Open Access
Translator Disclaimer
2008 Knot Floer homology and integer surgeries
Peter Ozsváth, Zoltán Szabó
Algebr. Geom. Topol. 8(1): 101-153 (2008). DOI: 10.2140/agt.2008.8.101

Abstract

Let Y be a closed three-manifold with trivial first homology, and let KY be a knot. We give a description of the Heegaard Floer homology of integer surgeries on Y along K in terms of the filtered homotopy type of the knot invariant for K. As an illustration of these techniques, we calculate the Heegaard Floer homology groups of non-trivial circle bundles over Riemann surfaces (with coefficients in 2).

Citation

Download Citation

Peter Ozsváth. Zoltán Szabó. "Knot Floer homology and integer surgeries." Algebr. Geom. Topol. 8 (1) 101 - 153, 2008. https://doi.org/10.2140/agt.2008.8.101

Information

Received: 29 April 2005; Revised: 27 December 2006; Accepted: 7 November 2007; Published: 2008
First available in Project Euclid: 20 December 2017

zbMATH: 1181.57018
MathSciNet: MR2377279
Digital Object Identifier: 10.2140/agt.2008.8.101

Subjects:
Primary: 57M27
Secondary: 57M25

Rights: Copyright © 2008 Mathematical Sciences Publishers

JOURNAL ARTICLE
53 PAGES


SHARE
Vol.8 • No. 1 • 2008
MSP
Back to Top