Translator Disclaimer
2016 Solvable Lie flows of codimension $3$
Naoki Kato
Algebr. Geom. Topol. 16(5): 2751-2778 (2016). DOI: 10.2140/agt.2016.16.2751

Abstract

In Appendix E of Riemannian foliations [Progress in Mathematics 73, Birkhäuser, Boston (1988)], É Ghys proved that any Lie g–flow is homogeneous if g is a nilpotent Lie algebra. In the case where g is solvable, we expect any Lie g–flow to be homogeneous. In this paper, we study this problem in the case where g is a 3–dimensional solvable Lie algebra.

Citation

Download Citation

Naoki Kato. "Solvable Lie flows of codimension $3$." Algebr. Geom. Topol. 16 (5) 2751 - 2778, 2016. https://doi.org/10.2140/agt.2016.16.2751

Information

Received: 11 February 2015; Revised: 13 November 2015; Accepted: 11 April 2016; Published: 2016
First available in Project Euclid: 16 November 2017

zbMATH: 1356.57022
MathSciNet: MR3572347
Digital Object Identifier: 10.2140/agt.2016.16.2751

Subjects:
Primary: 57R30
Secondary: 22E25, 53C12

Rights: Copyright © 2016 Mathematical Sciences Publishers

JOURNAL ARTICLE
28 PAGES


SHARE
Vol.16 • No. 5 • 2016
MSP
Back to Top