Translator Disclaimer
2008 Moves and invariants for knotted handlebodies
Atsushi Ishii
Algebr. Geom. Topol. 8(3): 1403-1418 (2008). DOI: 10.2140/agt.2008.8.1403

Abstract

We give fundamental moves for the neighborhood equivalence classes of spatial trivalent graphs. We define a coloring invariant and a cocycle invariant for the neighborhood equivalence classes and then for all spatial graphs. We show that the cocycle invariant detects the chirality of a knotted handlebody.

Citation

Download Citation

Atsushi Ishii. "Moves and invariants for knotted handlebodies." Algebr. Geom. Topol. 8 (3) 1403 - 1418, 2008. https://doi.org/10.2140/agt.2008.8.1403

Information

Received: 29 January 2008; Revised: 8 May 2008; Accepted: 13 June 2008; Published: 2008
First available in Project Euclid: 20 December 2017

zbMATH: 1151.57007
MathSciNet: MR2443248
Digital Object Identifier: 10.2140/agt.2008.8.1403

Subjects:
Primary: 57M27
Secondary: 57M15, 57M25

Rights: Copyright © 2008 Mathematical Sciences Publishers

JOURNAL ARTICLE
16 PAGES


SHARE
Vol.8 • No. 3 • 2008
MSP
Back to Top