Translator Disclaimer
2019 Rips filtrations for quasimetric spaces and asymmetric functions with stability results
Katharine Turner
Algebr. Geom. Topol. 19(3): 1135-1170 (2019). DOI: 10.2140/agt.2019.19.1135


The Rips filtration over a finite metric space and its corresponding persistent homology are prominent methods in topological data analysis to summarise the “shape” of data. Crucial to their use is the stability result that says if X and Y are finite metric spaces then the (bottleneck) distance between the persistence diagrams constructed via the Rips filtration is bounded by 2 d GH ( X , Y ) (where d GH is the Gromov–Hausdorff distance). A generalisation of the Rips filtration to any symmetric function f : X × X was defined by Chazal, de Silva and Oudot (Geom. Dedicata 173 (2014) 193–214), where they showed it was stable with respect to the correspondence distortion distance. Allowing asymmetry, we consider four different persistence modules, definable for pairs ( X , f ) where f : X × X is any real valued function. These generalise the persistent homology of the symmetric Rips filtration in different ways. The first method is through symmetrisation. For each a [ 0 , 1 ] we can construct a symmetric function sym a ( f ) ( x , y ) = a min { d ( x , y ) , d ( y , x ) } + ( 1 a ) max { d ( x , y ) , d ( y , x ) } . We can then apply the standard theory for symmetric functions and get stability as a corollary. The second method is to construct a filtration { dir ( X ) t } of ordered tuple complexes where ( x 0 , x 2 , , x p ) dir ( X ) t if d ( x i , x j ) t for all i j . Both our first two methods have the same persistent homology as the standard Rips filtration when applied to a metric space, or more generally to a symmetric function. We then consider two constructions using an associated filtration of directed graphs or preorders. For each t we can define a directed graph { D ( X ) t } where directed edges x y are included in D ( X ) t whenever max { f ( x , y ) , f ( x , x ) , f ( y , y ) } t (note this is when d ( x , y ) t for f = d a quasimetric). From this we construct a preorder where x y if there is a path from x to y in D ( X ) t . We build persistence modules using the strongly connected components of the graphs D ( X ) t , which are also the equivalence classes of the associated preorders. We also consider persistence modules using a generalisation of poset topology to preorders.

The Gromov–Hausdorff distance, when expressed via correspondence distortions, can be naturally extended as a correspondence distortion distance to set–function pairs ( X , f ) . We prove that all these new constructions enjoy the same stability as persistence modules built via the original persistent homology for symmetric functions.


Download Citation

Katharine Turner. "Rips filtrations for quasimetric spaces and asymmetric functions with stability results." Algebr. Geom. Topol. 19 (3) 1135 - 1170, 2019.


Received: 12 December 2016; Revised: 1 November 2018; Accepted: 10 November 2018; Published: 2019
First available in Project Euclid: 29 May 2019

zbMATH: 07142599
MathSciNet: MR3954277
Digital Object Identifier: 10.2140/agt.2019.19.1135

Primary: 54E99, 55N35
Secondary: 05C20‎, 06A11, 55U10

Rights: Copyright © 2019 Mathematical Sciences Publishers


This article is only available to subscribers.
It is not available for individual sale.

Vol.19 • No. 3 • 2019
Back to Top