6)
Givena, B,y,0 e Rsuchthat 0 <a < B <y < 6% we set
O (Zo. 10) = {(x. 1) € 0;,(Zo. 10) | to —ar? <t < 1o},
0; (Zo, t0) = {(x.1) € Q. (Zo, 10) | to — yr® <t <10 — pr?}.

In the following we will formulate two versions of the Harnack inequality. The first version reads as
follows and we refer to [Lanconelli and Polidoro 1994] for details and proofs.

Lemma 4.1. There exist constants ¢ > 1 and «, 8,y,0 € (0,1),withO <o < f <y < 02, such that
the following is true. Assume u is a nonnegative solution to Ku = 0 in Q, (Zy, ty) for some r > 0,
(Zo, to) € RNTL Then,

SUP G (Zg.t0) U = IG5t 70 1) U
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To formulate another version of the Harnack inequality we recall that the tool used to build Harnack
chains is that of K-admissible paths. A path y : [0, T] — RN+ g called K-admissible if it is absolutely
continuous and satisfies

m
%y(r) = Za)j(f)Xj()/(‘L’)) +A(t)Xo(y(r)) forae. t€l0,T], 4-7)
j=1
where w; € L%([0, T]) for j =1,...,m, and A are nonnegative measurable functions. We say that y
connects (Z, )= (X, Y, 1) eRV*l 10 (Z,1)=(X, Y, 1) eRN*L T <¢,if y(0)=(Z, 1) and y(T) = (Z, 7).
When considering Kolmogorov operators in the domain R x (Ty, Ty), it is well known that (2-3) implies
the existence of a K-admissible path y for any points (Z, 1), (Z,7) € RN ! with Ty <7 <t < T. Given
a domain  C R¥*!, and a point (Z, 1) € Q, we let Aiz.1) = Az,hH(2) denote the set

{(Z reQ ‘ J a K-admissible y : [0, T] — 2 connecting (Z, 1) to Z, f)},

and we define Az ) = Az, (2) = A(T)(Q) Here and in the sequel, Az ;)(2) is referred to as the
propagation set of the point (Z, ¢) with respect to 2. The presence of the drift term in K considerably
changes the geometric structure of Az ;) (€2) and Az ;)(€2) compared to the case of uniformly parabolic
equations. The second version of the Harnack inequality reads as follows and we refer to [Cinti et al.
2010] for details and proofs.

Lemma 4.2. Let Q C R¥*! be a domain and let (Zy, to) € Q. Let K be a compact set contained in the
interior of A(z,.1,)(S2). Then there exists a positive constant cg , depending only on 2 and K, such that

supg u < cx u(Zy, to)

for every nonnegative solution u of Ku = 0 in .

Remark 4.3. We emphasize, and this is different compared to the case of uniform parabolic equations, that
the constants «, 8, y, 8 in Lemma 4.1 cannot be arbitrarily chosen. In particular, according to Lemma 4.2,
the cylinder ér_(Zo, to) has to be contained in the interior of the propagation set Az, 1,)(Q; (Zo, to)).

Several arguments in [Nystrom and Polidoro 2016] involving the Harnack inequality explore that, by
construction,

yH0) = Al _pn(Zot0). ¥ (D) =AG_44Zo.10), T, 1], (4-8)
are K-admissible paths; see Lemma 3.5-Lemma 3.8 in [Nystrom and Polidoro 2016]. Here we state one
of the results established in the same paper, which will be used in the forthcoming sections.

Lemma 4.4 [Nystrom and Polidoro 2016, Lemma 3.9]. Let Q C RVt bea Lip g -domain with constant M.
Then there exist A=A (N, M), 1 <A <oo,andc=c(N, My), 1 <c<oo,andy =y (N, M), 0<y <00,
such that the following is true. Let (Zy, ty) € 02 and r > 0. Assume that u is a nonnegative solution to
Ku =0in QN By (Zy, ty) and consider g, 0, with0 < ¢ <o < r/c. Then

M(AE,F,A(ZO, 1)) < C(Q/é)yu(AZA(ZO, 1)),

_ —1,~ _ (4'9)
u(Az A (Zo, 10)) = c™ (2/0)" u(A, (Zo, 10)).
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Proof. Note that the lemma follows from the construction of Harnack chains along the paths in (4-8) and
from Lemma 3.8 in [Nystrom and Polidoro 2016]. For the details we refer to Lemma 3.9 in that paper
and to Lemma 4.3 in [Cinti et al. 2013]. O

Remark 4.5. Let @ ¢ RV*! be a Lipg-domain with constant M;. The constants A = A(N, My),
1 <A <oo,and c=c(N, M), 1 <c < oo, referred to in Lemma 4.4, are fixed in Remark 3.7 in [Nystrém
and Polidoro 2016]. In particular, these constants are fixed so that the validity of Lemmas 3.5-Lemma 3.7
in that paper are ensured. In the following we also let A and ¢ be determined accordingly.

4B. Holder continuity estimates and boundary comparison principles.

Lemma 4.6. Let @ C RVt be a Lipg-domain with constant M. Let (Zy, ty) € 0Q2 and r > 0. Let
€ € (0, 1) be given. Then there exists c = c(N, M1, €), 1 < c < 00, such that following holds. Assume

that u is a nonnegative solution to Ku = 0 in Q2N By, (Zy, ty), vanishing continuously on 02 N By (Zy, to).
Then

SUPQAB, . (Zo.t0) = € SUPQNB,, (Zo.10) U- (4-10)
Proof. This follows from Lemma 3.11 in [Nystrom and Polidoro 2016]. O

Lemma 4.7. Let Q C RVt e a Lipg -domain with constant M. Let A = A(N, M) and ¢ = c(N, M)
be in accordance with Remark 4.5. Let (Zy, ty) € 02 and r > 0. Assume that u is a nonnegative solution
to Ku =0in QN By (Zy, tg), vanishing continuously on 02 N By (Zo, ty). Then

u(Z, 1) < cu(Aj \(Zo, 10))
whenever (Z,t) € QN Bay/e(Zo, 1), 0 <o <r/c.
Proof. This is essentially Theorem 1.1 in [Cinti et al. 2013]. U

Theorem 4.8. Let Q@ C RV*! be a Lipg -domain with constant M. Let A = A(N, M) and ¢ = c¢(N, M)
be in accordance with Remark 4.5. Let (Zy, tg) € 02 and r > 0. Assume that u is a nonnegative solution
to Ku =0 in QN By (Zo, ty), vanishing continuously on 2 N By, (Zy, ty). Let oo =r/c,

m*t =u(A} \(Zo.19)), m~ =u(A, A(Zo, 1)), (4-11)

and assume m~ > 0. Then there exist constants cy =c1(N, M), 1 <c| <00, and co =cp(N, My,m*/m™),
1 < ¢y < 00, such that if we let o1 = po/c1, then

u(Z, 1) < cu(Ag a(Zo, 1)),
whenever (Z, 1) € QN Byje,(Zo, 1), for some 0 < o < 1 and (Zy, 1y) € 92N By, (Zo, 1o).

Proof. Using (4-3) and (4-4), it is easily seen that the theorem is a consequence of Theorem 1.1 in
[Nystrom and Polidoro 2016]. O

Theorem 4.9. Let Q@ C RVt pe a Lip g -domain with constant M. Let A = A(N, M) and c = c(N, M)
be in accordance with Remark 4.5. Let (Zy, ty) € 02 and r > 0. Assume that u and v are nonnegative
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solutions to Ku = 0 in 2, vanishing continuously on 02 N By, (Zy, to). Let oo =1/c,

mi = U(A;LO,A(ZO, 10)), my =v(A, A(Zo, 1)),

N ) ! o (4-12)
my =u(A, r(Zo,10), my =u(A, A(Zo, 1)),

and assume m|’, m, > 0. Then there exist constants ¢ = c{(N, My), c2 = c2(N, My, mf/ml_, m;/mz_),
1<cy,cp<o0,and o =o (N, M, m;r/ml_, m;/m;), o € (0, 1), such that if we let o1 = 0o/c1, then

v(Z.0) _wZ.D)| _ Cz(d«z, 0. (Z, f)))" V(40,4 (Zo. )
w(Z, ) wZ, Dl 0 w(Ag.a(Zo, 1))

whenever (Z, 1), (Z,7) € QN Byje,(Zo, fo), for some 0 < o < 01 and (Zo, fo) € RN By, (Zo, 1o).

Proof. Again using (4-3) and (4-4) we see that the theorem is a special case of Theorem 1.2 in [Nystrom
and Polidoro 2016]. |

4C. Doubling of parabolic measure and estimates of the kernel function.

Lemma 4.10. Let Q C RV*! pe a Lipg -domain with constant M. Let A = A(N, My) be in accordance
with Remark 4.5. Let (Zy, tg) € 0Q2 and r > 0. Then

o(A). A (Zo, 10), 02N B (Zo, 19)) = ¢ .
Proof. This is an immediate consequence of Lemma 4.6. ]

Lemma 4.11. Let Q@ C RVl e a Lipg -domain with constant M. Let A = A(N, M) be in accordance
with Remark 4.5. Let (Zy, tg) € 0Q andr > 0. Let w(Z,t,-) be the Kolmogorov measure relative to
(Z,t) e Qand Q2 and let G(Z, t, -, -) be the adjoint Green function for 2 with pole at (Z, t). Then there
exists c = c(N, My), 1 <c < oo, such that

(1) ¢ 'H172G(Z, 1, A (Zo. 10) < 0(Z, 1,02 N B, (Zo, 1o)),

2) w(Z,t,9QNB,c(Zo, t9)) < crf*G(Z, 1, A, £ (Zo, 10))
whenever (Z,1) € Q, t —ty > cr’.

Proof. This is a consequence of Lemma 4.1 in [Nystrom and Polidoro 2016]. However, we emphasize that
in that paper the definition of ¢ is different compared to the definition used in this paper; see Remark 3.7.
Based on the ¢ used in this paper, ¢ = 4m + 2, (i) and (ii) are the correct formulation of the corresponding
inequalities in Lemma 4.1 in [Nystrém and Polidoro 2016]. (Il

Lemma 4.12. Let Q C RVN*! be a Lip g -domain with constant M. Let A = A(N, My) be in accordance
with Remark 4.5. Let (Zy, tg) € 02 and r > 0. Then there exists c = ¢(N, M), 1 < ¢ < o0, such that

o(Af\ (Zo, 10), 02 N Bz (Zo, 1)) < co(A[y (Zo, 10), 92N B#(Zo., To))

whenever (Z(), lT()) €092, B;(Z(), lT()) C Br/C(Z(), 10).
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Proof. This is a consequence of one of the main results, Theorem 1.3, proved in [Nystrém and Polidoro
2016]. However, for the convenience of the reader we include here a proof using the results stated above.
Consider (Zo, 7o) € 9%, B (Zo, fo) C By/c(Zo, 1), where C = C(N, My) > 1 is a degree of freedom.
Choosing C large enough and using Lemma 4.11(ii) we see that

(AT (Zo. 10), 02N Bop(Zo. 10)) < EF172G (AT 5 (Zo. 10). Any; 5 (Zo. To))

for some ¢ =c¢(N, M), 1 <¢ < o0. Let

= G(AxA(ZO’ tO)a A;‘r/lo()(),A(ZO, tO))7 m- = G(A+A(ZO’ tO) Ar/lOOO A(ZO, tO)) (4'13)

By elementary estimates and the Harnack inequality, see Lemma 4.4, we see that

¢l <t 2mt <o, i ’m- <¢ (4-14)

for some ¢ = ¢(N, M), 1 < ¢ < oo. To prove the lemma we intend to use the adjoint version of
Theorem 4.8 and hence we need to establish a lower bound on r4~2m~. To establish this lower bound we
first use the adjoint version of Lemma 4.7 to conclude that there exists ¢ = c¢(N, M), 1 <c¢ < 00, such
that

SUP(Z,1ye@nB, ez G (AL A (Zo, 10), (Z, 1)) < em™ (4-15)
However,

2
Sup(z,;)egmg,/c(zo,,o) G(Aj:A(ZO, IO)v (Z’ t)) = G(A:A (Z07 tO)y A:_/(IOOC),A(ZO’ tO)) =>cr a (4'16)

by elementary estimates. In particular, (4-14)—(4-16) imply that

c'<mt/m™ <c¢ forsomec=c(N, M), 1 <c< oo.

Using this, the adjoint version of Theorem 4.8, and the scale invariance of Theorem 4.8, we deduce that
there exist ¢ = ¢(N, M;), 1 < ¢ < oo, such that

G(A]\(Zo. 10). Ay o (Zo. 1)) < EG(A[ 4 (Zo. t0), AS; \ (Zo. o). (4-17)

provided (Zy, fo) € 0, B (Zo, iy) C B, /c(Zy, to). Finally, using the (adjoint) Harnack inequality, we
here use the adjoint version of Lemma 4.4, and Lemma 4.11, we see that
F2G(A] (Zo, 10), A (2o, 1)) < 7™ G (A} 5 (Zo, 10), ATA(ZO» i0))

(4-18)
<c w(A+A(Zo, tg), 02N B; (ZO, tO))

for some ¢ = c(N, M;), 1 < ¢ < oo. Combining these, we can conclude the proof of Lemma 4.12. [

Lemma 4.13. Let Q C RV*! pe a Lipg -domain with constant M. Let A = A(N, My) be in accordance
with Remark 4.5. Let (Zo, to) € Q2 and r > 0. Let (Zy, fy) € 92 and 7 > 0 be such that B; (Zo, fo) C
B, (Zy, ty). Then there exists c = c(N, M), 1 <c¢ < 0o, such that

w(A ~A(Zo,to) AN B:(Z,1))

B A . | Z - 4-19
( A( 0 tO) [) = r—>0 w(AcrA(ZO’ tg), 02N B; (Z 1)) ( )
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exists for a)(A+ A(ZO, 1), ) a.e (Z,1) € dQNB; (Zo, fo), and
< w(Af \(Zo, 10), 920 Br(Zo, i) K (AL  (Zou i), Z,T) <c (4-20)

whenever (Z,1) € 320 Bx(Zo, fo).

Proof. Using the Harnack inequality, see Lemma 4.4, we see that the only thing we have to prove is
(4-20). To prove (4-20), consider (Z,1) € Q2N B;(Z), fo) and 7 < 7. Using Lemma 4.11 we see that
there exists ¢ = ¢(N, M), 1 < c¢ < o0, such that

Gl \Go i), ATNZ D) _wAf | (2o, T0), 99N B(Z, 1))

G(AL \(Zo,10), Az (2, 1) (AL (Zo, 1), RN B(Z, )
G(A = a(Zo. 1), A7 A (Z.D))
“G(AL A (Zo 10, ALNZ, 1)

Furthermore, using the adjoint version of Theorem 4.8 and by arguing as in the proof of Lemma 4.12, we

(4-21)

see that PO _ N
1 G(AG A (Zo, 10), AF A (Z, 1)) - G(Aj; A(Zo, f0), A \(Z,1))

G(AL A(Zo, 10), A a(Z,0)) — G(A], \(Zo,10), A7 \(Z, 1))

G(AL \(Zo. 1), A7 (2. 1)) iy G(AS \(Zo. 1), A7 A(Z, 1)) A
G(Al \(Zo.10), AT A (Z, 1)) —  G(A} \(Zo.to), A a(Z, 1))
Hence we can conclude that
0(Af \ o 10, 020B:(Z, 1) GAL , (Zo. T0), Ara(Z, 1) @23

o(AL A (Z0,10), 02N B:(Z, 1)) G(A], \(Zo, 10), Ara(Z, 1))
where ~ means that the quotient between the expression on the left-hand side and the expression on the
right-hand side is bounded from above and below by constants depending only on N, M;. Next, using the
boundary Harnack inequality for solutions to the adjoint equation, which is a consequence of the adjoint
version of Theorem 4.9, we deduce that

G(AJF; A(ZL i0), Ar,a(Z, 1)) G(AC, A(Zo, f0), Az sz a(Zo, 10))

—— — (4-24)
G(AS, A (Zo,10), A7 A (Z,1))  G(AT, A\ (Zo. 10), Arje,a(Zo, T0))
for some ¢ = ¢(N, M) > 1. Combining the inequalities in the last two displays we see that
w(A A(Z), ), QN BF(Z, 1)) G(A+ A(Zo, f0). Arje.a(Zo. fo)) 4-25)

w (A} A (Zo, 10), 9QN B3 (Z, l_)) G(A], A (Zo. 10), Azjen(Zo, 10))

for some ¢ = ¢(N, M) > 1. Finally, using this and arguing by the same principles, using the doubling
properties of @ and related estimates, we can conclude that

o(AL \(Zo.10). 02N BH(Z. 1) 1
w (A} A (Zo. 10), 9N B (Z, f)) (A A (Zo.10), 92N B (Zo, 1))
whenever (Z, 1) € B: (20, 10). Using this and (4-19), we deduce (4-20) by letting 7 — 0. [l

(4-26)
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Lemma 4.14. Let Q C RV be a Lip g -domain with constant M. Let A = A(N, M) be in accordance
with Remark 4.5. Let (Zy, ty) € 9Q and r > 0. Let (Zo, i) € Q2 and 7 > 0 be such that B:(Z, fo) C
B (Zy, to). Then there exist c = c(N, My), 1 <c <oo,and ¢ =c¢(N, M), 1 <c¢ < oo, such that

+
a)(Acr,A(ZO’ t()), E)~ - < ga)(Aj_F A(?O, ;0)’ E)
(AL, (Zo, 10), 990 Bx(Zo, ) |

oA (Zo. 1), E) <

7

whenever E C Bi(Zo, To).
Proof. Consider E C B;(Zo, fy). Then, by definition

w(AL | (Zo, 1), E) =/ K(AY \(Zo. o), Z, 1) dw(A], \ (Zo, 10), Z, 7).
E

r, r,
Hence, using Lemma 4.13 we see that

(A, A (Zo.10). 92N Bi(Zy. 10)) (A}, (Zo. o). E) ~ 0(A}, (Zo. 10). E),

which is the statement to be proved. (Il

5. Proof of Theorem 1.6

In order to introduce some efficient notation, we will use the terminology of spaces of homogeneous type
in the sense of [Coifman and Weiss 1971]. Indeed, assuming that Q& = Q,, C RN+1 is a Lip-domain,
with constant M, in the sense of Definition 1.1, we let

Y:=0Q= {(x,xm, Yy Ym 1) € RVF! \xm =Y(x,y, t)}.

Then (X, d, do) is a space of homogeneous type, with homogeneous dimension ¢ — 1. Furthermore,
(RN+1.d, dZ dt) is also a space of homogeneous type, but with homogeneous dimension q.

5A. Dyadic grids, Whitney cubes and Carleson boxes. By the results in [Christ 1990] there exists what
we here will refer to as a dyadic grid on X having a number of important properties in relation to d. To
formulate this we introduce, for any (Z,t) = (X, Y,t) e X and E C %,

dist((Z, 1), E) :=inf{d((Z, 1), (Z,©)) | (Z,7) € E}, (5-1)
and we let

diam(E) := sup{d((Z, 1), (Z, 1)) | (Z,1), (Z,7) € E}. (5-2)

Using [Christ 1990] we can conclude that there exist constants « > 0, 8 > 0 and ¢, < oo such that for
each k € Z there exists a collection of Borel sets, Dy, which we will call cubes, such that

Dy :={Q% C = |j e}, (5-3)
where J; denotes some index set depending on k, satisfying:
1 X= Uj Q’; for each k € Z.
(ii) If m > k then either Q' C Q% or Q7' N O} = 2.



1734 KAJ NYSTROM

(iii) For each (j, k) and each m < k, there is a unique i such that Ql; C Q7.

(iv) diam(Q%) < e, 27"

(v) Each Q’J‘. contains ¥ N B, (Z¥, t;.‘) for some (Z’J‘., t}‘) €.

v o({(Z, 1) € Q;? | dist((Z, 1), =\ Qj?) <027} <, 0f o(Qj?) for all k, j and for all o € (0, ).

Let us make a few remarks concerning this result and discuss some related notation and terminology. First,
in the setting of a general space of homogeneous type, this result is due to Christ [1990], with the dyadic
parameter % replaced by some constant § € (0, 1). In fact, one may always take § = %; see [Hofmann
et al. 2017, proof of Proposition 2.12]. We shall denote by D = ID(X) the collection of all Q%; i.e.,

ID::U[Dk.
k

Note that (iv) and (v) imply that for each cube Q € Dy, there is a point (Zg, 1p) = (X, Yp,19) € &
and a ball B,(Zg, tp) such that r ~ 27k ~ diam(Q) and

YXNB(Zg,t19) CO CENB,(Zg,1tg) (5-4)
for some uniform constant c. We will denote the associated surface ball by
Ao :=XNB.(Zg,tg), (5-5)

and we shall refer to the point (Zg, tp) as the center of Q. Given a dyadic cube Q C X, we define its y
dilate by
Y Q=X NBydiam)(Z9, to). (5-6)
For a dyadic cube Q € Dy, we let £(Q) =27, and we shall refer to this quantity as the length of Q. Clearly,
£(Q) ~diam(Q). For a dyadic cube Q € D, we let k(Q) denote the dyadic generation to which Q belongs;
ie., wesetk=k(Q) if Q € Dy, thus, £(Q) =279, Forany Q e D(X), weset Dg:={Q' €D | Q' C Q}.
Using that also (R¥*!, d, dZ dt) is a space of homogeneous type, we see that we can partition €2 into
a collection of (closed) dyadic Whitney cubes {/}, in the following denoted W = W(2), such that the
cubes in W form a covering of 2 with nonoverlapping interiors, and which satisfy

4 diam (1) < dist(41, X) < dist(/, X) <40 diam (/) (5-7)
and

diam(/;) ~ diam(/,) whenever I; and I touch. (5-8)
Given I € W, we let £(I) denote its size. Given Q € D(X), we set
W = {1 e W|1007'¢(Q) < £(I) <100¢(Q) and dist(1, Q) <100£(Q)}. (5-9)
We fix a small, positive parameter t, and given I € W, we let

I'=r'(z):=01+1)1 (5-10)
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denote the corresponding “fattened” Whitney cube. Choosing 7 small, we see that the cubes I* will retain
the usual properties of Whitney cubes, in particular that

diam(1) ~ diam(I'™) ~ dist(I'*, X) ~ dist(I, X).
We then define a Whitney region with respect to Q by setting

Ug:=J 1" (5-11)

Finally, given Q € D(X), y > 0, we let
Tp = int< U UQ,> (5-12)
Q’EDQ
denote the Carleson box associated to Q. Furthermore, given y > 1 we let
T,0:= int( U UQ> (5-13)
0:0'N(y Q)#2
denote the Carleson set associated to the y dilate of Q.

5B. Reduction of Theorem 1.6 to two key lemmas. Using Lemma 4.12, we see that to prove Theorem 1.6
it suffices to prove the following version of Theorem 1.6.

Theorem 5.1. Assume that Q@ C RNT! is an (unbounded) admissible Lip x -domain with constants
(M1, M>) in the sense of Definition 1.1. Then there exist A = A(N, M), 1 < A < o00,and c =c(N, M),
l1<c<oo,andc¢=c(N, M, Mp), 1 <¢ <o0,andn=n(N, M, M»),0 < n < 1, such that the following
is true. Let Qo €D, 00 :=1(Qg) and let w(-) := a)(AjQO’A(ZQO, to,), ). Then

1/
5_1(0(E)) ’7560(1’5)55(0(15))7
o(Q) w(Q) o(Q)

whenever EC Q, Q €D, O C Q.

The proof of Theorem 5.1 is based on the following lemmas.

Lemma 5.2. Let Q¢ € D and let w(-) be as in the statement of Theorem 1.6. Let k > 1 be given and
consider 8o € (0, 1). Assume that E C Q¢ with w(E) < §. If 8o = 6o(N, M1, k) is chosen sufficiently
small, then there exist a Borel set S C 02, and a constant ¢ = c(N, M), 1 < c¢ < oo, such that if we let
u(Z,t):=w(Z,t,S), then

k’c(E) <c // (IVxul?8 + | Vyul*8® + | Xow)|*8%) d Z dt.
Teg,

Here § =68(Z, 1) is the distance from (Z,t) € Q to X and T. g, is the Carleson set associated to ¢ Qg as
defined in (5-13).
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Lemma 5.3. Let Qg € D and let w(-) be as in the statement of Theorem 1.6. Let u(Z,t) .= w(Z,t, S)
and ¢ be as stated in Lemma 5.2. Then there exists ¢ = c¢(N, M, M), 1 < ¢ < oo, such that

/[ (IVxul8 + | Vyul*8® + | Xow)|*8%) d Z dt < éo (Qy).
TCQ0

The proof of Lemma 5.2 is given below. The proof of Lemma 5.3 is given in the next section. We here
prove Theorem 5.1, hence completing the proof of Theorem 1.6, assuming Lemmas 5.2 and 5.3. Indeed,
first using Lemmas 4.14 and 4.12 we see that it suffices to prove Theorem 5.1 with Q = Q. Then, using
Lemmas 5.2 and 5.3 we see that we can, for [ > 1 given, choose §o = §o(N, M1, ') so that if E C Qy
with w(E) < §p, then

0 (E) < é5(Qo) (5-14)

for some ¢ = ¢(N, My, M), 1 < ¢ < oo. In particular, we can conclude that there exists, for every € > 0,
a positive 8o = 8o(NV, M1, M>, €) such that

w(E) <o = cdow(Qo) = 0o(E) <€a(Qo), (5-15)

where we have also applied Lemma 4.10. Theorem 1.6 now follows from the doubling property of w, see
Lemma 4.12, and the classical result in [Coifman and Fefferman 1974].

5C. Good € covers. Recall that in the following w(-) == w (AT 2 Zoy, 10), ), QoeD, 0o :=1(Qo).

€Q0,
Definition 5.4. Let E C Qg be given, let ¢y € (0, 1) and let k be an integer. A good ¢y cover of E,
of length k, is a collection {(’)1}5‘:1 of nested (relatively) open subsets of Qg, together with collections
F = {Af},- C Qo, Aﬁ € D, such that

ECcO,CcOr1C---CO1 C Qy, (5-16)
o = Al (5-17)
Fi
w(ONATY < oA™Y forall A e Fiy. (5-18)

Lemma 5.5. Let E C Qg be given and consider €y € (0, 1). There exists y =y (N, M), 0 <y < 1, and
I'=T(N, M), 1 KT, such that if we let §g = y (€o/ F)k, and if w(E) < by, then E has a good €y cover
of length k.

Proof. Letk € Z, be given. Let y, 0 <y <« 1,and I, 1 < T, be degrees of freedom to be chosen
depending only on N and M. Let 8y = y (¢o/ I")*. Suppose that w(E) < 8. Using that w is a regular
Borel measure, we see that there exists a (relatively) open subset of Qy, containing E, which we denote
by Ok41, satisfying @ (Ok41) < 2w (E). Using Lemma 4.10 and the Harnack inequality, see Lemma 4.4,
we see that there exists ¢ = c¢(N, M), 1 <c¢ < 00, such that

k
©(Or1) = 280 = B (Qo) = %(%") ©(Q0) (5-19)
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ifwelety :=2/c. Let f € L! (T, dw), and let

loc

1
My,(f)(Z,t) :==sup —~~/ fdw,
’ ®oB.(Z,0) Js.an
where B = {B,(Z,1) | (Z,7) € 0Q, (Z, 1) € B.(Z, )}, denote the Hardy-Littlewood maximal function
of f, with respect to w, and where the supremum is taken over all balls Br(z 1), (Z , 1) € 92, containing
(Z,1t). Set

Ok :={(Z,1) € Qo | Mu(loy,,) = €0/c},

where we let ¢ = ¢(V, M1), 1 < ¢ < oo, denote the constant appearing in Lemma 4.12. Then, by
construction, Oy C O, O is relatively open in Qg and Oy, is properly contained in Qg. As w is
doubling, see Lemma 4.12, (2Qy, d, ®) is a space of homogeneous type, weak L' estimates for the
Hardy-Littlewood maximal function apply and hence

- k—1

0(0) <& = 0(O) < %(6—‘)) w(Q0). (5-20)
€0 C

if we let I' = ¢¢ and where ¢ = ¢(N, M), 1 < ¢ < o0o. By definition and by the construction, see

(1)—(iii) on page 1733, Qg can be dyadically subdivided, and we can select a collection F; = {Af }i C Qo,

comprised of the cubes that are maximal with respect to containment in O, and thus Oy := |, Af. Then,

by the maximality of the cubes in Fi, and by the doubling property of w, we find that

0(Orr1 N AN <ow(AF)  for all AF € 7. (5-21)

We now iterate this argument, to construct O;_; from O; for 2 < j < k, just as we constructed Oy
from Oy 1. It is then a routine matter to verify that the sets Oy, ..., O, form a good € cover of E. We
omit further details. U

Remark 5.6. From now on we fix a small dyadic number 1 = 27%, where k is to be chosen. Given Q € D,
we consider the ko-grandchildren of Q, i.e., the subcubes Q' C Q, Q' € D, with length [(Q") = nl(Q).
We let é denote the particular such grandchild which contains the center of Q, (Zp, tp).

Remark 5.7. Given Q € D we let A}, = A}, ,(Zg, 10) and A'é = A;(é)’A(Zé, 15), where 0 was
defined in Remark 5.6.

Remark 5.8. Consider the special case A := Aﬁ € Fy; i.e., A is a cube arising in some good €( cover.
‘We then set Aﬁ = A, where A is defined as in Remark 5 .6, and we define

o= Al (5-22)
Aler

Remark 5.9. Let E C Q and consider the setup of Lemma 5.5. We note that for every (Zy, ty) € E we
have (Zy, t9) € O; foralll =1, 2, ..., k, and therefore there exists, for each /, a cube Aﬁ = Af(Zo, to) € F;
containing (Zy, tp). With (Zy, tp) fixed, we let Af = Af(Zo, tg) denote the particular ko-grandchild, as
defined in Remark 5.6, of Af that contains (Zo, ).
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5D. Proof of Lemma 5.2. To prove Lemma 5.2, let €y > 0 be a degree of freedom to be specified below
and depending only on N, My, let 8y = y (€o/ I')* be as specified in Lemma 5.5, where k is to be chosen
depending only on N, M and k. Consider E C Qg with w(E) < §yp. Using Lemma 5.5, we see that E
has a good € cover of length £, {(’)1}5‘:l with corresponding collections F; = {Aﬁ},- C Qo. Let {E’V)l}le
be defined as in (5-22). Using this good €g cover of E we let

k

F(Z,0):=) x5, \o,(Z: 1),
j=2

where x. \o, is the indicator function for the set x5, \o,- Then F equals the indicator function of
some Borel set S C X and we let u(Z, t) := w(Z, t, S). Consider

(Zo,tp) e E and anindex!/ e {l,...,k}.
In the following let
Aﬁ € JF; be a cube in the collection F; which contains (Z, ).
Given kg € Z we let

Aﬁ be the ko-grandchild of Aﬁ which contains (Z Alrt Aﬁ)-
With (Z, ty) and Ag fixed, we let Af be defined as in Remark 5.9; i.e., we let

&f be the kp-grandchild of Aﬁ which contains (Z, ).

Finally, we let
Aﬁ be the ko-grandchild of Af. which contains (Z i, 1x1).

Hence, based on (Zy, #p) € E and an index [ € {1, ..., k}, we have specified Aﬁ, Aﬁ, Af and Af satisfying
Al c Al Al c Al c Al
We let
Azg =A" (&), A Za 13D, A+ = A+Z(A1) A(Zar 130 (5-23)

We first intend to prove that there exists 8 > 0, depending only on N, My, «, such that if €y and n = 27%
are chosen sufficiently small, then

Iu(A§4) - u(A}_)I > B. (5-24)
To estimate u(AT ,) we write
u(A* )= F(Z,)dw(AY,,Z, 1)+ | F(Z,1)dw(AT,, Z,t)=:14+1I. (5-25)
A7 Jogal A Al Al

Using Lemma 4.6 and the definition of AE,_ we see that

1| < w(AT,, Qo\ A <en” (5-26)
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for some ¢ = c(N, M), 0 =0 (N, M) € (0, 1). Furthermore, by the definition of F we see that

I =1h+1L+ 115, (5-27)

where

l
11 = Z fA] 13, o, da)(Azﬁ, Z, 1),

Ih= Z/ 13, 1\ojdw(AA,,Z 1), (5-28)

Jj=l+2

1113 ::/. 10[\01+1 da)(AA,,Z, lT)
Al

i

Note that if j </, then Aﬁ C O, COjand ((51-_1 \Oj)N Aﬁ = @. Hence 11} = 0. Obviously,

k k
Ll < ) oA A,,((’)] NONNA) <cy D w(A A,,(OJ 1\ O)NA, (5-29)
j=l+2 j=l+2

where we in the second estimate have used the Harnack inequality; see Lemma 4.4. Consider (Z, 1) €
((~9j_1 \Oj)N Af.. Then, using Lemma 4.13 we have

w(AL,, 0QNB,(Z, 1))

K(AY,, Z,7):= lim ‘ — 5-30
(Ap» 2 1):= Iy w@RQNB(Z, 1)) (-30)
exists for w a.e. (Z,7) € Aﬁ, and
c —
K(AT,,Z, 1) < whenever (Z,7) € Al. 5-31
( Al ) < oD (Z,1) i (5-31)

In the last conclusion we have also used Lemma 4.12. Using these facts, and using the definition of the
good €g cover, we see that

k
C ~
Ll < —"~ > o((O;-1\0)NA)
@A) 55,
c k
<—1= ) w0 NA) < Z el Al < cpeo. (5-32)
- l J i/ = ] 0 n
w(A) 57, (A)] =,

To estimate the term 113 we first observe that A’ N (’)1 Al by the definition of (91 Hence,
Il =w(Ag), AL NO) —w (AL, AINO1y1)

=w(AT Aﬁ)—a)(Az,_, ANy ) = I3 + 1T3,. (5-33)

Al

Arguing as in (5-32), we see that

|13 <

! l)wmé NOu1) < Cyeo, (5-34)

i
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by the construction. Putting these together we can conclude that so far we have proved that
u(AL) = I31] < en” + cyeo, (5-35)
and it remains to analyze /I3;. However, using Lemma 4.10, and elementary estimates, we see that there

exists ¢ = ¢(N, M), 1 < ¢ < oo, such that

¢! <Il; <1 — &L

Combining the last result and (5-35) we can conclude, by first choosing n = n(&N, M) small and then
€y = €o(N, My, n) small, that

el < u(Azﬁ) <1-3¢t (5-36)
To estimate u(Agé) we write
u(AJArg):/QO y F(Z, t_)da)(Azé,Z, z‘)+/ﬂ. F(Z, t')da)(Agﬁ,Z, fy=:1+II. (5-37)
We splitﬁ as L
I =11, +1I,+1I3, (5-38)

where

)
I := Z/Al 13, 1o, da)(Azé, Z.1,),
j=27 8

k
=Y /A o, o, do(A%). Z.D). (5-39)
j=l+2 i

TTa — ~ + 7z
113 — Al 101\01+1 dw(AAf’ Z,t)

We can now conclude, by essentially repeating the estimates in the corresponding estimate for u(AJA“,_)
above, that l
|+ 11|+ 2] < cn’ 4 cy€o. (5-40)

Note that the key estimate is now the kernel estimate

whenever (Z,7) € Al, (5-41)

which again follows from Lemma 4.13. We now focus on 11 3 and we observe that

M3 =w(AL, AjN O\ Or1)) =oAL, (AIN A\ Oy), (5-42)

and that either (A! N Al) = @ or Al = Al 1f (A!n Al) = @, then I13 = 0. If Al = Al then
I3 =w(A}, A) — (AL, AL\ O1yy) =113, +1T5,. (5-43)
Also in this case
ﬁ32 = Cy€0,
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and we are left with I7 31. However, by Lemma 4.6 we deduce that

Ty = (A%, A = 1—cn’,

where ¢ = c¢(N, M), o =o (N, M) € (0, 1). Combining our estimates we find that either
0<u(AL) <en” +cepep or u(AL) = 1—(en” +cyeo). (5-44)
Combining (5-36) and (5-44) we can conclude, in either case, that

u(AL) —u(At)1 = 367 —en” +cpe0 = 3¢ (5-45)

by first choosing n = n(N, M) small and then choosing €y = €y(N, M1, ) small. Hence the proof of
(5-24) is complete.

Next, using (5-24), Lemma 2.5(i), an elementary connectivity/covering argument and the Poincaré
inequality, see Lemma 2.4, we see that

B [[ (VxS IS 4 X0 P80 az i,
Wl

where VT/A( is a natural Whitney-type region associated to Af., 8 = 8(Z,t) is the distance from (Z, t)
to X, and ¢ = c(N, M1, n), 1 <c¢ < oco. Consequently, for (Zy, #9) € E fixed we find, by summing over
all indices i, [, such that (Zy, ty) € Aﬁ, that

C_lﬂzk < Z (f/~ (|vxu|282—q+|vyu|286—q + |X0(M)|284_q)d2d[). (5—46)
i,1:(Zo,to)eA! WAf

The construction can be made so that the Whitney-type regions {WAI.} have bounded overlaps measured
by a constant depending only on N, M, and such that W C T;, for some ¢ = c¢(N, M), 1 <c¢ < o0,
where T.¢, is defined in (5-13). Hence, integrating with respect to do, we deduce that

¢ 'B%ko (E) < (/f (IVxul?8 + | Vyul*8® + | Xow)|*8°) d Z dt), (5-47)
T.q,
where, resolving the dependencies, ¢ = ¢(N, M), 1 < c¢ < oco. Furthermore,
K~ log(8o)
log(ep)”’

where 1 and €y now have been fixed, and &g is at our disposal. Given « we obtain the conclusion of the
lemma by specifying g = 8o(N, M1, k) sufficiently small. This completes the proof of Lemma 5.2.

6. The square function estimate: proof of Lemma 5.3

The purpose of the section is to prove Lemma 5.3. Hence we consider Qg € D(X), we let o9 =1(Qo),
u(Z,t) := w(Z,t,S) and we let ¢ be as stated in Lemma 5.2. We want to prove that there exists
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¢ =c¢(N, My, M), 1 <c¢ < o0, such that

1

// (IVxul?8 + | Vyul*8® + | Xow)|*8?) dZ dt < éol ™. (6-1)
TfQo

However, using Lemma 2.8, and a simple covering argument, we first note that to prove (6-1) it suffices
to prove that

f/ \Vxu|?§dZ di <ol (6-2)
TCQ0

for potentially new constants ¢, ¢ having the same dependence as the original constants ¢, ¢. Inequality
(6-2) will be proved using partial integration. To enable partial integration, we perform the change of
variables

(W, Wy, ¥, Yms 1) €U = (W, Wiy + Py, W (W, ¥, 1), Y, Yins 1) (6-3)
where
U={W.Y,)=w, Wy, y, ym. ) ER" ' x Rx R" ' x R x R | wy, > 0}. (6-4)

Then, by a straightforward calculation we see that u satisfies u = 0 in Q if and only if v(W, Y, t) :=
u(w, Wy, + Pyy, (w,y,t),y, ym, t) satisfies

Vi - (AVwv) + B - Viyv + (W, Wy + Pyu, ¥ (w, y,1) - Vy —3)v=0 inU. (6-5)

Here A is an m x m-matrix-valued function, B : U — R™ and

1+ |V Py, ¥

a = ,
" (14 By Py, W)
Sy Pyw, ¥ : (6-6)
Ajm =dm,j = — , j=1,...,m—1,
(1 + 0w, Pyw, ¥)
aij =8, i,jefl,....m—1},
and
_ awmwm wam'(/f ((w’ W + wamll/(w, y5 t)) . VY - al)(wamW)
" (140w, Pyu, V) (1+ 0w, Pyu, ) * .
awm wj wamw .
bj = , j=1,....,m—1.
(1 + 0w, Pyw, ¥)
Choosing y = y (N, M1), y > 0, small enough, see Remark 2.3, we have
m
(N, M) M ER < Y ai j(W, Y, 0&& < (N, MDIEP,  ¢(N, My) = 1, (6-8)

ij=1

forall (W, Y, 1) e RV*! and for all § € R”. Let 6, 6 > 0 be integers, let (¢1, . .., dm—1) and (@1, ..., Pm_1)
denote multi-indices and let £ = (6 + |¢| + 3|q~5| + 2§). Then, using Lemma 2.1 and the fact that i is
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independent of y,,, we deduce that

90+191+19l 5 ,
‘—6 —(((w, Wi + Pyw, ¥ (w, y, 1)) - Vy —8;) (AW, Y, t)))‘ <c(m,l,y)w, M,
dwf dw?dy?

) 6-9
‘ §0+o1+18| (©-9)

m(((wv W + waml/f(w, Y, t)) : VY - al‘)e(B(Wa Y7 t)))' = C(m, l7 V)WZI_IMl
W, 0w*oy

whenever (W, Y, t) € U. Similarly, using Lemma 2.2 we see that if we letdu; =du; (W, Y, 1), i € {1, 2},

90+191+19l p 2
di :=‘—~(((w,wm+wamt/f(w,y,t))-Vy—8t) (AW, Y, 1)) wy,” dWdydt,
dwl dw?ay?
90+1|+d] P 2
d,u2:=‘—~(((w,wm—l-wamW(w,y,t))-Vy—al) (BW.Y,1)| wy ' dWdydt,
dwl dw?y?
be defined on U, then
11 (U N By (wo, 0, Yo, 1)) + w2 (U N By (wo, 0, Yo, 1)) < c(m, 1, y, My, Mp)o?™! (6-10)

whenever (wo, 0, Yo, 1)) € U, ¢ > 0, and B, (wy, 0, Yo, tp) C RN+ We emphasize that
A and B are independent of y,,. (6-11)

As the equation Ku = 0 and the statements in (6-9)—(6-11) are invariant under left translation defined
by o, we can in the following without loss of generality assume that

(Zgy- tgy) = (X0 ¥ (X0 Y00 100)- ¥0o: Ym.00: 0y) = (0.0.0,0.0). (6-12)

Furthermore, given ¢ > 1 we claim that there exist « = «(N, ¢) > 1 and 8 = B(N, My, ¢) > 1 such that if
we define

Oo={(W, Y, 1) = (W, Wy, y, ym, 1) | lw| < @0, 0 < wy < Boo, Y] <a’0f, It] <a?0f}, (6-13)

then
Tego C{(w, Wi + Pyu, W (W, ¥, 1), Y, Ym: 1) | (W, W, ¥, ym. 1) € Do} (6-14)

In the following we let 20 be defined as in (6-13) but with gg replaced by 2¢¢. Letting (Op)* and (200p)*
denote the sets we get if we reflect Oy and 20y, respectively, in the boundary dU, in the following we let
¢ € C°(200 U (200)*) be such that 0 < ¢ <1, ¢ =1 on O U, and such that

00l Vel + 03| Vy e+ 05l (W - Vy —3)(0)] < ¢(N, My). (6-15)
Letting v(W, Y, t) = u(u), Wy + Py, U (W, y, 1), Y, Ym, t), where u(Z,t) =w(Z,t, S), we see that

[v(W,Y,t)] <1 whenever (W,Y,t) eU. (6-16)
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Using (6-10) we see that
//ZD (W, Y, 1> dui(W, Y, t) <c(m,l,y, My, M, i)Qg_l, i e{l1,2}. (6-17)
0
To prove (6-2), and hence to complete the proof of Lemma 5.3, it suffices to prove that
f/ﬂ IVwo(W, Y, 0)[2¢2w,, dW dy dt < ¢(N, My, Mol ™" (6-18)
0
The rest of the proof is devoted to the proof of (6-18) and in the proof of (6-18) we will use the notation

T, := f/ IViwv 22w, dW dy dt,
2o (6-19)
2
T = //D |((w, win + Pyu, ¥ (w, ¥, 1) - Vy — 8) )| ¢ w;, dW dy dt.
2Ly

Inequality (6-18) is a consequence of the following two lemmas.

Lemma 6.1. Let Oy, ¢ and v be as above. Then there exists, for € > 0 given, ¢ = ¢(N, My, M>, €),
1 <c¢ < o0, such that

T < cgg_l +€Ts.

Lemma 6.2. Let Oy, ¢ and v be as above. Then there exists c = ¢(N, M, M), 1 < c¢ < 00, such that

1

T, <c(Ti+of ).
6A. Proof of Lemma 6.1. Using (6-8) we see that
m
Ty<cl, I:=) I
ij=1

where

1

I = 2// <—>a,~,j(3wiv)(8wjv)wm§2dW dy dt.

200 \9m,m
Assume first that i # m. Then, integrating by parts in /; ; with respect to w; we see that

1 2

I,',/' =-2 vawi(ai,/awjv)wmg dw dY dt

. 200 \9m,m ’
1
— 2[/ B <—>a,-,ju(aw,.u)w,,,;2dw dy dt
200y Am,m ’

—4/f (“”f >u(awjv)wmgaw,.; dW dY dr.
200 \%m,m
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Similarly we see that

Iy, _—11m2 ( )(w 5, Y, Hhv(w,$,7Y, t)(8w,v(w 8,7, t))8;‘ dwdY dt
-0 Doﬂ{wm—é} Am,m

= G)
200 \%m,m
// awm( )am,,v(awjv)wmgdeder
200y Am,m
—2// ( )v(8 v){ dw dY dt
200 \%m,m
—4// ( )v(a V)W 0y, L dW dY dt.
200 \%m,m

I=§irr(1)lf+lz+13+14+15,

VO, (@m, jOu; Vw2 dW dY dt

Combining the above,

where
I} = _22/ (a’""' )(w, 8, Y, Hyo(w, 8, Y, 1)(Bu,v(w, 8, ¥, 1)8¢> dw dY dt,
F 200N {wm=38} \%m,m
1
I = 42[/ ( )vawi(ai,jawjv)wmgzdeYdt,
i 2000 \9m,m
1
L:i=-2 3w, [ —— ai vy, 2dw dy dr,
=22 [ (G Joarens

Iy :_42//5 (a )u(a V)W By, & AW dy dt,
Is =—22//2D0(amm)v(aw,v)g dW dydt.

Using (6-9), Lemma 2.5(iii) and (6-15) we see that

117 < col ™. (6-20)

We next analyze I,. Using the equation

12=2f/ ( ! )v(((w,wm+wam1//(w,y,t))-Vy—8,)v)wm§2deydt
200 \9m,m

1
+2 // ( )vb,-a [vwmg‘dedydt
Xi: 200 \%m,m v

=: I + I,

we have

12 12
Izzsc<f/ v2|B|2wm¢2deydt> (// |vwv|2wmc2deydr) < el +eTy
ZDO 2‘:’0
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by (6-10), (6-17) and where € is a degree of freedom. Furthermore, integrating by parts with respect to
w,, we see that

Ly = gl_r)r(l) By + b + iz + big + s,

where

1
Dy = / ( )v(((w, Wi + Py, ¥ (w, y, 1)) - Vy — 8,)v)8%¢* dw dY dt,
200N {w,, =8}

Am,m

1
bip=— /[ awm( )v(((w, Wi + Py, ¥ (w, y, 1)) - Vy — 8 )v)wic? dW dY dt,

20y Am,m

1 2.2
Lz =— B, (W, W + Pyu, ¥ (w, y, 1)) - Vy — 8, )v)w,, s> dW dY dt,
20y

Am,m

Am.m

1
1214:_//D ( )vawm(((w,wm—i-wamw(w,y, 1) - Vy — &) v)wi¢*dW dY dt,
2Ly

bs :—2// ( : )v(((w,wm+wamt/f(w,y,t))-Vy—8,)v)w31§8wm§ dw dy dr.
200

Am,m

To estimate 15311 we again have to use Lemma 2.5. Indeed, using that

U(W, Y? t) =u(w7 wm + wamW(w’ y’ t)a ya )’m, t) = l/l(.x,.xm, y’ yma t)

we see that

(W, w + Py, ¥ (w, y, 1) - Vy = 8 )v
= (X - Vy = 3)u(X, Y, 1) + 8y, u(X, Y, ) ((w - Vy = 8) (Pyu, ¥ (x, ¥, 1))

Hence, using (6-9), Lemma 2.5(iii) and Lemma 2.1 we first see that
(W, W + Py, ¥ (w, y, 1)) - Vy — 3)v| <872

whenever (W, Y, t) € 200 N {w,, = §} and then that |I§11| < cgg_l. Focusing on 1,1, we see that

8 am m
L = —/fD (’”’g—*)v(((w, Wi + Py, ¥ (w, y, 1)) - Vy — 8 )v)wic* dW dy dt
2o

am,m

50(// IE)wma,,”,,Izvzwmdeydt)Tzl/2
200y

<c(©)od ™ +eb,

by (6-10), (6-17), and where € is a degree of freedom. To continue we see that

_ 1 _ 2 .2
bis = - v(((w, wi + Pyu, ¥ (w, y, 1)) - Vy = 0) 3w, v)wy, s> dW dy dt
2000 m,m
1
—// ( )v(1+8meyme(w,y,t))(aymv)w,zng“dedydt
200,

Am.m

=: D141 + D142.
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To estimate I>140 We write

1 1
hio=—> / / ] ( )(1 B, Py ¥ (0, 3, D) By v w2 L2 dW dy dt
2Lg

Am,m

1
:f/ ( )(1+ameywm¢(w,y,z))vzwﬁ,;aym;dwfzydt,
200y

Am.m

where we have used that i is independent of y,,. In particular, |I5142| < cgg -1 Focusing on 1541,

)v(awmv)wig‘dedy dt

m,m

1
D141 =// ((W,wm+wa,,,1/f(w,y,t))'VY—31)(
200 a

+/f ( 1 )(((w,wm-l-waml//(w,y, I))VY_at)v)(awmv)w;i;dedydt,
200y

Am,m

+2// < 1 >v(8w,,,v)w31§((w, Wi + Py, ¥ (w, y, 1)) - Vy — 3:)4“ AW dy dt
ZDO

Am,m
=: D411 + D1a2 + D413,
Again using (6-10), (6-17), (6-9), and elementary estimates we see that
—1
|Liatt] + 1413l < c(€)of ™~ + €T,

where € is a degree of freedom. Furthermore,

D412 = —1I13.

Finally,

1
1215:_// ( )(((U), wm+wamv/(wv y,l))Vy—f)t)vz)wi{amedeydt
200y

Am,m

=// ((w,u}m—i-waml/f(w,y,l))-Vy—a,)( )vzwfngawm;deydt
200y

Am,m

1
(G ) PR+ P00 ¥y = 000 )00 W dy
200,

Am,m

1
+// < )vzwig((w, wm+wam¢(W, yat))'vY_at)awmé‘deydt
200y

Am,m
=: D51 + D52 + Ds3.

Using (6-9), (6-10), (6-17), (6-12), (6-15), and by now familiar arguments, we see that |I515| < cgg_l.
Combining the above, we can conclude that

|L) < 13|+ [ Bi2] + | 13| + [ Ta1a] + | I1s| + | T2z
<c(e, €)Qg_1 + €Ty + €T,
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where € and € are degrees of freedom. Similarly,

|13+ 14| < c(e),gg_1 +e€T),
and we can conclude that
-1
I+ Bl + | I3] + 4] < c(€)of ' +eTh.

Finally we consider s,

Is=-2Y" D Ny (8, v)E2 dW dy dt.
I, 200 \%m,m !

First we consider the term in the definition of /5 which corresponds to j = m. Then

— // 3w, (WHCEdAW dy dt
200y

= — lim W) (w, 8, Y, t){zddedt+2f/ v2¢dy, ¢ dW dY dt,
80 J20N{w =8} 200

and obviously the absolute value of the terms on the right-hand side is bounded by cgg_l. Next we
consider the terms in the definition of /s which correspond to j % m. By integration by parts we see that

> // (“’”’f' )v(awjv)awm(wm)g“dedY dt
200 \%m,m

= lim 2/ <
6—0 2Dom {(wm=8}
2‘:’0 (am m
an,

+2ﬂ ( ) wmvawjvw §-2 IW dY dt
Do amm 1
2/-/D <a ) w,,levwmgzdw dY dt
0 m,m

—1—4// ( )v8w,vwm§8wm§deYdt
200 \%m,m

Am,j
Is; :=2 Z //zmo(am ;)awmvﬂwjvwmgde dY dt,
Is _22// (amm) Dy VW2 AW dY dt.

j#Em

)(w 8, Y, Hv(w, s, Y, 1)dy,v(w,d, Y, t)8§ dwdY dt

)vawjvwmgde dyY dt

Let

By the above deductions, and using by now familiar arguments, we can conclude that

—1
|Is — Isi — Isz] < c(€)og " +€Th.
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To estimate /5, we use that j # m. Integrating by parts

Isp = —2 Z //D 8wj<am’j )v&w,,lvwm§2deYdt
2o

jm Am,m
-2y // (“’”’f )awjvawmvwm;dedez
. 2000 \9m,m
j#Em
—4y /f (a’”*f >v8wmvwm§8wj§ AW dY dr
; 200 \9m,m
j#Fm
= Iso1 + Ispp + Isn3.
Note that
Isp = —1Is1,
and that

Isyi | + s3] < c(€)ol ™' + €Ty
by familiar arguments. Summarizing we can conclude that
¢ S TSR+ 1L+ 151+ |l + 5] < c(e, gl +€T1 +ET,
where €, € are degrees of freedom. This completes the proof of the lemma.

6B. Additional technical estimates. In this subsection we prove some additional technical estimates that
will be used in the proof of Lemma 6.2. Let

;=) Vi (B 0) 2wl 24 dW dY dt,
20 ' "
i=1 0
Ti=) //ZDO Vi 3y, 0) [Pw],¢® dW ay dt, (6-21)
i=1

Ts = / |Vyvw’ ¢ dw dy dt.
200,
Lemma 6.3. Let Oy, ¢ and v be as in Lemma 6.1. Then there exists, for positive €] — €4 given, ¢ =
c(N, M, M, €1, €3, €3, €4), 1 < ¢ < 00, such that
() T3 <col™ +cTi+eTs,

(i) Ty < col ' +eTs +eT + & T,
(iii) Ts < co? ™' +¢T) + cTh + e4Ta.
Proof. To prove (i) we introduce v = d,,,v. Using (6-5) we see that v solves
Vi - (AVw D) + B - Vg ¥ + (W, Wy + Pyu, ¥ (w, y,1)) - Vy — 8;)D

=~V - (0w, AVWV) — 0y, B - Vigv — 8),0 — 0y, Py, W (w, y, )0y, v (6-22)



1750 KAJ NYSTROM
in U. Multiplying the equation in (6-22) with dw? ¢* and integrating we see that

J = _f (Vw - (AVw ) owl c*dW dY dt = Jy + Jo + J3 + Ja,
200y
where
Ji = //D (((w, Wy + Py, ¥ (w, y, 1)) - Vy — 8,)0) 5wl c* dW dy dt,
2Ly

Jp = /f (Vi - (3w, A Vo)) dw; ¢t dW dy dt,
200y

5 ;:f (3w, (B - Viyv))dw?> ¢* dW dy dt,
20y

Jy = // (3y,0 + Bu, Py, ¥ (w, y, )3y, v) 0w ¢ dW dy dt.
200y
Using (6-9) we immediately see that
|l + 13l + sl < Ty + T\ P17 e P12,

Furthermore, using (6-12), (6-15) we see that

2|1 54‘// 02 ((w, W + Py, ¥ (w, y, 1)) - Vy — &) (Qwy,¢> dW dy dt| < Ty,
20,
and we can conclude that
[Ji] + L]+ 3]+ sl <c(e, )T + €T3 + €75,

where € and € are positive degrees of freedom. Next, integrating by parts in J we see that

J=- / .}y, 008° ¢ dw dY dt
jZ ZD()ﬂ{wm:(s} B

+> f / am,j (B, D), (Bwy, £ h) AW dy dt
: 200y
J

+> > //ZDO i, (Bu; )3, (Dw ¢ AW dy dt

i#Fm j

=ZZ// ai,j (3, 0) B, 0) (wys ¢ AW dy dt + J
T 20,
where
Ji=— / . j (8 D)08°c* dw dY dt
; 200N {w,, =8} S

+4ZZ/l[loaivj(awjﬁ)ﬁgg,awigw;;?’deydl
i

+3 Z //250 (B, D) OWEE* AW dy dt.
J

(6-23)

(6-24)

(6-25)

(6-26)

(6-27)
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Using this notation we see that
¢T3 < [T1+ 1]+ 12l + 3]+ | al. (6-28)
Furthermore, using (6-9) and Lemma 2.5 it is easy to see that
7| <col ™ + el + €T3, (6-29)

where € is a degree of freedom. Combining (6-27) and (6-29), (i) follows. To prove (ii) we introduce
v = dy,v. Again using (6-5) we see that v solves

= Vi (9, AViyv) — 3y, B - Viyv + dy, Py Yr(w, y, Dy, v (6-30)

in U. Arguing similarly to the proof of (i) we derive that

Ty <col ' +cTs+cT) 1) + 1P 1) + 1) 1) 1) T, (6-31)
Hence,
Ty <col™' +cle, )Ts + €Ty +ET3, (6-32)

where € and € are positive degrees of freedom. To prove (iii) we have to estimate

Ts=) Ts; Tsii= / / _ (3y,v) @y, V), c® dW dy dt. (6-33)
i=1 2o

Note that

Ay v =—((w, wm + Pyu, ¥ (w, y,1)) - Vy — 0;)(dy, )
+8w[ ((w» Wy, + wamI/I(UJ, v, 1) Vy— 3,)(1)) - (awi waml//(wa Y, t))aymv- (6-34)

Hence,
Ts;=— /szO (3y, ) (W, Wiy + Py, ¥ (w, y, 1)) - Vy — ;) (B, v)w;, £ dW dy dt
+//250 (Byiv)awi((w, W + Pyu, ¥ (W, y,1)) - Vy — at)(v)w,5n§6 AW dy dt
_//2D0 (ayiv)((awi wa'n‘”(w’y”))aymv)w,iﬁdeydt
=:T5;1+T5i2+Ts5;3. (6-35)
Using partial integration we immediately see that

ITs,i0] < cof ™ +cT,) T, 4 1171, (6-36)
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Furthermore,
= //2D0 (0, wn + Py, Yr(w. 3.0 - Vy = ) 3y,0) Bu ), £ dW dy di
+6//ZD (3yiv)(3wiv)w;§5((w, Wi+ Py, ¥ (w, y, 1)) - Vy — 3t)§ AW dy di
o
= //ZD Ay, (W, Wiy + Py, (W, ¥, 1)) - Vy — 3) (0) Bu, v)w,¢° dW dy dt
o

- f/ By, Py, W (w, ¥, 1)) (3y,0) (B, v)w;, £ dW dy dt
200,

"‘6// (3y,0) (B, V)W), & (W, Wy + Py, ¥ (w, y, 1)) - Vy — 8,)¢ dW dy dt.
200

Integrating by parts we have
iahlzz—l[/m (. W+ Py, 0w, 2 1)) - Vi — 3,)(0) Py ), dW dy di
2Ly
_6/7E (. Wi+ Py ¥ (W, y.1)) - Vi — 8,) (0) By W30y, ¢ AW dy di
2Ly

~ ] @By w3000 @0y e dW dyr
200y

+6// (3y,0) (D, V)W, & (W, Wy + Py, ¥ (w, y, 1)) - Vy — 3;)¢ dW dy dt.
200,

Hence,
|T511|<cT1/2T P T1/2T +e T1/2( 1/2 T51{112)
and
ITs,iISCQ —|—cT1/2 1/2+ T1/2 1/2+ T1/2( 1/2 1/2)+ T1/2 1/2+|T513|

We now first consider the case i = m. Using Remark 2.3 and (6-38) we immediately see that
TS,m =< C9371 +cT) +cT) + €Ty,

where € is a positive degree of freedom. Consider now i # m. Then, using (6-38) we have

+Tl/z)+ TI/ZT{{2+ T51{2T1/2

12
51 Sm:?

|T5’i| = CQO +CT1/2T1/2+CT11/2T21/2+CT11/2(T5

and hence

T5; < CQg_1 +cTi+ch+eTy+cTs .

Using (6-39) and (6-41) we can now complete the proof of (iii) and the lemma.

(6-37)

(6-38)

(6-39)

(6-40)

(6-41)
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6C. Proof of Lemma 6.2. To start the proof of Lemma 6.2 we first use the equation in (6-5) and write
Th=- /fm (W, Wi + Py, ¥ (w, ¥, 1)) - Vy — ) () (Vi - (AVwv) + B - Vo) ¢ ws, dW dy dt
2Ly

and
T =T + Top + Toz3 + Ty, (6-42)

where

Tr1 = — Z //ZDO (W, Wi + Py, ¥ (w, ¥, 1)) - Vy — 8) 00y, (am, 0w, v)w;, ¢ * dW dy dt,
J

Ty = — E f/ (W, Wi+ Py, W (W, ¥, 1)) - Vy = 8; )08y, (a7, V)W, e AW dy dt,
izm* /2o

Tyi=—) ) /fD (W, W + Py, ¥ (w, ¥, 1)) - Vy — 803y, (a;, 3, v)wy, ¢ dW dy dt,
X X 2
i#m j#m 0

Tyi=—) (W, W + Py, ¥ (w, y, 1)) - Vy — 8 )vb; y, vwi £+ dW dy d.
i ZDO Y Wm i m

Using (6-9) we immediately see that

1/2

To1| + | Toa| + | Toa| < T} °T) % + 12T, (6-43)

Next, focusing on 733, and integrating by parts with respect to w;, we see that
Ty=>» Y. //D Buy (W, Wy + Py Y (w, y, 1)) - Vy — 3, )v(a; ;3 v)wl ¢t dW dy di
i#m j#m 2o

AT [ (w0t P w50 9y = 8 v 0000, €0 W dy
izm jZm? 7250
=: Tp31 + T232,

and that |T53;| < Tll/ 2 T21/ 2 Furthermore

Tm=)_ Y. //ZDO (3y,v) (@, ;3w V)w5 ¢ AW dy dt

i#m j#m
+> > // ((w, Wi + Py, ¥ (w, 3, 1)) - Vy = ;) (B, ) (@i 0, v)win ¢ * AW dy dt
i#m j#m 20,
XY [ @y 00, D@0, 00kt aw dy as
im jAm ¢ Y2

=: To311 + 12312 + T2313.
Then

|To311| + | T2313] < CT51/2T11/2- (6-44)



1754 KAJ NYSTROM

To estimate 731> we lift the vector field ((w, Wi+ Py, ¥ (w, y, 1)) - Vy — at) through partial integration
and use the symmetry of the matrix {a; ;} to see that

2Th310 = — ZZ//Z (@) (W, Wi+ Py, Y (w, 3, 0)-Vy —0,) (@i j)du,v)wy ¢ W dy dt
i#m j#m

—422// (B )@ 180, 0) (0, W+ Py ¥ 0, v, 1) Vy —3,) (Ol > dW dy di
i#m j#m

=: 123121+ T23122.
Then, by familiar arguments,

|T231211 + | T23122] < cT1. (6-45)

Putting all estimates together we can conclude that

1/2

Ty < |Toi| + |Toa| + | Tos| + | Toa| < Ty + T} P17 +e1) T + 1) P17, (6-46)

Hence
T <c(Ty+T3)+eTs, (6-47)

where € is a positive degree of freedom. Now, using Lemma 6.3 we see, given positive degrees of
freedom €, — €5, that there exists ¢ = c¢(N, My, M», €2 —€5), 1 < ¢ < 00, such that

Ty < col ™' +¢T1 + e Ts,
T4 SCQS_1+CT5+€3T1+E4T3, (6-48)
Ts < cggfl +cT)+cTh +e5Ty.
Using the estimates on the last two lines in (6-48) we see that
Ts < col ' +cTi +cTh+ €T3, (6-49)
where again ¢g is a degree of freedom. Using (6-49) in the first estimate in (6-48) we deduce that
T; < cggfl +cT) +cer T + €766 T3, (6-50)

and hence, consuming €,
Ty <col™ +cTi + e, 6.51)
Ts < col ™' +¢Ti + T,
for yet another degree of freedom 7. Putting the estimates from (6-51) into (6-47), we deduce that
Ty <ci0f ' +c1Ti +oaDa(e +€), (6-52)

where ¢; = c1(N, M|, M>, €1, €7) and ¢ = c2(N, M1, M5). Elementary manipulations now complete the
proof of the lemma. U
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