Open Access
Translator Disclaimer
2004 Seifert fibered contact three-manifolds via surgery
Paolo Lisca, Andras I Stipsicz
Algebr. Geom. Topol. 4(1): 199-217 (2004). DOI: 10.2140/agt.2004.4.199

Abstract

Using contact surgery we define families of contact structures on certain Seifert fibered three–manifolds. We prove that all these contact structures are tight using contact Ozsváth–Szabó invariants. We use these examples to show that, given a natural number n, there exists a Seifert fibered three–manifold carrying at least n pairwise non-isomorphic tight, not fillable contact structures.

Citation

Download Citation

Paolo Lisca. Andras I Stipsicz. "Seifert fibered contact three-manifolds via surgery." Algebr. Geom. Topol. 4 (1) 199 - 217, 2004. https://doi.org/10.2140/agt.2004.4.199

Information

Received: 6 October 2003; Accepted: 31 March 2004; Published: 2004
First available in Project Euclid: 21 December 2017

zbMATH: 1064.57028
MathSciNet: MR2059189
Digital Object Identifier: 10.2140/agt.2004.4.199

Subjects:
Primary: 57R17
Secondary: 57R57

Rights: Copyright © 2004 Mathematical Sciences Publishers

JOURNAL ARTICLE
19 PAGES


SHARE
Vol.4 • No. 1 • 2004
MSP
Back to Top