VOL. 9 · NO. 4 | 2009
 
VIEW ALL ABSTRACTS +
Articles
Christopher P French
Algebr. Geom. Topol. 9 (4), 1885-1949, (2009) DOI: 10.2140/agt.2009.9.1885
KEYWORDS: $J$–homomorphism, Adams operations, equivariant $K$–theory, equivariant fiber spaces and bundles, 19L20, 19L47, 55R91
Rémi Leclercq
Algebr. Geom. Topol. 9 (4), 1951-1969, (2009) DOI: 10.2140/agt.2009.9.1951
KEYWORDS: Symplectic manifolds, hamiltonian diffeomorphisms, Seidelś morphism, 57R17, 57R58, 57S05
Mahan Mj, Peter Scott, Gadde Swarup
Algebr. Geom. Topol. 9 (4), 1971-1986, (2009) DOI: 10.2140/agt.2009.9.1971
KEYWORDS: splittings of groups, C–complexes, quasiconvex, codimension one subgroup, 20F67, 22E40, 57M50
Olivier Couture
Algebr. Geom. Topol. 9 (4), 1987-2026, (2009) DOI: 10.2140/agt.2009.9.1987
KEYWORDS: strongly invertible links, divides, Morse signed divides, Khovanov homology, 57M27
Thomas W Mattman, Pablo Solis
Algebr. Geom. Topol. 9 (4), 2027-2039, (2009) DOI: 10.2140/agt.2009.9.2027
KEYWORDS: Kauffman–Harary Conjecture, Fox coloring, Alternating knot, 57M25
Guoqiu Yang, Fengchun Lei
Algebr. Geom. Topol. 9 (4), 2041-2054, (2009) DOI: 10.2140/agt.2009.9.2041
KEYWORDS: essential surface, Heegaard genus, 57M99, 57N10, 57M27
Elmas Irmak
Algebr. Geom. Topol. 9 (4), 2055-2077, (2009) DOI: 10.2140/agt.2009.9.2055
KEYWORDS: mapping class group, complex of arcs, nonorientable surface, 57M99, 20F38
Andrés Navas, Cristóbal Rivas
Algebr. Geom. Topol. 9 (4), 2079-2100, (2009) DOI: 10.2140/agt.2009.9.2079
KEYWORDS: group orders, Conrad's property, 06F15, 20F60, 57S25
TaraLee Mecham, Antara Mukherjee
Algebr. Geom. Topol. 9 (4), 2101-2120, (2009) DOI: 10.2140/agt.2009.9.2101
KEYWORDS: hyperbolic groups, fibering, 20F65, 51H99
Benjamin A Burton
Algebr. Geom. Topol. 9 (4), 2121-2174, (2009) DOI: 10.2140/agt.2009.9.2121
KEYWORDS: normal surfaces, Q-theory, vertex enumeration, conversion algorithm, double description method, 52B55, 57N10, 57N35
Ying-Qing Wu
Algebr. Geom. Topol. 9 (4), 2175-2189, (2009) DOI: 10.2140/agt.2009.9.2175
KEYWORDS: pleated surface, hyperbolic manifold, immersed surface, Dehn surgery, 57N10
David Janzen, Daniel T Wise
Algebr. Geom. Topol. 9 (4), 2191-2201, (2009) DOI: 10.2140/agt.2009.9.2191
KEYWORDS: irreducible lattice, CAT(0) cube complex, 20F67
David T Gay, András I Stipsicz
Algebr. Geom. Topol. 9 (4), 2203-2223, (2009) DOI: 10.2140/agt.2009.9.2203
KEYWORDS: symplectic rational blow-down, Surface singularity, symplectic neighborhood, 57R17, 14E15, 14J17
Eaman Eftekhary
Algebr. Geom. Topol. 9 (4), 2225-2246, (2009) DOI: 10.2140/agt.2009.9.2225
KEYWORDS: Seifert fibered, Heegaard Floer homology, 57M27, 57R58
Isabel Darcy, John Luecke, Mariel Vazquez
Algebr. Geom. Topol. 9 (4), 2247-2309, (2009) DOI: 10.2140/agt.2009.9.2247
KEYWORDS: $3$–string tangle, DNA topology, tangle method, difference topology, Mu transpososome, graph planarity, Dehn surgery, handle addition lemma, 57M25, 92C40
Rustam Sadykov
Algebr. Geom. Topol. 9 (4), 2311-2347, (2009) DOI: 10.2140/agt.2009.9.2311
KEYWORDS: differential relation, h-principle, generalized cohomology theory, singularity of a smooth map, jet, fold map, Morin map, Thom–Boardman singularity, 55N20, 53C23, 57R45
Daniel Staley
Algebr. Geom. Topol. 9 (4), 2349-2360, (2009) DOI: 10.2140/agt.2009.9.2349
KEYWORDS: Thompson's group F, uniformly finite homology, amenability, 20F65, 05C25, ‎43A07‎
Daniel Müllner
Algebr. Geom. Topol. 9 (4), 2361-2390, (2009) DOI: 10.2140/agt.2009.9.2361
KEYWORDS: orientation, reversal, oriented, Manifold, chiral, chirality, amphicheiral, amphicheirality, achiral, degree, 55M25, 57S17, 57N65, 57R19
A D Elmendorf, M A Mandell
Algebr. Geom. Topol. 9 (4), 2391-2441, (2009) DOI: 10.2140/agt.2009.9.2391
KEYWORDS: $K$–theory, permutative category, multicategory, 19D23, 55U99, 55P42, 18D10, 18D50
Hossein Namazi
Algebr. Geom. Topol. 9 (4), 2443-2478, (2009) DOI: 10.2140/agt.2009.9.2443
KEYWORDS: complex of curves, quasi-convexity, shrinkwrapping, 57M50, 57N10, 30F40
Yoshinobu Kamishima, Mikiya Masuda
Algebr. Geom. Topol. 9 (4), 2479-2502, (2009) DOI: 10.2140/agt.2009.9.2479
KEYWORDS: real toric manifold, real Bott tower, flat Riemannian manifold, 57R91, 53C25, 14M25
Back to Top