Translator Disclaimer
2022 A Levine–Tristram invariant for knotted tori
Daniel Ruberman
Algebr. Geom. Topol. 22(5): 2395-2418 (2022). DOI: 10.2140/agt.2022.22.2395

Abstract

We define a new topological invariant of an embedded torus in a homology S1×S3, analogous to the Levine–Tristram invariant of a knot. We compare it to an invariant of smooth tori, defined recently by Echeverria using gauge theory for singular connections.

Citation

Download Citation

Daniel Ruberman. "A Levine–Tristram invariant for knotted tori." Algebr. Geom. Topol. 22 (5) 2395 - 2418, 2022. https://doi.org/10.2140/agt.2022.22.2395

Information

Received: 12 October 2020; Revised: 13 March 2021; Accepted: 3 May 2021; Published: 2022
First available in Project Euclid: 10 November 2022

Digital Object Identifier: 10.2140/agt.2022.22.2395

Subjects:
Primary: 57K41 , 57K45

Keywords: 4-manifold , knotted torus , Levine–Tristram invariant

Rights: Copyright © 2022 Mathematical Sciences Publishers

JOURNAL ARTICLE
24 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.22 • No. 5 • 2022
MSP
Back to Top