Translator Disclaimer
2005 Motivic cell structures
Daniel Dugger, Daniel C Isaksen
Algebr. Geom. Topol. 5(2): 615-652 (2005). DOI: 10.2140/agt.2005.5.615

Abstract

An object in motivic homotopy theory is called cellular if it can be built out of motivic spheres using homotopy colimit constructions. We explore some examples and consequences of cellularity. We explain why the algebraic K–theory and algebraic cobordism spectra are both cellular, and prove some Künneth theorems for cellular objects.

Citation

Download Citation

Daniel Dugger. Daniel C Isaksen. "Motivic cell structures." Algebr. Geom. Topol. 5 (2) 615 - 652, 2005. https://doi.org/10.2140/agt.2005.5.615

Information

Received: 25 October 2004; Accepted: 11 May 2005; Published: 2005
First available in Project Euclid: 20 December 2017

zbMATH: 1086.55013
MathSciNet: MR2153114
Digital Object Identifier: 10.2140/agt.2005.5.615

Subjects:
Primary: 55U35
Secondary: 14F42

Rights: Copyright © 2005 Mathematical Sciences Publishers

JOURNAL ARTICLE
38 PAGES


SHARE
Vol.5 • No. 2 • 2005
MSP
Back to Top