Open Access
Translator Disclaimer
2005 The 3–cocycles of the Alexander quandles $\mathbb{F}_q[T]/(T-\omega)$
Takuro Mochizuki
Algebr. Geom. Topol. 5(1): 183-205 (2005). DOI: 10.2140/agt.2005.5.183

Abstract

We determine the third cohomology of Alexander quandles of the form Fq[T](Tω), where Fq denotes the finite field of order q and ω is an element of Fq which is neither 0 nor 1. As a result, we obtain many concrete examples of non-trivial 3–cocycles.

Citation

Download Citation

Takuro Mochizuki. "The 3–cocycles of the Alexander quandles $\mathbb{F}_q[T]/(T-\omega)$." Algebr. Geom. Topol. 5 (1) 183 - 205, 2005. https://doi.org/10.2140/agt.2005.5.183

Information

Received: 31 May 2004; Accepted: 21 September 2004; Published: 2005
First available in Project Euclid: 20 December 2017

zbMATH: 1085.55004
MathSciNet: MR2135551
Digital Object Identifier: 10.2140/agt.2005.5.183

Subjects:
Primary: 18G60
Secondary: 55N35, 57Q45

Keywords: Cohomology, knot, quandle

Rights: Copyright © 2005 Mathematical Sciences Publishers

JOURNAL ARTICLE
23 PAGES


SHARE
Vol.5 • No. 1 • 2005
MSP
Back to Top