Translator Disclaimer
2009 Splitting the spectral flow and the $\mathrm{SU}(3)$ Casson invariant for spliced sums
Hans U Boden, Benjamin Himpel
Algebr. Geom. Topol. 9(2): 865-902 (2009). DOI: 10.2140/agt.2009.9.865

Abstract

We show that the SU(3) Casson invariant for spliced sums along certain torus knots equals 16 times the product of their SU(2) Casson knot invariants. The key step is a splitting formula for su(n) spectral flow for closed 3–manifolds split along a torus.

Citation

Download Citation

Hans U Boden. Benjamin Himpel. "Splitting the spectral flow and the $\mathrm{SU}(3)$ Casson invariant for spliced sums." Algebr. Geom. Topol. 9 (2) 865 - 902, 2009. https://doi.org/10.2140/agt.2009.9.865

Information

Received: 8 April 2008; Revised: 1 April 2009; Accepted: 5 April 2009; Published: 2009
First available in Project Euclid: 20 December 2017

zbMATH: 1180.57019
MathSciNet: MR2505128
Digital Object Identifier: 10.2140/agt.2009.9.865

Subjects:
Primary: 58J30
Secondary: 57M27, 57R57

Rights: Copyright © 2009 Mathematical Sciences Publishers

JOURNAL ARTICLE
38 PAGES


SHARE
Vol.9 • No. 2 • 2009
MSP
Back to Top