Translator Disclaimer
2007 High distance knots
Yair N Minsky, Yoav Moriah, Saul Schleimer
Algebr. Geom. Topol. 7(3): 1471-1483 (2007). DOI: 10.2140/agt.2007.7.1471

Abstract

We construct knots in S3 with Heegaard splittings of arbitrarily high distance, in any genus. As an application, for any positive integers t and b we find a tunnel number t knot in the three-sphere which has no (t,b)–decomposition.

Citation

Download Citation

Yair N Minsky. Yoav Moriah. Saul Schleimer. "High distance knots." Algebr. Geom. Topol. 7 (3) 1471 - 1483, 2007. https://doi.org/10.2140/agt.2007.7.1471

Information

Received: 25 August 2006; Accepted: 22 March 2007; Published: 2007
First available in Project Euclid: 20 December 2017

zbMATH: 1167.57002
MathSciNet: MR2366166
Digital Object Identifier: 10.2140/agt.2007.7.1471

Subjects:
Primary: 57M25, 57M27

Rights: Copyright © 2007 Mathematical Sciences Publishers

JOURNAL ARTICLE
13 PAGES


SHARE
Vol.7 • No. 3 • 2007
MSP
Back to Top