Translator Disclaimer
2016 The homotopy types of $\mathrm{PU}(3)$– and $\mathrm{PSp}(2)$–gauge groups
Sho Hasui, Daisuke Kishimoto, Akira Kono, Takashi Sato
Algebr. Geom. Topol. 16(3): 1813-1825 (2016). DOI: 10.2140/agt.2016.16.1813

Abstract

Let G be a compact connected simple Lie group. Any principal G–bundle over S4 is classified by an integer k π3(G), and we denote the corresponding gauge group by Gk(G). We prove that Gk(PU(3)) G(PU(3)) if and only if (24,k) = (24,), and Gk(PSp(2)) (p)G(PSp(2)) for any prime p if and only if (40,k) = (40,), where (m,n) is the gcd of integers m,n.

Citation

Download Citation

Sho Hasui. Daisuke Kishimoto. Akira Kono. Takashi Sato. "The homotopy types of $\mathrm{PU}(3)$– and $\mathrm{PSp}(2)$–gauge groups." Algebr. Geom. Topol. 16 (3) 1813 - 1825, 2016. https://doi.org/10.2140/agt.2016.16.1813

Information

Received: 23 June 2015; Revised: 29 September 2015; Accepted: 11 December 2015; Published: 2016
First available in Project Euclid: 28 November 2017

zbMATH: 1352.55005
MathSciNet: MR3523056
Digital Object Identifier: 10.2140/agt.2016.16.1813

Subjects:
Primary: 55P35
Secondary: 55Q15

Rights: Copyright © 2016 Mathematical Sciences Publishers

JOURNAL ARTICLE
13 PAGES


SHARE
Vol.16 • No. 3 • 2016
MSP
Back to Top