Translator Disclaimer
2008 Strong accessibility for hyperbolic groups
Diane M Vavrichek
Algebr. Geom. Topol. 8(3): 1459-1479 (2008). DOI: 10.2140/agt.2008.8.1459

Abstract

We use an accessibility result of Delzant and Potyagailo to prove Swarup’s Strong Accessibility Conjecture for Gromov hyperbolic groups with no 2–torsion. It follows that, if M is an irreducible, orientable, compact 3–manifold with hyperbolic fundamental group, then any hierarchy in which M is decomposed alternately along compressing disks and essential annuli is finite.

Citation

Download Citation

Diane M Vavrichek. "Strong accessibility for hyperbolic groups." Algebr. Geom. Topol. 8 (3) 1459 - 1479, 2008. https://doi.org/10.2140/agt.2008.8.1459

Information

Received: 17 August 2007; Revised: 12 December 2007; Accepted: 20 February 2008; Published: 2008
First available in Project Euclid: 20 December 2017

zbMATH: 1194.20047
MathSciNet: MR2443250
Digital Object Identifier: 10.2140/agt.2008.8.1459

Subjects:
Primary: 20E08, 20F65
Secondary: 20F67, 57M99, 57N35

Rights: Copyright © 2008 Mathematical Sciences Publishers

JOURNAL ARTICLE
21 PAGES


SHARE
Vol.8 • No. 3 • 2008
MSP
Back to Top