Translator Disclaimer
2019 Nonorientable Lagrangian surfaces in rational $4$–manifolds
Bo Dai, Chung-I Ho, Tian-Jun Li
Algebr. Geom. Topol. 19(6): 2837-2854 (2019). DOI: 10.2140/agt.2019.19.2837

Abstract

We show that for any nonzero class A in H2(X;2) in a rational 4manifold X, A is represented by a nonorientable embedded Lagrangian surface L (for some symplectic structure) if and only if P(A)χ(L)(mod4), where P(A) denotes the mod 4 valued Pontryagin square of A.

Citation

Download Citation

Bo Dai. Chung-I Ho. Tian-Jun Li. "Nonorientable Lagrangian surfaces in rational $4$–manifolds." Algebr. Geom. Topol. 19 (6) 2837 - 2854, 2019. https://doi.org/10.2140/agt.2019.19.2837

Information

Received: 25 August 2017; Revised: 16 December 2018; Accepted: 10 February 2019; Published: 2019
First available in Project Euclid: 29 October 2019

zbMATH: 07142620
MathSciNet: MR4023330
Digital Object Identifier: 10.2140/agt.2019.19.2837

Subjects:
Primary: 53D12, 57Q35

Rights: Copyright © 2019 Mathematical Sciences Publishers

JOURNAL ARTICLE
18 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.19 • No. 6 • 2019
MSP
Back to Top