Open Access
Translator Disclaimer
2004 Higher degree Galois covers of $\mathbb{CP}^1 \times T$
Meirav Amram, David Goldberg
Algebr. Geom. Topol. 4(2): 841-859 (2004). DOI: 10.2140/agt.2004.4.841

Abstract

Let T be a complex torus, and X the surface 1×T. If T is embedded in n1 then X may be embedded in 2n1. Let XGal be its Galois cover with respect to a generic projection to 2. In this paper we compute the fundamental group of XGal, using the degeneration and regeneration techniques, the Moishezon–Teicher braid monodromy algorithm and group calculations. We show that π1(XGal)=4n2.

Citation

Download Citation

Meirav Amram. David Goldberg. "Higher degree Galois covers of $\mathbb{CP}^1 \times T$." Algebr. Geom. Topol. 4 (2) 841 - 859, 2004. https://doi.org/10.2140/agt.2004.4.841

Information

Received: 17 June 2004; Accepted: 6 October 2004; Published: 2004
First available in Project Euclid: 21 December 2017

zbMATH: 1069.14065
MathSciNet: MR2100683
Digital Object Identifier: 10.2140/agt.2004.4.841

Subjects:
Primary: 14Q10
Secondary: 14J80 , 32Q55

Keywords: fundamental group , Galois cover , generic projection , Sieberg–Witten invariants

Rights: Copyright © 2004 Mathematical Sciences Publishers

JOURNAL ARTICLE
19 PAGES


SHARE
Vol.4 • No. 2 • 2004
MSP
Back to Top