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The unknotting number and classical invariants, I

MACIEJ BORODZIK

STEFAN FRIEDL

Given a knot K we introduce a new invariant coming from the Blanchfield pairing
and we show that it gives a lower bound on the unknotting number of K . This lower
bound subsumes the lower bounds given by the Levine–Tristram signatures, by the
Nakanishi index and it also subsumes the Lickorish obstruction to the unknotting
number being equal to one. Our approach in particular allows us to show for 25 knots
with up to 12 crossings that their unknotting number is at least three, most of which
are very difficult to treat otherwise.
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1 Introduction

Let K � S3 be a knot. Throughout this paper a knot is always assumed to be oriented.
A crossing change is one of the two local moves on a knot diagram given in Figure 1.

negative crossing change

positive crossing change
C �

Figure 1: Negative and positive crossing change

The unknotting number u.K/ of a knot K is defined to be the minimal number of
crossing changes necessary to turn K into the unknot. The unknotting number is one of
the most elementary invariants of a knot, but also one of the most intractable. Whereas
upper bounds can be found readily using diagrams, it is much harder to find nontrivial
lower bounds.

In this paper we will for the most part study a closely related invariant, namely the
algebraic unknotting number ua.K/, which is defined to be the minimal number of
crossing changes necessary to turn K into a knot with trivial Alexander polynomial. By
Fogel [13] and Saeki [60] this is equivalent to the original definition by Murakami [48]
given in terms of “algebraic unknotting moves” on Seifert matrices. It is clear that
u.K/�ua.K/, and that in general this is not an equality. For example for any nontrivial
knot K with trivial Alexander polynomial we have u.K/� 1 and ua.K/D 0.
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1.1 Review of classical invariants

Let us first fix some terminology. Let F be a Seifert surface for K and let v1; : : : ; v2n

be a collection of embedded simple closed curves on F which represent a basis for
H1.F IZ/. The corresponding Seifert matrix V is defined as the matrix with .i; j /–
entry given by

lk.vi ; v
C
j /;

where we denote by vCj the positive pushoff of vj . The S –equivalence class of the
Seifert matrix is well known to be an invariant of K (see Lickorish [43, Theorem 8.4]
for details). The S –equivalence class of the Seifert matrix will be denoted by V D VK .
By abuse of notation we will often denote by V D VK a representative of the S –
equivalence class. In this paper, by a classical invariant of a knot we mean an invariant
which is determined by VK .

Given a knot K we denote by X.K/ D S3 n �K the exterior of K and we denote
by †.K/ its branched cover. We now give several well-known examples of classical
invariants which will play a role in the paper (in the following the matrix V is a 2n�2n

Seifert matrix for K ):

(1) The Alexander polynomial is defined as

�K .t/D t�n
� det.V t �V t / 2 ZŒt˙1�

(note that �K .t/ is well defined with no indeterminacy, and �K .1/D 1).

(2) The knot determinant det.K/ D .�1/n det.V C V t /, which in this paper is
viewed as a signed invariant.

(3) The isometry type of the linking pairing

l.K/W H1.†.K/IZ/�H1.†.K/IZ/!Q=Z;

which is isometric to the pairing

Z2n=.V CV t /Z2n
�Z2n=.V CV t /Z2n

!Q=Z; .v; w/ 7! vt .V CV t /�1w

(we refer to Gordon [17] for details).

(4) The Blanchfield pairing

�.K/W H1.X.K/IZŒt
˙1�/�H1.X.K/IZŒt

˙1�/!Q.t/=ZŒt˙1�

is a hermitian nonsingular pairing on the Alexander module H1.X.K/IZŒt
˙1�/

(we refer to Section 2.2 for the definition).

(5) The Nakanishi index m.K/, ie the minimal number of generators of the Alexan-
der module H1.X.K/IZŒt

˙1�/.
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(6) Given z 2 S1 the Levine–Tristram signature is defined as

�z.K/D sign.V .1� z/CV t .1� z�1//

(note that ��1.K/ is just the ordinary knot signature �.K/).

(7) Given z 2C n f0; 1g the nullity is defined as

�z.K/D null.V .1� z/CV t .1� z�1//I

furthermore �1.K/ is by convention defined to be 0.

1.2 Definition of the invariant n.K /

Given a hermitian n� n–matrix A over ZŒt˙1� with det.A/¤ 0 we denote by �.A/
the pairing

�.A/W ZŒt˙1�n=AZŒt˙1�n �ZŒt˙1�n=AZŒt˙1�n!Q.t/=ZŒt˙1�; .a; b/ 7! xatA�1b;

where we view a; b as represented by column vectors in ZŒt˙1�n . Note that �.A/ is a
nonsingular, hermitian pairing.

Let K be a knot. We define n.K/ to be the minimal size of a hermitian matrix A over
ZŒt˙1� such that

� �.A/Š �.K/, ie �.A/ is isometric to the Blanchfield pairing of K ,
� the matrix A.1/ is congruent over Z to a diagonal matrix which has ˙1 on the

diagonal.

In Section 2.2 we will see that the Blanchfield pairing of K can indeed be represented
by such a matrix A, ie we will show that n.K/ is actually defined. We will furthermore
show that n.K/ � deg�K .t/C 1. Note that n.K/D 0 if and only if the Alexander
polynomial of K is trivial. Finally note that n.K/ is a classical invariant since the
Blanchfield pairing is a classical invariant.

1.3 Classical bounds for the unknotting number

We will now quickly summarize all previous classical lower bounds on the unknotting
number which are known to the authors.

The first lower bounds on the unknotting number go back to Wendt [71]; they are
subsumed by the following inequality due to Nakanishi [50]:

u.K/�m.K/:

We discuss it in Section 4.1.
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It has been known since the work of Murasugi [49] that Levine–Tristram signatures give
rise to lower bounds on the unknotting number. In particular the following inequality
holds:

ua.K/��.K/ WD
1
2
.maxf�z.K/C�z.K/ j z 2S1

gCmaxf�z.K/��z.K/ j z 2S1
g/:

This inequality is in all likelihood known to the experts, but we are not aware of
a reference and we thus give a proof (together with a more refined statement) in
Section 4.2.

By Saeki [60, Proposition 4.1] the topological 4–ball genus g
top
4
.K/ is a lower bound

on the algebraic unknotting number ua.K/. Livingston [44] introduced a classical
invariant �.K/ which gives a lower bound on g

top
4
.K/. In Section 4.3 we will slightly

modify Livingston’s invariant to define a new classical invariant �ZŒt˙1�.K/ which
satisfies

g
top
4
.K/� �ZŒt˙1�.K/� �.K/

and we will show that n.K/� �ZŒt˙1�.K/.

We now recall several classical obstructions to a knot K having “small” algebraic
unknotting number. If K can be unknotted using a single �–crossing change (with � 2
f�1; 1g), then by the work of Lickorish [42] there exists a generator h of H1.†.K/IZ/
such that

l.h; h/D
�2�

det.K/
2Q=Z:

Recently Jabuka [23] also introduced an obstruction to the unknotting number being
one. In Section 4.6 we will see that it is subsumed by the Lickorish obstruction. Also
note that the Lickorish obstruction was generalized by Fogel, Murakami and Rickard
(see [13; 48], respectively) in terms of the Blanchfield pairing. Finally note that if
j�.K/j D 4, then Stoimenow [64, Proposition 5.2] gives a classical obstruction to
ua.K/D 2 in terms of the determinant of K . To the best of our knowledge the above is
a complete list of lower bounds on the unknotting number given by classical invariants.

Remark (1) Lower bounds on the unknotting number have also been obtained using
gauge theory (see Cochran and Lickorish [10] and Kronheimer and Mrowka [37]),
Khovanov homology (see Rasmussen [59]) and Heegaard–Floer homology (see
Rasmussen [58], Ozsváth and Szabó [54; 55], Owens [51], Greene [19] and
Sarkar [61]) and various other methods (see Kanenobu and Murakami [24],
Kobayashi [36], Scharlemann and Thompson [63], Miyazawa [46], Traczyk [67],
Stoimenow [64], Ma and Qiu [45] and Gordon and Luecke [18]). Note though,
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that with the exception of the Rasmussen s–invariant, the Ozsváth–Szabo � –
invariant and the Owens obstruction most of the above are in fact obstructions
to the unknotting number being equal to one or two.

(2) Without doubt, the most important result on unknotting numbers has been
the resolution of the Milnor conjecture by Kronheimer and Mrowka [37]: the
unknotting number of the .p; q/–torus knot equals .p� 1/.q� 1/=2. We also
refer to [54; 59; 61] for alternative proofs. Finally we refer to Boileau and
Weber [3] for an interesting pregauge theory discussion of the problem.

1.4 The main theorem

Our main theorem is the following.

Theorem 1.1 Let K be a knot which can be turned into an Alexander polynomial one
knot using uC positive crossing changes and u� negative crossing changes. Then there
exists a hermitian matrix A.t/ of size uCC u� over ZŒt˙1� with the following two
properties:

(1) �.A.t//Š �.K/.

(2) A.1/ is a diagonal matrix such that uC diagonal entries are equal to �1 and u�
diagonal entries are equal to 1.

In particular ua.K/� n.K/.

In Section 4 we will show that the lower bound on the algebraic unknotting number
from Theorem 1.1 contains, to the best knowledge of the authors, all previous classical
lower bounds to the unknotting number. This result can be summarized in the following
theorem:

Theorem 1.2 The invariant n.K/ subsumes the following unknotting obstructions:

(1) The Nakanishi index (see Section 4.1).

(2) The invariant �.K/ (see Section 4.2).

(3) �ZŒt˙1�.K/ and in particular Livingston’s invariant �.K/ (see Section 4.3).

(4) The Fogel–Murakami–Rickard obstruction (see Section 4.4).

(5) The Lickorish obstruction and the Jabuka obstruction (see Sections 4.5 and 4.6).

(6) The Stoimenow obstruction (see Section 4.7).

In particular all of the above give lower bounds on the algebraic unknotting number.
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The precise statements and the proofs are given in the indicated parts of Section 4.

Remark The fact that n.K/ subsumes all other classical lower bounds does not
invalidate those earlier bounds, since all but the first one are directly computable,
whereas at the moment there is no algorithm to calculate n.K/ in general.

Remark The fact that the earlier classical lower bounds on the unknotting number
give in fact lower bounds on the algebraic unknotting number can also at times be
deduced from reading carefully the original proofs.

Fogel [14] proved the following remarkable partial converse to Theorem 1.1.

Theorem 1.3 If n.K/D 1, then ua.K/D 1.

Fogel’s proof is constructive in the sense that in many cases, given a knot K with
n.K/ D 1, one can actually find explicitly a diagram and a crossing change which
turns K into an Alexander polynomial one knot. We refer to [13, Section 3; 14, Sec-
tion 4] for more details. The results of Fogel make plausible the following conjecture.

Conjecture 1.4 For any knot K we have

n.K/D ua.K/:

We plan to investigate this conjecture in a future paper.

Added in proof In [5] we provide a proof for Conjecture 1.4.

1.5 Diagrammatic comparison of classical invariants

In order to show how the newly defined invariant n.K/ fits into the bigger picture of
knot invariants, we present in Figure 2 a diagram which shows the relationship between
various topological and classical invariants. Beyond the invariants introduced above
we will also use the topological invariants

g3.K/Dminimal genus of an orientable surface in S3 cobounding the knot K;

gsmooth
4 .K/Dminimal genus of an orientable smooth surface in D4 cobounding

the knot K;

g
top
4
.K/Dminimal genus of a locally flat surface in D4 cobounding the knot K;
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and the classical invariants

�.K/ WDmaxf�z.K/ j z 2C n f0gg;

mR.K/ WDminimal number of generators of H1.X.K/IRŒt
˙1�/;

nR.K/ WD the invariant n.K/ defined over real numbers, ie the minimal size of a

hermitian matrix over RŒt˙1� representing the Blanchfield pairing

over R, H1.X.K/IRŒt
˙1�/�H1.X.K/IRŒt

˙1�/!R.t/=RŒt˙1�:

It is straightforward to see that mR.K/D �.K/. In a future paper [6] we will show
that furthermore

nR.K/Dmaxf�.K/; �.K/g:

2g3.K/C 1

��

u.K/

��

// gsmooth
4

.K/

��

deg�K .t/C 1

))

ua.K/

uu
D?
��

// g
top
4
.K/

��

m.K/

��

n.K /oo

��

// 1
2
�ZŒt˙1�.K/

��

mR.K/

D
��

nR.K/oo

D
��

1
2
�.K/

��

�.K/

D

��

maxf�.K/; �.K/goo

��

max
z2Cnf0g

f�z.K/g
1
2

max
z2S1
fj�z.K/jg // 1

2
max
z2P
fj�z.K/jg

��
1
2
�.K/:

Figure 2: Diagrammatic summary of known invariants: here P denotes the
set of all prime power roots of unity. We use the following notation: given
two knot invariants f and g we write f .K/! g.K/ if f .K/� g.K/ for
every knot K . The existence of an arrow is in all cases either well known, or
a tautology or it follows from the results in this section. If two invariants are
not related by a concatenation of arrows, then in most cases it is known that
they are unrelated. If an arrow is not decorated by an D sign, then in most
cases it is known that the invariants are indeed not equal.
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1.6 Applications and examples

Our understanding of the relation between the n.K/ invariant and the presentation
matrix for the linking pairing of the double branched cover (see Section 3, especially
Lemma 3.3) allows us to provide new computable obstructions for u.K/ D 2 and
u.K/D 3, which are related to Owens’ obstruction from [51]. The idea behind the
results in Sections 5.2 and 5.3 is the following. If the Blanchfield pairing can be realized
by an n� n matrix over ZŒt˙�, then there exists an n� n integer matrix of a certain
type which represents the linking pairing l.K/ of the double branched cover. Up to
congruence there exist finitely many such matrices, which furthermore in many cases
can be listed explicitly. It is then straightforward to verify whether or not l.K/ can be
represented by any of these matrices.

Among knots with up to 12 crossings there are 25 knots with m.K/� 2 and �.K/� 4,
but for which our approach shows that n.K/� 3. Out of these 25 knots the Stoimenow
obstruction detects four knots. To the best of our knowledge no other classical obstruc-
tion applies to these 25 knots. Also, in most cases the Rasmussen s–invariant and
the Ozsváth–Szabó � –invariant cannot detect the unknotting number. We furthermore
checked the u.K/D 3 obstruction for all knots with up to 14 crossings with j�.K/jD 6

and m.K/� 3. We found that it applies precisely to two such knots, namely 14n12777

and 14a4637 . We have not yet implemented the obstruction to u.K/D n for higher
values of n.

Our new obstruction to n.K/D 2 now allows us to completely determine the algebraic
unknotting number for all knots with up to 11 crossings. Details are given in Section 6
and by the authors in [4].
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2 Proof of Theorem 1.1

Throughout Section 2 we write

ƒ WD ZŒt˙1� and � WDQ.t/:

As usual we also identify ƒ with the group ring of Z.

2.1 Poincaré duality and the universal coefficient spectral sequence

In this section we will collect several facts which we will use continuously throughout
the paper.

Throughout the paper X will always denote a manifold whose first homology group is
isomorphic to Z. We denote the infinite cyclic covering of X by � W yX !X . Given a
submanifold Y �X we write yY D ��1.Y /. Note that Z is the deck transformation
group of yX . This defines a canonical action of ƒDZŒZ� on C�. yX ; yY IZ/. Given any
ƒ–module N we now define

H�.X;Y IN / WDH�.Homƒ.C�. yX ; yY IZ/;N //;

H�.X;Y IN / WDH�.C�. yX ; yY IZ/˝ƒN /:

(Here, and throughout the paper, given a module H over ƒ we denote by xH the
module with the involuted ƒ–structure, ie xH D H as abelian groups, but multipli-
cation by p.t/ 2ƒ in xH is the same as multiplication by p.t/D p.t�1/ in H .) In
particular we can consider the modules H�.X;Y Iƒ/, H�.X;Y Iƒ/, H�.X;Y I�/

and H�.X;Y I�/. When Y D∅, then we will suppress Y from the notation.

Note that the quotient field � is flat over the ring ƒ. In particular, H�.X;Y I�/Š

H�.X;Y Iƒ/˝ƒ� and H�.X;Y I�/ŠH�.X;Y Iƒ/˝ƒ�.

Suppose that X is an n–manifold; then for any ƒ–module N Poincaré duality defines
isomorphisms of ƒ–modules

Hi.X; @X IN /ŠH n�i.X IN /;

Hi.X IN /ŠH n�i.X; @X IN /:

Finally we recall the universal coefficient spectral sequence (UCSS); we refer to
Levine [41, Theorem 2.3] and Hillman [20, Section 2.1] for details. Let N be any
ƒ–module. Then the UCSS starts with E

p;q
2
D Extq

ƒ
.Hp.X Iƒ/;N / and converges

to H�.X IN /. The differentials at the r –stage of this sequence have degree .1� r; r/.
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Note that for any two ƒ–modules H and N the module Ext0ƒ.H;N / is canonically
isomorphic to Homƒ.H;N /. Also note that

Extp
ƒ
.H;N /D 0

for any p > 2 since ƒ has global dimension 2. Finally note that Z, viewed as a
ZŒt˙1�–module with trivial t –action, admits a free resolution of length 1. It now
follows that Extp

ƒ
.Z;N /D 0 for any p > 1.

2.2 Seifert matrices and Blanchfield pairings

Let K � S3 be a knot. We consider the following sequence of maps:

ˆW H1.X.K/Iƒ/!H1.X.K/; @X.K/Iƒ/(2-1)

!H 2.X.K/Iƒ/
Š
 �H 1.X.K/I�=ƒ/

! Homƒ.H1.X.K/Iƒ/;�=ƒ/:

Here the first map is the inclusion induced map, the second map is Poincaré duality,
the third map comes from the long exact sequence in cohomology corresponding to
the coefficients 0! ƒ! �! �=ƒ! 0, and the last map is the evaluation map.
It is well known that the first map is an isomorphism, the second map is obviously
an isomorphism, and it follows from the UCSS (and the straightforward calculation
that Extp

ƒ
.Z; �=ƒ/D 0 for p � 1) that the evaluation map is also an isomorphism. It

follows that the above maps thus define a nonsingular pairing

�.K/W H1.X.K/Iƒ/�H1.X.K/Iƒ/!�=ƒ;

.a; b/ 7!ˆ.a/.b/;

called the Blanchfield pairing of K . This pairing is well known to be hermitian; in
particular �.K/.a1; a2/D�.K/.a2; a1/ and �.K/.�1a1; �2a2/D x�1�.K/.a1; a2/�2

for �i 2ƒ; ai 2H1.X.K/Iƒ/. We refer to Blanchfield [2] for an alternative definition
and for further details.

Remark The Alexander polynomial �K .t/ is well known to annihilate the Alexander
module. It now follows easily from the definition of �.K/ that �.K/ takes values in
�K .t/

�1ZŒt˙1�=ZŒt˙1� �Q.t/=ZŒt˙1�. This fact also follows from the description
of the Blanchfield pairing in terms of Seifert matrices due to Kearton [27, Section 8]
which we recall below.

Let V be any matrix of size 2k which is S –equivalent to a Seifert matrix for K . Note
that V �V t is antisymmetric and it satisfies det.V �V t /D .�1/k . It is well known
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that, possibly after replacing V by PVP t for an appropriate P , we have

(2-2) V �V t
D

�
0 idk

� idk 0

�
:

Following Ko [35, Section 4] we now define AK .t/ to be the matrix

(2-3)
�
.1� t�1/�1 idk 0

0 idk

�
V

�
idk 0

0 .1� t/ idk

�
C

�
idk 0

0 .1� t�1/ idk

�
V t

�
.1� t/�1 idk 0

0 idk

�
:

Note that the matrix AK .t/ is a hermitian matrix defined over ƒ and note that
det.AK .1//D .�1/k (see [35]). Also note that

(2-4)
�
.1� t�1/ idk 0

0 idk

�
AK .t/

�
.1� t/ idk 0

0 idk

�
D .1� t/V C .1� t�1/V t :

We now have the following proposition.

Proposition 2.1 Let K be a knot and AK .t/ as above; then �.AK .t//Š �.K/.

Note that the isometry type of the Blanchfield pairing in fact determines the S –
equivalence class of the Seifert matrix; see Trotter [69] and Ranicki [57]. In that
sense the Blanchfield pairing is a “complete” classical invariant, ie it determines all
other classical invariants.

Proof First note that the Blanchfield pairing �.K/ is isometric to the following pairing
(we refer to [27, Section 8] for details):

(2-5) ƒ2k=.V t �V t /ƒ2k
�ƒ2k=.V t �V t /ƒ2k .t�1/.V t�V t /�1

�����������!�=ƒ:

The notation we use here, and similarly below, means that to a; b 2ƒ2k we associate
xat .t � 1/.V t �V t /�1b . We now write ƒ0 WD ZŒt; t�1; .1� t/�1� and we let

P WD

�
t�1 idk 0

0 .t � 1/�1 idk

�
:
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We consider the following commutative diagram:

ƒ2k=AK .t/ƒ
2k �ƒ2k=AK .t/ƒ

2k

��

AK .t/
�1

// �=ƒ

��
ƒ2k

0
=AK .t/ƒ

2k
0
�ƒ2k

0
=AK .t/ƒ

2k
0

.v;w/ 7!.Pv;Pw/
��

AK .t/
�1

// �=ƒ0

��
ƒ2k

0
=PAK .t/ƒ

2k
0
�ƒ2k

0
=PAK .t/ƒ

2k
0

D

��

.PAK .t/ xP
t /�1

// �=ƒ0

��
ƒ2k

0
=.V t �V t /ƒ2k

0
�ƒ2k

0
=.V t �V t /ƒ2k

0

.t�1/.V t�V t /�1

// �=ƒ0

ƒ2k=.V t �V t /ƒ2k �ƒ2k=.V t �V t /ƒ2k

OO

.t�1/.V t�V t /�1

// �=ƒ:

OO

Here the top vertical maps and the bottom vertical maps are induced by the in-
clusion ƒ ! ƒ0 . Recall that multiplication by t � 1 induces an isomorphism of
ƒ2k=.V t �V t /ƒ2k and of ƒ2k=AK .t/ƒ

2k (see [41]). It follows that the two afore-
mentioned maps are isomorphisms of ƒ–modules. For the third vertical map we made
use of the fact that

PAK .t/ xP
t
D .t � 1/�1.V t �V t /

and we used that

PAK .t/ƒ
2k
0 D PAK .t/ xP

tƒ2k
0 D .t � 1/�1.V t �V t /ƒ2k

0 D .V t �V t /ƒ2k
0 :

Since all vertical maps on the left in the above commutative diagram are isomorphisms
we deduce from (2-5) that �.AK .t//Š �.K/.

We conclude this section with the following lemma:

Lemma 2.2 Let V be a matrix which is S –equivalent to a Seifert matrix of the
knot K and such that V satisfies (2-2). Let AK .t/ be the matrix as in (2-3). Then the
matrix A.t/DAK .t/˚ .1/ .ie the block diagonal sum of the matrices AK .t/ and .1//
represents �.K/ and the bilinear matrix A.1/ is diagonalizable over Z.

Proof Let V be a Seifert matrix of the knot K of size 2k satisfying (2-2). Then we
can write

V D

�
B C C I

C t D

�
;
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where B , C and D are k�k matrices, I is the identity matrix and moreover BDBt ,
D DDt . It is easy to compute that

AK .1/D

�
B �I

�I 0

�
:

It is straightforward to verify that AK .1/ is congruent over Q to the block sum of I

and �I , hence AK .1/, viewed as a symmetric bilinear pairing, is indefinite. If we
consider A.t/DAK .t/˚ .1/ (which clearly represents the same Blanchfield pairing
as AK .t/), then A.1/ is an indefinite, odd symmetric bilinear pairing over Z, hence
by Husemoller and Milnor [22, Theorem 4.3] it is diagonalizable.

2.3 Definition of n.K /

Let K � S3 be a knot. It follows from Lemma 2.2 that it makes sense to define n.K/

as the minimal size of a hermitian matrix A over ZŒt˙1� such that

� �.A/Š �.K/,

� the matrix A.1/ is congruent over Z to a diagonal matrix which has ˙1 on the
diagonal.

In fact we can use Lemma 2.2 to deduce a more precise statement.

Lemma 2.3 For any knot K we have the inequality

n.K/� deg�K .t/C 1:

Proof It is well known (see eg Levine [40, page 195]) that any Seifert matrix is
S –equivalent to a matrix V which is nonsingular and which satisfies (2-2). Let 2k

be the size of V . Then we have that t�k det.V t �V t /D�K .t/, and it follows easily
that V is a matrix of size deg�K .t/. The corollary now follows immediately from
Lemma 2.2.

Remark (1) Suppose that

V D

�
B C C I

C t D

�
is a matrix of size deg�K .t/ which is S –equivalent to a Seifert matrix of K

and B D Bt , D D Dt . If B itself represents an odd pairing, then AK .1/ is
already diagonalizable. In that case n.K/� deg�K .t/.
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(2) Fogel [13, Section 3.3] gives examples of two knots K1 and K2 such that
n.K1 # K2/D n.K1/D n.K2/D 1. This shows that the n.K/ invariant is in
general not additive. This is in contrast to the conjecture that the unknotting
number is additive (see Kirby [33, Problem 1.69(B)] and Scharlemann [62] for
some strong evidence towards this conjecture).

2.4 The Blanchfield pairing and intersection pairings on 4–manifolds

We now turn to the proof that ua.K/� n.K/. We will show that the 0–framed surgery
on a knot which can be turned into an Alexander polynomial one knot using uC positive
and u� negative crossing changes cobounds a 4–manifold with certain properties. We
will then show that a matrix representing the equivariant intersection pairing on that
4–manifold gives in fact a presentation matrix for the Blanchfield pairing of K .

Given a knot K � S3 we denote in the following by M.K/ the 0–framed surgery
on K . Furthermore, given a topological 4–manifold W with boundary M , we consider
the sequence of maps

H2.W IZ/
�
�!H2.W;M IZ/

PD
��!H 2.W IZ/

ev
�! HomZ.H2.W IZ//;

where � denotes the inclusion induced map, PD denotes Poincaré duality and ev denotes
the evaluation map. This defines a pairing

H2.W IZ/�H2.W IZ/! Z;

called the ordinary intersection pairing of W , which is well known to be symmetric.
In the following we will several times make implicit use of the following lemma.

Lemma 2.4 Suppose the following hold:

(1) M is connected.

(2) H1.M IZ/!H1.W IZ/ is an isomorphism.

(3) H1.W IZ/ is torsion free.

Then the ordinary intersection pairing is nonsingular.

Proof The assumption that H1.M IZ/!H1.W IZ/ is an isomorphism implies by
Poincaré duality that H 2.M IZ/ ! H 3.W;M IZ/ is an isomorphism. From the
universal coefficient theorem, HomZ.H2.M IZ/;Z/! HomZ.H3.W;M IZ/;Z/ is
an isomorphism. But H2.M IZ/ Š H 1.M IZ/ and H3.W;M IZ/ Š H 1.W IZ/ Š
Hom.H1.W IZ/;Z/ are torsion free, it thus follows that H3.W;M IZ/!H2.M IZ/
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is an isomorphism. It follows from the long exact sequence of the pair .W;M /

that the map �W H2.W IZ/!H2.W;M IZ/ is an isomorphism. The assumption that
H1.W IZ/ is torsion free implies by the universal coefficient theorem that the evaluation
map evW H 2.W IZ/! HomZ.H2.W IZ/;Z/ is an isomorphism. It now follows that
the ordinary intersection pairing is nonsingular.

We now consider a topological 4–manifold W with boundary M such that �1.W /ŠZ.
We then consider the sequence of maps

(2-6) H2.W Iƒ/
�
�!H2.W;M Iƒ/

PD
��!H 2.W Iƒ/

ev
�! Homƒ.H2.W Iƒ/;ƒ/;

where the first map is again the inclusion induced map, the second map is Poincaré
duality and the third map is the evaluation map. This composition of maps defines a
pairing

H2.W Iƒ/�H2.W Iƒ/!ƒ;

which is well known to be hermitian. We refer to this pairing as the twisted intersection
pairing on W . Now we introduce the following notion, which we shall use several
times in the future.

Definition 2.5 Let K be a knot and M.K/ the zero framed surgery on K . We shall
say that a 4–manifold W tamely cobounds M.K/ if the following conditions are
satisfied:

(1) @W DM.K/.

(2) The inclusion induced map H1.M.K/IZ/!H1.W IZ/ is an isomorphism.

(3) �1.W /Š Z.

If furthermore the intersection form on H2.W IZ/ is diagonalizable, we say that W

strictly cobounds M.K/.

The following theorem will be the key ingredient in the proof that ua.K/� n.K/.

Theorem 2.6 Let K be a knot. Suppose there exists a topological 4–manifold W ,
which tamely cobounds M.K/. Then H2.W Iƒ/ is free of rank b2.W /. Furthermore,
if B is an integral matrix representing the ordinary intersection pairing of W , then
there exists a basis B for H2.W Iƒ/ such that the matrix A.t/ representing the twisted
intersection pairing with respect to B has the following two properties:

(1) �.A.t//Š �.K/,

(2) A.1/D B .

The proof of Theorem 2.6 is rather long and will require all of the following section.
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2.5 Proof of Theorem 2.6

Let K be a knot and let W be a topological 4–manifold W , which tamely cobounds
M.K/. Throughout this section we write M WDM.K/. We first want to prove the
following lemma:

Lemma 2.7 The ƒ–module H2.W Iƒ/ is free of rank b2.W /.

Proof We first want to show that H2.W Iƒ/ is a free ƒ–module. Note that H2.W Iƒ/

is a finitely generated ƒ–module since ƒ is Noetherian. By Kawauchi [25, Corol-
lary 3.7] the module H2.W Iƒ/ is free if and only if Extiƒ.H2.W Iƒ/;ƒ/ D 0 for
i D 1; 2.

Note that �1.W / Š Z implies that H1.W Iƒ/ D 0. We also have H4.W Iƒ/ D 0.
We furthermore have an isomorphism H0.M Iƒ/! H0.W Iƒ/. We thus conclude
from the long exact homology sequence corresponding to the pair .W;M / that
H0.W;M Iƒ/D 0 and H1.W;M Iƒ/D 0.

Recall that the UCSS (see Section 2.1) starts with E
p;q
2
D Extq

ƒ
.Hp.W Iƒ/;ƒ/ and

converges to H�.W Iƒ/. Furthermore the differentials have degree .1� r; r/. By the
above we have E

p;q
2
D 0 for p D 1 and p D 4. Since ƒ has global dimension 2 we

also have E
p;q
2
D 0 for q � 3. Finally note that

E
0;2
2
D Ext2ƒ.H0.W Iƒ/;ƒ/D Ext2ƒ.ƒ=.t � 1/ƒ;ƒ/D 0:

It now follows from the UCSS that we have a monomorphism

E
2;1
2
D Ext1ƒ.H2.W Iƒ/;ƒ/!H 3.W Iƒ/:

But H 3.W Iƒ/ Š H1.W;M Iƒ/ D 0. Similarly, it follows from the UCSS that we
have a monomorphism

E
2;2
2
D Ext2ƒ.H2.W Iƒ/;ƒ/!H 4.W Iƒ/:

But H 4.W Iƒ/ Š H0.W;M Iƒ/ D 0. This concludes the proof of the claim that
H2.W Iƒ/ is a free module.

We now turn to the proof that H2.W Iƒ/ is a free ƒ–module of rank s WD b2.W /. It
remains to show that H2.W Iƒ/ is of rank s . Since � is flat over ƒ, it suffices to
show that dim�.H2.W I�//D s . It is clear that Hi.W I�/D 0 for i D 0; 1; 4. Fur-
thermore H3.W I�/ŠH 1.W;M I�/. But since � is a field the latter is isomorphic
to H1.W;M I�/ which is zero. We thus calculate

dim�.H2.W I�//D

4X
iD0

.�1/i dim�.Hi.W I�//D �.W /:
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Now note that b0.W /D b1.W /D 1 and b4.W /D 0. Also note that H 3.W IZ/Š
H1.W;M IZ/D 0 since we assume that H1.M IZ/!H1.W IZ/ is an isomorphism.
It thus follows that b3.W /D 0, and we see that �.W /D b2.W /D s . This concludes
the proof of the lemma.

We now write s D b2.W /. We pick a basis B for H2.W Iƒ/ and denote by ADA.t/

the corresponding s � s–matrix representing the twisted intersection pairing. Note
that A is a hermitian s � s–matrix. By the argument of Friedl, Hambleton, Melvin
and Teichner [16, Lemma 2.2] we see that the matrix A.1/ represents the ordinary
intersection pairing on H2.W IZ/. In particular there exists an integral matrix P such
that PA.1/P t D B . After acting on the basis B by the matrix P we can without loss
of generality assume that in fact A.1/D B . The following lemma now concludes the
proof of Theorem 2.6.

Lemma 2.8 The pairing �.A/ is isometric to �.K/.

The proof of the lemma will require the remainder of this section. We first want to
prove the following claim:

Claim The following is a short exact sequence:

(2-7) 0!H2.W Iƒ/!H2.W;M Iƒ/!H1.M Iƒ/! 0

Proof To prove the claim we first consider the following exact sequence:

H2.M Iƒ/!H2.W Iƒ/!H2.W;M Iƒ/!H1.M Iƒ/!H1.W Iƒ/! � � �

Recall that H1.W Iƒ/D 0. Also note that

H2.M Iƒ/˝ƒ�ŠH2.M I�/ŠH 1.M I�/Š Hom�.H1.M I�/;�/D 0;

since H1.M I�/DH1.M Iƒ/˝ƒ�D 0 (here we used that H1.M Iƒ/ is torsion).
In particular H2.M Iƒ/ is torsion and the map H2.M Iƒ/! H2.W Iƒ/ is trivial
since H2.W Iƒ/ is a free ƒ–module. This now concludes the proof of the claim.

We now define a Blanchfield pairing on H1.M Iƒ/ and an intersection pairing on
H2.W;M Iƒ/. First of all, similar to (2-1) we can consider the following sequence of
isomorphisms:

H1.M Iƒ/
PD
��!H 2.M Iƒ/

Š
 �H 1.M I�=ƒ/

ev
�! Homƒ.H1.M Iƒ/;�=ƒ/

This defines a hermitian nonsingular pairing

(2-8) H1.M Iƒ/�H1.M Iƒ/!�=ƒ:
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It is well known that the natural map H1.X.K/Iƒ/!H1.M Iƒ/ is an isomorphism,
and it follows immediately that the Blanchfield pairing on X.K/ is isometric to the
pairing (2-8) on M .

Secondly, we consider the sequence of maps

H2.W;M Iƒ/
PD
��!H 2.W Iƒ/!H 2.W I�/ŠH 2.W;M I�/(2-9)
ev
�! Homƒ.H2.W;M Iƒ/;�/:

Here, for the third map we made use of the fact that H1.M Iƒ/ is ƒ–torsion, therefore
(2-7) implies that the inclusion induced map H 2.W;M I�/ ! H 2.W I�/ is an
isomorphism. The other maps in (2-9) are given by Poincaré duality, inclusion of
rings and the evaluation homomorphism. The sequence of maps in (2-9) now defines a
hermitian pairing

H2.W;M Iƒ/�H2.W;M Iƒ/!�:

Claim The intersection pairing on W , the intersection pairing on H2.W;M Iƒ/ and
the Blanchfield pairing on M fit into the following commutative diagram, where the
left vertical maps form a short exact sequence:

(2-10)

H2.W Iƒ/�H2.W Iƒ/

��

// ƒ

��
H2.W;M Iƒ/�H2.W;M Iƒ/

��

// �

��
H1.M Iƒ/�H1.M Iƒ/ // �=ƒ

Proof In the previous claim we already showed that the left vertical maps form a short
exact sequence. We now consider the following diagram:

H2.W Iƒ/�H2.W Iƒ/

��

// ƒ

��
H2.W I�/�H2.W I�/

��

// �

��
H2.W;M I�/�H2.W;M I�/ // �

H2.W;M Iƒ/�H2.W;M Iƒ/

OO

// �

OO
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The pairings on �–homology are defined in complete analogy to the corresponding
pairings on ƒ–homology, and the vertical maps are the obvious maps. It now follows
easily from the definitions that this is a commutative diagram. Since the image of
H2.W Iƒ/!H2.W;M I�/ lies in the image of H2.W;M Iƒ/!H2.W;M I�/ it
now follows that the top square in the diagram of the claim commutes.

We now consider the following diagram:

(2-11)

H2.W;M Iƒ/ //

��

H1.M Iƒ/

��

H 2.W Iƒ/

��

H 2.M Iƒ/

Homƒ.H2.W;M Iƒ/;�/

��

H 1.M I�=ƒ/

Š

OO

��

Homƒ.H2.W;M Iƒ/;�=ƒ/ Homƒ.H1.M Iƒ/;�=ƒ/oo

where the left middle vertical map is a part of the definition of the intersection pairing on
H2.W;M Iƒ/. Furthermore the horizontal maps are the maps induced by long exact
sequences corresponding to the pair .W;M /. By Leidy [38, Section 6] this diagram
commutes. This now implies that the lower square in the claim also commutes.

Claim The evaluation map

H 2.W Iƒ/
ev
�! Homƒ.H2.W Iƒ/;ƒ/

is an isomorphism.

Proof In order to prove the claim we have to study the UCSS corresponding to
H 2.W Iƒ/. Note that Ext1ƒ.H0.W Iƒ/;ƒ/ D ƒ=.t � 1/ƒ is ƒ–torsion, hence the
differential

d2W E
0;1
2
D Ext1ƒ.H0.W Iƒ/;ƒ/!E

2;0
2
D Ext0ƒ.H2.W Iƒ/;ƒ/

is zero since Ext0ƒ.H2.W Iƒ/;ƒ/DHomƒ.H2.W Iƒ/;ƒ/ is ƒ–torsion free. It now
follows (using the earlier discussion) that the UCSS for H 2.W Iƒ/ gives rise to the
desired isomorphism:

(2-12) H 2.W Iƒ/
Š
�! Ext0ƒ.H2.W Iƒ/;ƒ/D Homƒ.H2.W Iƒ/;ƒ/:

This concludes the proof.
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Recall that we picked a basis B for H2.W Iƒ/ and that we denote by ADA.t/ the
corresponding matrix representing the twisted intersection pairing on H2.W Iƒ/. Now
note that by Poincaré duality and by the above claim we have two isomorphisms

(2-13) H2.W;M Iƒ/
PD
��!
Š

H 2.W Iƒ/
ev
�!
Š

Homƒ.H2.W Iƒ/;ƒ/:

We now endow H2.W;M Iƒ/ with the basis C which is dual to B . It follows easily
from (2-6) and (2-13) that the inclusion induced map H2.W Iƒ/! H2.W;M Iƒ/

with respect to the bases B and C is given by A.

We now rewrite the diagram (2-10) in terms of our bases, we thus obtain the following
diagram:

ƒs �ƒs

.v;w/ 7!.Av;Aw/

��

.v;w/7!xvt Aw // ƒ

��
ƒs �ƒs .v;w/7!xvt A�1w //

��

�

��
H1.M Iƒ/�H1.M Iƒ/ // �=ƒ

The statement of Lemma 2.8 now follows from this diagram and the fact that the left
vertical maps form a short exact sequence. This concludes the proof of Theorem 2.6.

2.6 Proof of Theorem 1.1

Clearly the following theorem, combined with Theorem 2.6, implies Theorem 1.1 from
the introduction.

Theorem 2.9 Let K be a knot such that uC positive crossing changes and u� negative
crossing changes turn K into an Alexander polynomial one knot J . Then there exists
an oriented topological 4–manifold W which strictly cobounds M.K/. Moreover, the
intersection pairing on H2.W IZ/ is represented by a diagonal matrix of size uCCu�
such that uC entries are equal to �1 and u� entries are equal to C1.

Proof We first recall the following well known reinterpretation of a crossing change.
Let K � S3 be a knot. Suppose we perform an �–crossing change along a crossing.
We denote by D � S3 an embedded disk which intersects K in precisely two points
with opposite orientations, one point on each strand involved in the crossing change. If
we now perform �–surgery on the curve c D @D , then the resulting 3–manifold † is
diffeomorphic to S3 , and K �† is the result of performing an �–crossing change.
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In the following we will use the following notation: let c1; : : : ; cs be simple closed
curves which form the unlink in S3 and let �1; : : : ; �s 2 f�1; 1g; then we denote by
†.c1; : : : ; cs; �1; : : : ; �s/ the result of performing �i –surgery along ci for i D 1; : : : ; s .
Note that this 3–manifold is diffeomorphic to the standard 3–sphere.

Let K be a knot such that uC positive crossing changes and u� negative crossing
changes turn K into an Alexander polynomial one knot J . Put differently, there exists
an Alexander polynomial one knot J such that uC negative crossing changes and u�
negative positive changes turn J into K . We write s D uCC u� and ni D �1 for
i D 1; : : : ;uC and ni D 1 for i D uCC 1; : : : ;uCC u� . By the above discussion
there exist simple closed curves c1; : : : ; cs in X.J / with the following properties:

(1) c1; : : : ; cs are the unlink in S3 .

(2) The linking numbers lk.ci ;J / are zero.

(3) The image of J in

†.c1; : : : ; cs; n1; : : : ; ns/

is the knot K .

Note that the curves c1; : : : ; cs lie in S3 n �J and we can thus view them as lying
in M.J /. The manifold M.K/ is then the result of ni surgery on ci �M.J / for
i D 1; : : : ; s .

Since J is a knot with trivial Alexander polynomial it follows from Freedman’s theorem
(see Freedman and Quinn [15, Theorem 117B]), that J is topologically slice. In fact
there exists a locally flat slice disk D � D4 for J such that �1.D

4 nD/ D Z. We
now write X WDD4 n �D . Then X is an oriented topological 4–manifold X with the
following properties:

(1) @X DM.J / as oriented manifolds.

(2) �1.X /Š Z.

(3) H1.M.J /IZ/!H1.X IZ/ is an isomorphism.

(4) H2.X IZ/D 0.

We denote by W the 4–manifold which is the result of adding 2–handles along
c1; : : : ; cs � M.J / with framings n1; : : : ; ns to X . Note that @W D M.K/ as
oriented manifolds. We will henceforth write M D M.K/. Note that the curves
c1; : : : ; cs are nullhomologous, it follows easily that the map H1.M IZ/!H1.W IZ/
is an isomorphism and that �1.W /Š Z. It thus remains to prove the following claim:
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Claim The ordinary intersection pairing on W is represented by a diagonal matrix of
size uCCu� such that uC diagonal entries are equal to �1 and u� diagonal entries
are equal to 1.

Recall that the curves c1; : : : ; cs form the unlink in S3 and that the linking numbers
lk.ci ;J / are zero. In particular the curves c1; : : : ; cs are also nullhomologous in M.J /.
It is clear that we can now find disjoint surfaces F1; : : : ;Fs in M.J /� Œ0; 1� such that
@Fi D ci � 1. By adding the cores of the 2–handles attached to the ci we now obtain
closed surfaces C1; : : : ;Cs in W . It is straightforward to see that Ci �Cj D 0 for i ¤ j

and Ci � Ci D ni . A Mayer–Vietoris argument shows that the surfaces C1; : : : ;Cs

present a basis for H2.W IZ/. In particular the intersection matrix on W with respect
to this basis is given by .Ci � Cj /, ie it is a diagonal matrix such that uC diagonal
entries are equal to �1 and u� diagonal entries are equal to 1. This concludes the
proof of the claim.

Remark In the proof of Theorem 2.9 (and thus in the proof that ua.K/ � n.K/),
we made use of Freedman’s theorem that a knot with trivial Alexander polynomial is
topologically slice. This deep topological fact is not necessary to prove Theorem 1.1,
but it simplifies the algebra and the exposition.

If a knot K has unknotting number u, then Montesinos [47] has shown that the 2–fold
branched cover †.K/ is given by Dehn surgery on some framed link in S3 with u

components, with half-integral framing coefficients. This fact is used in the original
proof of the Lickorish obstruction and it lies at the heart of some of the deepest results on
unknotting numbers (see eg [51; 55]) which are obtained by studying Heegaard–Floer
invariants of the compact 3–manifold †.K/.

Let K be a knot such that uC positive crossing changes and u� negative crossing
changes turn K into the unknot. If we take X D S1�D3 in the proof of Theorem 2.9,
then we immediately see that there exists an oriented smooth 4–manifold W which
satisfies the properties (1)–(4) of Theorem 2.9. This suggests that further information
on unknotting numbers can be obtained from considering higher cyclic covers (or the
infinite cyclic cover) of M.K/.

3 The Blanchfield pairing and the linking pairing

In this section we will relate the Blanchfield pairing to the linking pairing on the
homology of the 2–fold branched cover of a given knot K .

Algebraic & Geometric Topology, Volume 15 (2015)



The unknotting number and classical invariants, I 107

3.1 Preliminary results

The following proposition is a key tool in relating n.K/ to other invariants:

Proposition 3.1 (Ranicki [56, Proposition 1.7.1]) Let A and B be hermitian matrices
over ZŒt˙1� with det.A.1//D det.B.1//D˙1. Then �.A/Š �.B/ if and only if A

and B are related by a sequence of the following three moves:

(1) Replace C by PC xP t , where P is a matrix over ZŒt˙1� with det.P /D˙1.

(2) Replace C by the block sum C˚D , where D is a hermitian matrix over ZŒt˙1�

with det.D/D˙1.

(3) The inverse of .2/.

We can now prove the following lemma:

Lemma 3.2 Let A.t/ be a hermitian matrix over ZŒt˙1� with �.A.t//Š �.K/. Then

sign.A.z//� sign.A.1//D �z.K/ for any z 2 S1,

null.A.z//D �z.K/ for any z 2C n f0; 1g.

Proof First let D.t/ be any hermitian matrix over ZŒt˙1�. It is well known that the
function

S1
! Z; z 7! sign.D.z//:

is constant outside of the set of zeros of det.D.t//. In particular if det.D.t//D˙1,
then the signature function is constant. It now follows easily from Proposition 2.1 that
if A.t/ and B.t/ are hermitian matrices over ZŒt˙1� with �.A.t//Š �.B.t//, then

sign.A.z//� sign.A.1//D sign.B.z//� sign.B.1// for any z 2 S1 .

The first claim now follows from (2-4) and Proposition 2.1. The proof of the second
statement also follows from a similar argument.

3.2 Linking pairings

We will now relate the Blanchfield pairing to the linking pairing on the 2–fold branched
cover. Later on, this will allow us to relate n.K/ to the Lickorish obstruction and the
Jabuka obstruction, as well as to get new computable obstructions to n.K/ D 2 or
n.K/D 3.
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A linking pairing is a nonsingular symmetric bilinear pairing H�H!Q=Z, where H

is a finite abelian group of odd order. If l and l 0 are isometric linking pairings, then
we write l Š l 0 . An example is the linking pairing l.K/ defined on H1.†.K//.

Given a symmetric integral matrix A with det.A/ odd we denote by l.A/ the linking
pairing which is defined as

Zn=AZn
�Zn=AZn

!Q=Z;

.v; w/ 7! vtA�1w:

Given a linking pairing l W H �H ! Q=Z and n 2 Z, coprime to jH j, we denote
by n � l the linking pairing given by .n � l/.v; w/ WD n � l.v; w/.

We can now formulate and prove the following lemma.

Lemma 3.3 Let K be a knot and let A.t/ be a hermitian matrix over ZŒt˙1� such
that �.A.t//Š �.K/. Then

l.A.�1//Š 2l.K/:

Proof We now denote by M the set of all hermitian matrices A over ZŒt˙1� such
that det.A.1//D˙1. We say that A;B 2M are equivalent, written A� B , if �.A/
and �.B/ are isometric. We furthermore denote by L the set of isometry classes of
linking pairings. We consider the map

ˆWM! L;
A.t/ 7! l.A.�1//:

(Note that det.A.�1// � det.A.1// D ˙1 mod 2.) It follows immediately from
Proposition 3.1 that the map ˆ descends to a map

M=�! L:

Let V be a Seifert matrix for K . We define AK .t/ as in Section 2.2. It is well
known (see eg [17]) that the linking pairing l D l.K/ on H1.†.K/IZ/ is isometric to
l.V CV t /.

An argument analogous to the proof of Proposition 2.1 with ƒ replaced by Z, ƒ0

replaced by ZŒ1
2
� and t replaced by �1 then shows that the linking pairing ˆ.AK .t//

is isometric to the pairing 2l.K/.

Now let A.t/ be a hermitian matrix over ZŒt˙1� such that �.A.t// Š �.K/. Then
A.t/�AK .t/ and it follows from the above that

l.A.�1//Dˆ.A.t//Šˆ.AK .t//Š 2l.K/:
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3.3 The linking pairing and the algebraic unknotting number

In the following we refer to a positive-definite matrix as .C1/–definite and we refer to
a negative definite matrix as a .�1/–definite matrix. We now have the following:

Theorem 3.4 If n.K/ D n, then there exists a symmetric n � n–matrix A over Z
which has the following three properties:

(1) j det.A/j D j det.K/j.

(2) l.A/Š 2l.K/.

(3) A modulo two equals the identity matrix.

If �.K/ D 2n � � with � 2 f�1; 1g, then we can furthermore arrange that A has the
following two properties:

(4) A is �–definite.

(5) The diagonal entries of A modulo four are equal to �� .

Remark Theorem 3.4 is closely related to [51, Theorem 3], which is the main technical
theorem of [51]. More precisely, Owens shows in [51, Theorem 3] that if u.K/D u,
then †.K/ can be obtained by Dehn surgery along a u–component link with a certain
framing matrix. It then follows from that surgery description of †.K/ that there exists
a u�u–matrix A over Z which has properties described in Theorem 3.4.

Proof Since n.K/D n we can find a hermitian n�n–matrix B.t/ over ZŒt˙1� such
that �.B/ Š �.K/ and such that B.1/ is diagonalizable over Z. Note that B.t/ in
particular represents the Alexander module, it follows that det.B.t//D˙�K .t/, ie
det.B.1//D˙1 and det.B.�1//D˙ det.K/.

Let P be an invertible integral matrix such that PB.1/P t is diagonal. After replacing B

by PBP t we can thus arrange that B.1/ is already diagonal. We denote the diagonal
entries by �1; : : : ; �n . We furthermore denote by bij D bij .t/ the entries of B DB.t/.
The fact that bii.1/D �i and the fact that bii.t

�1/D bii.t/ implies that

bii D �i C .t � 1/.t�1
� 1/cii

for some polynomial cii 2 ZŒt˙1� with cii.t
�1/D cii.t/. Furthermore, given i ¤ j ,

the fact that bij .1/D 0 implies that

bij D .t � 1/ � cij
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for some cij 2 ZŒt˙1�. By Lemma 3.3 the matrix A WD B.�1/ represents 2l.K/. By
the above we have det.A/D˙ det.K/. It follows immediately from the above that
AD B.�1/ agrees with the identity matrix modulo two.

We now assume that �.K/D 2n � � with � 2 f�1; 1g. It follows from Lemma 3.2 that
sign.B.�1/˚�B.1// D sign.B.�1//� sign.B.1// D 2n � � . Since B is an n� n–
matrix this implies that sign.B.�1// D n � � and sign.B.1// D �n � � . In particular
AD B.�1/ is �–definite. Since B.1/ is �–definite it follows also that �i D �� for
i D 1; : : : ; n. Since bii D �C .t �1/.t�1�1/cii it now follows that A has the desired
fourth property.

4 Comparison of classical invariants

In this section we show n.K/ subsumes the classical invariants stated in Theorem 1.2.
We discuss each of the criteria of Theorem 1.2 in a separate subsection.

4.1 Lower bounds on ua.K /: The Nakanishi index

Let K be a knot. The first lower bounds on the unknotting number u.K/ were given
by Wendt [71] who showed that

u.K/�minimal number of generators of H1.†.K/IZ/:

(See also Kinoshita [31; 32] and [3, Section E] for further details.) These lower bounds
are subsumed by the Nakanishi index. More precisely, by [50, Theorem 3] (see also
Kawauchi [26, Theorem 11.5.1]) we have the inequality

u.K/�m.K/:

It is clear that if a hermitian matrix A over ZŒt˙1� satisfies �.K/Š �.A/, then A is
also presentation matrix for the Alexander module. We thus see that

n.K/�m.K/:

Together with Theorem 1.1 this implies that m.K/ gives in fact a lower bound on
the algebraic unknotting number. This can also be deduced from modifying the proof
provided by Nakanishi.

4.2 Lower bounds on ua.K /: The Levine–Tristram signatures and the
nullities

Levine–Tristram signatures are well known to give lower bounds on the topological 4–
genus g

top
4
.K/ of a knot, and hence lower bounds to the algebraic unknotting number.
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(See [49], Levine [39], Tristram [68] and Taylor [65] for details.) But in fact the
following stronger inequality holds:

Theorem 4.1 Let K be a knot which can be turned into an Alexander polynomial one
knot using uC positive crossing changes and u� negative crossing changes. Then for
any z 2 S1 we have

�2u� � �z.K/C �z.K/� 2uCI

in particular we have

n.K/��.K/ WD 1
2
.maxf�z.K/C�z.K/ j z 2 S1

gCmaxf�z.K/��z.K/ j z 2 S1
g/:

We expect that this theorem is known to the experts, but we are not aware of a proof in
the literature.

Proof By Theorem 1.1 there exists a hermitian matrix A.t/ of size uCC u� over
ZŒt˙1� with the following two properties:

(1) A.1/ is a diagonal matrix such that uC diagonal entries are equal to �1 and u�
diagonal entries are equal to 1.

(2) �.A.t//Š �.K/.

Now let z 2 S1 . We denote by bC (respectively b�; b0/ the number of positive
(respectively negative, zero) eigenvalues of A.z/. Then it follows from Lemma 3.2 that

�z.K/C �z.K/D null.A.z//C sign.A.z//� sign.A.1//

D b0C .bC� b�/� .�uCCu�/

D b0C bCC b�� .�uCCu�/� 2b�

� .uCCu�/� .�uCCu�/D 2uC:

Similarly one shows that �z.K/C �z.K/� �2u� .

4.3 Lower bounds on ua.K /: The Livingston invariant

We first recall the definition of Livingston’s invariant. Let S be a subring of Q.t/.
We denote by Q its quotient field and we denote by W .S !Q/ the Witt group of
nondegenerate hermitian pairings over free S –modules which become nonsingular
after tensoring with Q. Put differently, W .S ! Q/ is the Witt group of hermitian
matrices over S such that the determinant is a unit in Q. We refer to [22; 56] for
details.
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Let K � S3 be a knot. We define �S .K/ to be the minimal size of a square matrix
representing AK .t/ in W .S!Q/. It follows from (2-4) that for S DQ.t/ we obtain
Livingston’s invariant �.K/ (see [44]). It follows immediately from the definitions that

�.K/D �Q.t/.K/� �ZŒt˙1�.K/

for any knot K . For the reader’s convenience we will provide a proof to the following
proposition, which is well known to the experts:

Proposition 4.2 Let K be a knot. Then

2g
top
4
.K/� �ZŒt˙1�.K/:

We expect that �ZŒt˙1�.K/ is the best possible lower bound on the topological 4–genus
which can be obtained from the Seifert matrix.

Proof Let F be a Seifert surface of genus k for K . Denote by g the topological
4–genus of K . In that case the argument provided in the appendix of [44] shows
that there exist k �g linearly independent curves on F on which the Seifert pairing
vanishes. Since the intersection pairing on F is determined by the Seifert pairing it
follows that the pairwise intersection numbers of the curves are zero. In particular we
can extend this set of linearly independent curves to a symplectic basis on H1.F IZ/.
The corresponding Seifert matrix V now has the two properties

V D

0@0k�g�k�g �k�g�k�g �k�g�2g

�k�g�k�g �k�g�k�g �k�g�2g

�2g�k�g �2g�k�g �2g�2g

1A and V �V t
D

�
0 idk

� idk 0

�
;

where the subscripts indicate the size of the matrix. It now follows that AK .t/ (as
defined in Section 2.2) is of the form

AK .t/D

0@0k�g�k�g �k�g�k�g �k�g�2g

�k�g�k�g �k�g�k�g �k�g�2g

�2g�k�g �2g�k�g �2g�2g

1A :
It is well known that one can find an invertible matrix P over ZŒt˙1� such that

PAK .t/P
t
D

0@0k�g�k�g Bk�g�k�g 0k�g�2g

Bt
k�g�k�g

0k�g�k�g 0k�g�2g

02g�k�g 02g�k�g C2g�2g

1A ;
where B is a .k �g/� .k �g/ matrix and C is a 2g� 2g–matrix. Then AK .t/ and
the 2g� 2g–matrix C represent the same element in W .ZŒt˙1�!Q.t//.
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The classical invariant 1
2
�ZŒt˙1�.K/ gives a lower bound on the topological 4–ball

genus and thus on the algebraic unknotting number. The following lemma now says
that, as a lower bound on ua.K/, the invariant 1

2
�ZŒt˙1�.K/ is subsumed by n.K/.

Lemma 4.3 For any knot K we have

n.K/� 1
2
�ZŒt˙1�.K/:

Proof Recall that we denote by M the set of all hermitian matrices A over ZŒt˙1�

such that det.A.1//D˙1 and we write A� B if �.A/ and �.B/ are isometric. We
now consider the map

M!W .ZŒt˙1�!Q.t//;

A.t/ 7!A.t/˚�A.1/:

Note that it is well known that given a hermitian matrix D.t/ over ZŒt˙1� with
det.D.t//D˙1, the pairings D.t/ and D.1/ define the same element in W .ZŒt˙1�!

Q.t// (see [56] for details). It now follows from Proposition 3.1 that the above map
descends to a map

M=�!W .ZŒt˙1�!Q.t//:

The lemma now follows immediately from the definitions.

Remark In [44] Livingston shows that �.K/ is completely determined by the Levine–
Tristram signatures. In an interesting twist Livingston [44, Section 3.1] gives an
example which shows that in general �.K/� �.K/. The invariant �.K/ is thus not
the optimal lower bound on the algebraic unknotting number which can be obtained
from the Levine–Tristram signatures and the nullities.

4.4 The unknotting number one obstruction by Fogel, Murakami and
Rickard

The following unknotting number one obstruction was proved by Murakami [48] and
Fogel [13, page 32] and it was already known to John Rickard, as we were informed
by Lickorish.

Theorem 4.4 Let K be a knot and let � 2 f�1; 1g. If K can be turned into an
Alexander polynomial one knot using one �–crossing change, then there exists a
generator g of H1.X.K/IZŒt

˙1�/ such that

�.g;g/D
��

�K .t/
2Q.t/=ZŒt˙1�:

We will now see that it is an almost immediate corollary to Theorem 1.1.
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Proof It follows from Theorem 1.1 that �.K/Š �.p.t// for a polynomial p.t/ with
p.1/D�� . Since p.t/ represents the Alexander module and since �K .1/D1 it follows
that p.t/D���K .t/. In particular there exists a generator g of H1.X.K/IZŒt

˙1�/

such that
�.g;g/D

1

���K .t/
D
��

�K .t/
2Q.t/=ZŒt˙1�:

4.5 The unknotting number one obstruction by Lickorish

The following theorem was proved by Lickorish [42] (see also [10, Proposition 2.1]).

Theorem 4.5 Let K be a knot and let � 2 f�1; 1g. If K can be unknotted using one
�–crossing change, then there exists a generator h of H1.†.K/IZ/ such that

l.h; h/D
�2�

det.K/
2Q=Z:

We will now show that if a knot satisfies the conclusion of Theorem 4.4, then the
Lickorish obstruction vanishes. This shows in particular that the Lickorish obstruction
gives in fact an obstruction to the algebraic unknotting number being equal to one.

Theorem 4.6 Let K be a knot and let � 2 f�1; 1g. Suppose there exists a generator k

of H1.X.K/IZŒt
˙1�/ such that

�.k; k/D
�

�K .t/
2Q.t/=ZŒt˙1�:

Then there exists a generator h of H1.†.K/IZ/ such that l.h; h/D 2�
det.K / 2Q=Z.

Proof Suppose there exists a generator k of H1.X.K/IZŒt
˙1�/ such that

�.k; k/D
�

�K .t/
D

1

��K .t/
2Q.t/=ZŒt˙1�

for some � 2 f�1; 1g. This is equivalent to saying that � is isometric to �.��K .t//.
It follows from Lemma 3.3 that

2l.K/Š l.��.�1//D l.� det.K// 2Q=Z:

This means that there exists a generator g for H1.†.K/IZ/ such that

2l.g;g/D
�

det.K/
D

1

� det.K/
2Q=Z:

Since det.K/ is an odd number, k D 2g is also a generator for H1.†.K/IZ/, and it
is easy to see that it has the required properties.
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Remark (1) We could also easily have deduced Theorem 4.6 from Theorem 3.4. In
other words, the Lickorish obstruction is precisely the obstruction of Theorem 3.4
to n.K/D 1.

(2) Stoimenow [64, page 763 and Conjecture 7.4] conjectures that the Lickorish
obstruction contains the obstructions to u.K/D 1 obtained from the Jones poly-
nomial which was found by Miyazawa [46], Traczyk [67] and Stoimenow [64].

4.6 The unknotting number one obstructions by Jabuka

In the following we denote by W .Q/ the Witt group of nonsingular bilinear symmetric
pairings over Q. Note that we can think of W .Q/ also as the Witt group of symmetric
matrices over Q with nonzero determinant. We refer to [23, Section 2; 22; 56] for
details. Given a knot K Jabuka [23] denotes by '.K/ the element in the Witt group
W .Q/ defined by VK CV t

K
. The following is now Jabuka’s obstruction to u.K/D 1:

Theorem 4.7 Let K be a knot and let � 2 f�1; 1g. If K can be unknotted using one
�–crossing change, then '.K/ is represented by the diagonal matrix with entries 2�

and �2� det.K/.

Remark The statement of Theorem 4.7 is precisely the statement of [23, Corol-
lary 1.2]; the only difference is that we view the determinant of a knot as a signed
invariant, ie we write det.K/D det.V CV t /, whereas Jabuka uses jdet.V CV t /j as
the definition of the determinant of a knot.

Note that if a knot K can be turned into an Alexander polynomial one knot using
one �–crossing change, then it follows from Theorem 4.1 that �.K/ 2 f0; 2�g. The
following result thus shows that the Lickorish obstruction together with the signature
obstruction subsumes the Jabuka obstruction.

Theorem 4.8 Let K be a knot and let � 2 f�1; 1g. If �.K/ 2 f0; 2�g and if there
exists a generator h of H1.†.K/IZ/ such that l.h; h/D .�2�/= det.K/ 2Q=Z, then
the conclusion of Theorem 4.7 also holds.

Remark Jabuka [23] showed that in general the Lickorish obstruction is stronger
than the obstruction provided by Theorem 4.7, eg the Jabuka obstruction vanishes for
K D 88 , but the Lickorish obstruction detects that u.88/� 2.

In our proof of Theorem 4.8 we will need the following well-known elementary lemma:
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Lemma 4.9 Let K be a knot, then

sign.�K .�1//D .�1/�.K /=2:

We provide a proof for the reader’s convenience.

Proof Let V be a Seifert matrix for K . Without loss of generality we can assume V

is a 4k � 4k –matrix. We denote by p the number of positive eigenvalues of V CV t

and we denote by n the number of negative eigenvalues of V CV t . It follows that

sign.�K .�1//D sign..�1/�2k det.�V �V t //

D sign.det.V CV t //D .�1/n D .�1/.n�p/=2C.nCp/=2

D .�1/��.K /=2 � .�1/2k
D .�1/�.K /=2;

completing the proof.

Proof of Theorem 4.8 We will use the notation of the proof of Theorem 4.6. We
denote by W .Z/ the Witt group of nonsingular pairings over Z. Note that the signature
defines an isomorphism

(4-1) signW W .Z/! Z

We refer to [22] for details. We say that a linking pairing H �H !Q=Z is metabolic
if there exists a subspace P � H with P D P? . We denote by W .Z;Q/ the Witt
group of linking pairings modulo metabolic pairings.

By definition any pairing in W .Q/ can be represented by a rational matrix. After
multiplying by a sufficiently large square we can also represent a given pairing by an
integral symmetric n� n–matrix A. To such a matrix we then associate the linking
pairing l.A/. Note that l.�A/ D �l.A/ in the group W .Z;Q/. Also note that the
above assignment descends to a well-defined map W .Q/!W .Z;Q/ and it is well
known that the sequence

(4-2) 0!W .Z/!W .Q/!W .Z;Q/! 0

is exact. We refer to [22, page 90; 56] for details.

Now let K be a knot and V a Seifert matrix for K . Recall (see eg [17]) that the linking
pairing l D l.K/ is isometric to l.V CV t /. Now suppose we have � 2 f�1; 1g such
that the following hold:

(1) We have �.K/ 2 f0; 2�g.

(2) There exists a generator h of H1.†.K/IZ/ such that l.h; h/D .�2�/=d 2Q=Z,
where we write d D det.K/.
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We can now prove the following claim.

Claim The element in W .Q/ represented by .V CV t /˚ .2�=d/˚ .�2�/ gets sent
to the trivial element in W .Z;Q/.

In the following we identify the linking pairing l.K/ with the pairing on Z=d given by
l.a; b/D .�2�ab/=d 2Q=Z. Now recall that the image of .V CV t /˚.2�=d/˚.�2�/

is represented by the pairing l.K/˚ l.2�d/˚ l.�2�/. We consider the map

Z=2˚Z=d ! Z=2d;

.x;y/ 7! xd C 2y:

It is straightforward to verify that this map induces an isometry

l.�2�/˚ l.K/! l.�2�d/:

Put differently, the pairing l.K/˚ l.2�=d/˚ l.�2�/ represents the trivial element in
W .Z;Q/. This concludes the proof of the claim.

It follows from Lemma 4.9 and from �.K/ 2 f0; 2�g that the signature of the matrix
.V CV t /˚ .2�=d/˚ .�2�/ is zero. It now follows from the claim, the short exact
sequence (4-2) and (4-1) that .V CV t /˚ .2�=d/˚ .�2�/ represents the zero element
in W .Q/. The fact that .2�=d/ D .2� � d/ 2W .Q/ now completes the proof of the
theorem.

4.7 The unknotting number two obstruction by Stoimenow

Stoimenow proved the following theorem.

Theorem 4.10 (Stoimenow [64, Theorem 5.2]) Let K be a knot with j�.K/j D 4

such that det.K/ is a square. If det.K/ has no divisors of the form 4r C 3, then
u.K/ > 2.

Our next theorem shows that the n.K/ obstruction contains the Stoimenow obstruction.
This shows in particular that the Stoimenow obstruction is an obstruction to the algebraic
unknotting number being equal to two. The latter result can also be shown by reading
carefully the original proof.

Theorem 4.11 Let K be a knot with j�.K/j D 4 such that det.K/ is a square. If
n.K/D 2, then det.K/ has a divisor of the form 4kC 3.

Algebraic & Geometric Topology, Volume 15 (2015)



118 Maciej Borodzik and Stefan Friedl

Proof Let K be a knot with j�.K/j D 4 and such that det.K/ is a square and suppose
n.K/ D 2. Without loss of generality we can assume �.K/ D 4. By Theorem 3.4
there exists a positive-definite matrix A with j det.A/j D j det.K/j such that

AD

�
4kC 3 2m

2m 4l C 3

�
for some k; l;m 2 Z. Note that A being positive-definite and det.K/ being a square
implies that in fact det.A/D det.K/.

Since A is positive-definite it also follows that 4kC 3> 0 and that

det.A/D .4kC 3/.4l C 3/� 4m2

is positive. It follows that k and l actually are positive. Now assume that det.A/D
det.K/ D d2 is a square. We thus see that .4k C 3/.4l C 3/ � 4m2 D d2 . Since
4kC 3> 0 we can find a prime p of the form 4r C 3 which divides 4kC 3. We are
done once we show that p also divides m.

Suppose that p does not divide m. Since p divides d2C 4m2 we obtain the equation
d2 D�.2m/2 mod p , but since 2m is nonzero, and hence invertible modulo p we
obtain that �1 is a square modulo p . But it is well known that �1 is not a square
modulo a prime of the form 4r C 3.

5 New obstructions from the Blanchfield pairing

5.1 Obstructions from the Blanchfield pairing to n.K /D 1

We have already seen that the Nakanishi index, the signature and the Lickorish criterion
give lower bounds on n.K/. The Lickorish obstruction can be summarized as replacing
an infinite problem (can the Blanchfield pairing be represented by a 1� 1–matrix over
ZŒt˙1�) by a finite problem (can the linking pairing be represented by a 1� 1–matrix
over Z). This principle can easily be generalized.

To formulate the generalizations we need two “reductions” of the Blanchfield pairing.
First, let p be a prime. We denote by Qp the quotient field of Fp Œt

˙1�. Then we can
imitate the definition of the Blanchfield pairing over ZŒt˙1� to define a pairing

H1.X.K/IFp Œt
˙1�/�H1.X.K/IFp Œt

˙1�/!Qp=Fp Œt
˙1�:

Second, let k be an integer such that H1.†k.K// is finite, where †k.K/ denotes the
k–fold branched cover of K . Note that H1.†k.K// is a module over ZŒZ=k�, the
group ring of Z=k . We can then define a pairing

H1.†k.K//�H1.†k.K//! S�1ZŒZ=k�=ZŒZ=k�;
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where
S WD ff 2 ZŒZ=k�D ZŒt˙1�=.tk

� 1/jf .1/D 1g:

The proof that the matrix AK .t/ over ZŒt˙1� (see (2-3)) is a presentation matrix of
the Blanchfield pairing over ZŒt˙1� can also be modified easily to show that AK .t/

viewed as a matrix over Fp Œt
˙1� respectively over ZŒZ=k� D ZŒt˙1�=.tk � 1/ is a

presentation matrix for the two above pairings. (In particular this shows that both
pairings are classical invariants; see also [17] for more information.) We thus obtain
the following lemma:

Lemma 5.1 Let K be a knot with n.K/D n.

(1) Let p be a prime. Then the Fp –Blanchfield pairing

H1.X.K/IFp Œt
˙1�/�H1.X.K/IFp Œt

˙1�/!Qp=Fp Œt
˙1�/

can be represented by an n� n–matrix over Fp Œt
˙1�.

(2) Let k be an integer; then the ZŒZ=k�–Blanchfield pairing

H1.†k.K//�H1.†k.K//! S�1ZŒZ=k�=ZŒZ=k�

can be represented by an n� n–matrix over ZŒZ=k�.

If p is any prime, or if k is any integer such that H1.†k.K/IZ/ is finite, then we are
dealing with finite objects. In particular in these cases the obstructions provided by the
lemma are computable. We implemented both obstructions in the case n.K/D 1. We
applied it to all knots with up to 14 crossings with primes usually up to 11 and k usually
up to 6. (The size of H1.†k.K// typically grows very fast with k , putting limitations
on the range of k .) To our great surprise (and disappointment), among all knots with
up to 14 crossings we could not find a single example where these obstructions to
n.K/D 1 could see beyond the Nakanishi index, the Levine–Tristram signatures and
the Lickorish obstruction.

In Sections 5.2 and 5.3 we will on the other hand see that using the linking pairing on
H1.†.K// we can give new obstructions to n.K/D 2 and n.K/D 3, which actually
do work in practice.

5.2 Obstructions from the linking pairing to n.K /D 2

If K is a knot with n.K/D 2, then it follows from Theorem 3.4 that the linking pairing
l.K/ can be represented by a certain symmetric 2� 2–matrix. The full classification
of all symmetric 2� 2 matrices up to a congruence was already known to Gauß, below
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we state a slightly weaker result, referring to Conway and Sloane [11, Section 15.3]
for an excellent exposition.

Lemma 5.2 Let A be a symmetric integral 2�2–matrix with d WD det.A/¤ 0. Then,
either A is congruent to a matrix of the form�

a c

c b

�
such that

(1) 0< jaj � jbj � jd j,
(2) c 2 f0; : : : ; bjaj=2cg,

or A is congruent to a matrix of the form�
a c

c 0

�
with c2 D d , c � 0 and a 2 f�c; : : : ; cg.

For the reader’s convenience we give a short proof of the lemma.

Proof First assume that A is congruent to a matrix such that one of the diagonal
entries is zero. It is straightforward to see that in that case A is congruent to a matrix
of the latter type.

Now suppose that A is not congruent to matrix such that one of the diagonal entries is
zero. Among all matrices congruent to A we then pick a matrix such that the absolute
value of the (1,1) entry (ie the top left one) is minimal. We write this matrix as

B WD

�
a c

c b

�
:

After adding a suitable multiple of the first row to the second row and the same multiple
of the first column to the second column we can assume that jcj � jaj=2. If c < 0,
then we multiply the first row and the first column by minus one, to arrange that c � 0.
By the minimality of a, even after these operations, we still have that jaj � jbj.

Finally note that

jd j D jab�c2
j � jajjbj�

��
jaj
2

˘�2
� jajjbj�.jaj�1/2

D jbjC.jaj�1/jbj�.jaj�1/2 D jbjC.jaj�1/.jbj�jajC1/� jbj:

We thus see that jd j � jbj.

Algebraic & Geometric Topology, Volume 15 (2015)



The unknotting number and classical invariants, I 121

We can now describe our obstruction to a knot having n.K/ D 2. Let K be a knot
with determinant d D det.K/. We denote by C1; : : : ;Cl the matrices which satisfy
conditions .1/ and .2/ from the previous corollary applied to ˙d , and which are
congruent to the identity modulo two. If �.K/D 4 � � for some � 2 f�1; 1g, then we
furthermore demand that each Ci is �–definite and that each Ci is congruent modulo
four to a matrix of the form �

�� 2m

2m ��

�
for some m 2 Z. It is clear that this list of matrices C1; : : : ;Cl can be explicitly
determined.

We can now formulate the following obstruction:

Proposition 5.3 If n.K/ D 2, then there exists an integer k 2 f1; : : : ; lg and an
isometry l.Ck/Š 2l.K/.

Note that it follows easily from the proof of Theorem 4.11 that this n.K/D2 obstruction
contains the Stoimenow obstruction.

Proof It is obvious that congruent matrices define isometric linking pairings. The
proposition now follows from Theorem 3.4 and Lemma 5.2.

The following lemma gives an elementary way to check whether 2l.K/ is isometric to
l.C / for a given 2� 2–matrix C :

Lemma 5.4 Let C be a symmetric integral 2� 2–matrix with det.C / D ˙ det.K/.
Then there exists an isometry l.C /Š2l.K/ if and only if there exist v1; v22H1.†.K//

which generate H1.†.K//, such that

2l.K/.vi ; vj /D .i; j /–entry of C�1 modulo Z

for any i; j 2 f1; 2g.

Proof First let ˆW Z2=C Z2 ! H1.†.K// be an isomorphism which induces an
isometry l.C /Š 2l.K/. We denote by v1; v2 the images of e1D .1; 0/ and e2D .0; 1/.
It follows immediately from the definitions that v1 and v2 have the desired properties.

Conversely, suppose we are given v1; v2 2 H1.†.K// which generate H1.†.K//,
such that

(5-1) 2l.K/.vi ; vj /D .i; j /–entry of C�1 modulo Z
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for any i; j . We denote by ˆW Z2!H1.†.K// the map given by ˆ.ei/D vi . This
map is evidently surjective.

We claim that this map descends to a map Z2=C Z2!H1.†.K//. Let v 2C Z2 . Note
that vtC�1w2Z for all w2Z2 . It now follows that l.K/.ˆ.v/;ˆ.w//D02Q=Z for
all w 2Z2 . But since ˆ is surjective and since l.K/ is nondegenerate this implies that
ˆ.v/D 02H1.†.K//. This shows that ˆ descends to a map Z2=C Z2!H1.†.K//.

Since the map ˆ is an epimorphism between finite groups of the same size it follows
that this map is an isomorphism, and condition (5-1) implies that ˆ is in fact an
isometry.

In Section 6.2 we will give several examples of knots where this obstruction applies.

5.3 Obstructions from the linking pairing to n.K /Dm for m� 3

The approach in the previous section can also be extended to give an obstruction to
n.K/Dm for arbitrary m. We focus on the definite case (ie when the absolute value
of the signature is equal to 2m), and we plan to deal with the general case in a future
paper. The key ingredient to getting obstructions is Lemma 5.5 below.

Lemma 5.5 Let A be a positive-definite symmetric m � m–matrix. Then A is
congruent to a matrix of the form0BBB@

f11 f12 � � � f1m

f21 f22 � � � f2m
:::

:::
: : :

:::

fm1 fm2 � � � fmm

1CCCA
such that:

(1) 0< f11 � f22 � � � � � fmm .

(2) For any 1� i < j �m we have j2fij j � fii .

(3) fmm � Bm det A for a constant Bm depending only on m.

(4) Furthermore we can take B1 D B2 D B3 D B4 D 1.

Proof By Cassels [8, Theorem 12.1.1] the matrix A can be put into a so-called reduced
form (in the sense of Minkowski). Then [8, Lemma 12.1.1] shows parts (1) and (2) of
Lemma 5.5.
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To show (3), observe that for a matrix in a reduced form we have

(5-2) f11 �f22 � � � fmm � �m det A;

where �2 D
4
3

, �3 D 2, �4 D 4 and for m> 4,

�m D .
2
�
/mf�.2C n

2
/g2.5

4
/.n�3/.n�4/=2;

where � is the Euler gamma function (see an excellent survey by van der Waerden [70]
for proofs and details.) As fii � 1, we immediately obtain that fmm � Bm det A for
Bm D �m .

To show that for mD 2; 3; 4 we have fmm � det A we again use (5-2). Let us begin
with the case m D 2. If f11 � 2, by (5-2) we get f22 �

2
3

det A. So assume that
f11 D 1. Then f12 D f21 D 0 because the matrix is in the reduced form (see point (2)
in the statement of the lemma). But then det AD f22 .

For m D 3, if f11 > 1 then f11f22 � 4, so f33 �
1
2

det A. If f11 D 1, we have
f12 D f13 D f21 D f31 D 0, so the form is a block sum of .1/ and a two-dimensional
form and we use the case mD 2. The argument with mD 4 is identical.

If we assume that fii Š 3 mod 4 (cf Theorem 3.4), we can show that Bm can be
chosen to be 1 for some higher m as well.

Lemma 5.6 If f11; : : : ; fmm are congruent to �1 modulo 4, then fmm � det A for
m� 7.

Proof From the assumptions fii � 3, hence by (5-2) we have fmm � 31�m�m det A.
Now an explicit computation shows that 31�m�m � 1 for mD 5; 6; 7.

We can now describe our obstruction to a knot with j�.K/j D 2m having n.K/Dm.
Let K be a knot. We write d D j det.K/j and j�.K/j D 2m. Without loss of generality
we can assume that �.K/ D 2m. We denote by C1; : : : ;Cr the positive-definite
m�m–matrices with determinant d which satisfy conditions .1/; .2/, .3/ and .4/
from Lemma 5.5, and which are congruent to the identity modulo two. We furthermore
restrict ourselves to matrices which are congruent to �1 modulo 4. It is clear that this
list of matrices C1; : : : ;Cr can be explicitly determined, even though for large m or
det A this list may be very long.

We can now formulate the following obstruction, which is an immediate consequence
of Theorem 3.4 and Lemma 5.5.

Proposition 5.7 If n.K/ D m, then there exists an integer s 2 f1; : : : ; rg and an
isometry l.Cs/! 2l.K/.
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The following lemma gives an elementary way to check whether 2l.K/ is isometric
to l.C / for a given m�m–matrix C :

Lemma 5.8 Let C be a symmetric m�m–matrix with det.C / D ˙ det.K/. Then
there exists an isometry l.C / Š 2l.K/ if and only if there exist v1; v2; : : : ; vm 2

H1.†.K// which generate H1.†.K//, such that

2l.K/.vi ; vj /D .i; j /–entry of C�1 modulo Z

for any i; j 2 f1; : : : ;mg.

The proof is of course almost identical to the proof of Lemma 5.4. Examples of
application of this criterion are given in Section 6.3.

5.4 Comparison with Owens’ obstruction

We now give a comparison of our obstruction with the Owens obstruction [51, Theo-
rems 1 and 5]. We summarize the key facts:

(1) Owens shows that if a knot satisfies u.K/ D m and j�.K/j D 2m, then the
Heegaard–Floer correction terms (see Ozsváth and Szabó [53]) of the 2–fold
branched cover of K satisfy

(a) a certain inequality,
(b) a certain equality modulo 2.

(2) By work of Ozsváth and Szabó [53, Theorem 1.2] and Taylor [66] (see also [52])
a knot which satisfies the “mod 2 equality” of Owens also satisfies the conclusion
of Theorem 3.4.

In practice the fact that one needs to be able to calculate the Heegaard–Floer correction
terms of the 2–fold branched cover means that the Owens obstruction can be calculated
in a straightforward way for alternating knots, but it is rather difficult to calculate for
most other knots. (Note though that calculations can be made if the 2–fold branched
cover is a Seifert fibered space; this is the case for Montesinos knots and torus knots.)
We conclude with the discussion of some examples:

(1) Owens [51] shows that the u.K/ D 2 obstruction applies to the alternating
knots 910; 913; 938; 1053; 10101; 10120 which have signature equal to four. On
the other hand the algebraic unknotting number equals two (using the computer
program knotorious we can find explicit algebraic unknotting operations in the
sense of [48]).
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(2) Owens furthermore uses Heegaard–Floer homology and a result of Traczyk
to show that the unknotting number of the alternating knot 935 equals three,
even though the signature equals two. Again, the algebraic unknotting number
equals two.

(3) Using the obstruction of Section 5.2 we can show that the algebraic unknotting
number of the nonalternating knot 11n148 equals three, even though the signature
equals two. Since the knot is nonalternating and since the signature does not equal
four it seems difficult to use the Owens approach to show that the unknotting
number equals three.

(4) Owens [51, Corollary 6] also used the u.K/D 3 obstruction to show that the
unknotting number of the two-bridge knot KDS.51; 35/ equals four. This knot
passes our ua.K/D 3 obstruction, and in fact we can show that the algebraic
unknotting number of K equals three.

6 Examples

6.1 Knotorious

In the following we write

Z WD fz 2 S1
j z1296

D 1g:

We have written a computer program called knotorious (which is available from the
authors’ webpages [4]) which given a Seifert matrix calculates the following invariants:

(1) The signature.

(2) The Levine–Tristram signatures �z.K/ with z 2 Z .

(3) The lower bounds on the Nakanishi index coming from H1.†.K// and the
Alexander module over the finite fields F2;F3;F5 and F7 .

(4) The Lickorish obstruction.

(5) The Stoimenow obstruction.

(6) The u.K/D 2 obstruction coming from the linking pairing on H1.†.K// (see
Section 5.2).

(7) The u.K/D 3 obstruction coming from the linking pairing on H1.†.K// (see
Section 5.3).
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The program also attempts to compute, in a nonrigorous way, the invariant �.K/.
Furthermore, the program also finds upper bounds on the algebraic unknotting number
by finding explicit algebraic unknotting moves (we refer to [48; 60, Section 2] for
details on algebraic unknotting moves). We calculated the above invariants for all knots
with up to 12 crossings, the details can be found on the authors’ webpages [4]. All the
examples in the subsequent sections are based on the calculations with knotorious.

6.2 Examples for the new n.K /D 2 obstruction coming from l.K /

Let K be a knot. In Section 5.2 we showed that the linking from l.K/ on the homology
of the 2–fold branched cover of K gives an obstruction to u.K/� 2. We applied this
obstruction to all knots with up to 12 crossings. We found that the following knots
with j�.K/j D 4 (in fact with �.K/D 4) and m.K/� 2 have n.K/ > 2:

949 11a123 11n133 12a311 12a386 12a433 12a561

12a563 12a569 12a664 12a683 12a725 12a780 12a907

12n276 12n494 12n496 12n626 12n654

Furthermore the following knots have j�.K/j � 2 (in fact �.K/� 2) and m.K/� 2

but n.K/ > 2:

10103 11n148 12a327 12a921 12a1194 12n147

We now discuss to what degree previous invariants detect the unknotting numbers of
the above examples:

(1) The Stoimenow obstruction applies to 949; 11n133; 12a664 and 12n276 , but
does not apply to any of the other knots. To the best of our knowledge none of
the other previous classical invariants detect that n.K/ > 1.

(2) Stoimenow [64] also used the Brandt–Lickorish–Millett–Ho polynomial (see
Ho [21] and Brandt, Lickorish and Millett [7]) to give an obstruction to u.K/D2.
Stoimenow shows that this criterion implies that u.10103/> 2. We did not check
this criterion for the above 12 crossing knots.

(3) Note that most of the above knots (including 10103 but not 949 ) are alternating,
in that case the Rasmussen s–invariant and the Ozsváth–Szabó � –invariant agree
(up to a scaling factor) with the signature, in particular they do not determine
the unknotting number of the above 12 alternating knots.

(4) The s–invariant has been computed for all knots with up to 12 crossings (see [9]),
it detects the unknotting number for only one of the above nonalternating knots,
namely 12n276 .
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(5) The � –invariant has been calculated for all knots with up to 11 crossings by
Baldwin and Gillam (see [1]), it does not detect the unknotting number for any
of the above nonalternating knots with up to 11 crossings.

(6) Arguably 11n148 is the most interesting example. Many invariants for nonalter-
nating knots are very difficult to calculate (eg the Heegaard–Floer correction terms
of the 2–fold branched cover, as in [51; 55]). The aforementioned calculations
show that the � –invariant and the s–invariant do not detect the unknotting
number of 11n148 . Furthermore, several obstructions to u.K/D 2 (eg [51; 64])
can be applied only if j�.K/j D 4, whereas we have �.11n148/D 2.

The webpage knotinfo [9], maintained by Cha and Livingston, collects the unknotting
information on knots up to eleven crossings. According to this information it was not
known before these calculations that u.11a123/D 3 and u.11n148/D 3.

6.3 Examples for the n.K /D 3 obstruction coming from l.K /

Let K be a knot. In Section 5.3 we showed that the linking from l.K/ gives rise to an
obstruction to u.K/�3. We applied this obstruction to all knots with up to 14 crossings
with j�.K/j D 6 and found that it applies to precisely two knots, namely 14n12777

and 14a4637 .

We expect that given any m2N there exist examples of knots such that the obstruction
introduced in Section 5.3 detects that ua.K/Dm, but such that all previous classical
lower bounds do not detect that ua.K/Dm. Finding such examples will obviously
require a different method than the brute force search we have done with knotorious.

6.4 Knots with up to 11 crossings

Our calculations with knotorious show that the Nakanishi index, the signature, the
Lickorish obstruction and the n.K/D2 obstruction of Section 5.2 completely determine
the algebraic unknotting number for all knots with up to 11 crossings.

The full details are available in [4]. For the reader’s convenience we provide in Table 1
the algebraic unknotting number for all knots with up to 10 crossings. The subscripts
denote the way of obtaining the result:

� The notation 1u means that there exists a single algebraic unknotting move
which changes the knot into a knot with trivial Alexander polynomial.

� The notation 2L means that we use the Lickorish obstruction.
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� The notation k� for k D 2; 3; 4 means that the signature detects the algebraic
unknotting number and it is greater than one.

� The notation 2w stands for the Wendt criterion, in particular the Nakanishi index
is equal to two.

� The notation 2A means that the minimal number of generators of the Alexander
module over F2Œt

˙� is two.

� The notation 3S means that the Stoimenow obstruction (see Section 4.7) applies.

� The notation 3n denotes our new obstruction as discussed in Section 5.2.

(Note that in some cases two or more obstructions will detect ua.K/, but we will only
indicate one obstruction.)

The star indicates that the unknotting number is actually known (according to [9]) to
be larger than ua.K/. We remark that for knots 1061 , 1076 and 10100 , we computed
that ua.K/ D 2, but it is not known, whether u.K/ D 2 or 3. These knots are not
marked by a star.

6.5 Knots with 12 crossings

Among the 12 crossing knots we found the following examples:

(1) There exists precisely one knot, namely 12n749 with j�.K/j � 2 and such that
j�z.K/j � 4 for some z 2 Z .

(2) There exists precisely one knot, namely 12a896 with j�z.K/j � 2 for all z 2 Z
and such that there exist z1; z2 2 Z with j�z1

.K/� �z2
.K/j D 4.

Our calculations show that the aforementioned seven lower bounds determine the
algebraic unknotting number for all knots with up to 12 crossings, except possibly for
the following:

12a0050 12a0141 12a0364 12a0649 12a0728 12a0791 12a0901

12a1049 12a1054 12a1064 12a1138 12a1141 12a1234 12a1236

12a1264 12n0200 12n0260 12n0657 12n0864

The algebraic unknotting number of all the above knots is either 1 or 2.

The knots

12a0050 12a0141 12a0364 12a0649 12a0728 12a0791 12a0901

12a1054 12a1064 12a1138 12a1234 12a1236 12n0200 12n0864
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knot n knot n knot n knot n knot n knot n knot n

31 1u 92 1u 938 2�� 1025 2� 1061 2� 1097 2L 10133 1u

41 1u 93 3� 939 1u 1026 1u 1062 2� 1098 2w 10134 3�

51 2� 94 2� 940 2w 1027 1u 1063 2� 1099 2w 10135 1�u
52 1u 95 1�u 941 2w 1028 1�u 1064 1�u 10100 2� 10136 1u

61 1u 96 3� 942 1u 1029 2L 1065 2L 10101 2�� 10137 1u

62 1u 97 2� 943 2� 1030 1u 1066 3� 10102 1u 10138 1�u
63 1u 98 1�u 944 1u 1031 1u 1067 2L 10103 3n 10139 3��
71 3� 99 3� 945 1u 1032 1u 1068 1�u 10104 1u 10140 2A

72 1u 910 2�� 946 2w 1033 1u 1069 2L 10105 2L 10141 1u

73 2� 911 2� 947 2w 1034 1�u 1070 1�u 10106 2L 10142 3�

74 2L 912 1u 948 2w 1035 1�u 1071 1u 10107 1u 10143 1u

75 2� 913 2�� 949 3S 1036 2L 1072 2� 10108 2L 10144 2L

76 1u 914 1u 101 1u 1037 1�u 1073 1u 10109 2L 10145 1�u
77 1u 915 2L 102 3� 1038 1�u 1074 2w 10110 1�u 10146 1u

81 1u 916 3� 103 2L 1039 2� 1075 2w 10111 2� 10147 1u

82 2� 917 2L 104 1�u 1040 2L 1076 2� 10112 1�u 10148 1�u
83 1�u 918 2� 105 2� 1041 1�u 1077 1�u 10113 1u 10149 2�

84 1�u 919 1u 106 2�� 1042 1u 1078 2� 10114 1u 10150 2�

85 2� 920 2� 107 1u 1043 1�u 1079 1�u 10115 2A 10151 1�u
86 1�u 921 1u 108 2� 1044 1u 1080 3� 10116 2L 10152 3��
87 1u 922 1u 109 1u 1045 1�u 1081 1�u 10117 1�u 10153 1�u
88 2L 923 2� 1010 1u 1046 3� 1082 1u 10118 1u 10154 2��
89 1u 924 1u 1011 1�u 1047 2� 1083 1�u 10119 1u 10155 2w

810 1�u 925 1�u 1012 1�u 1048 1�u 1084 1u 10120 2�� 10156 1u

811 1u 926 1u 1013 1�u 1049 3� 1085 2� 10121 2L 10157 2w

812 1�u 927 1u 1014 2� 1050 2� 1086 2L 10122 2L 10158 1�u
813 1u 928 1u 1015 1�u 1051 1�u 1087 1�u 10123 2w 10159 1u

814 1u 929 1�u 1016 1�u 1052 1�u 1088 1u 10124 4� 10160 2�

815 2� 930 1u 1017 1u 1053 2�� 1089 2L 10125 1�u 10161 2��
816 2L 931 2L 1018 1u 1054 1�u 1090 1�u 10126 1�u 10162 1�u
817 1u 932 1�u 1019 2L 1055 2� 1091 1u 10127 2� 10163 2L

818 2w 933 1u 1020 2L 1056 2� 1092 2� 10128 3� 10164 1u

819 3� 934 1u 1021 2� 1057 1�u 1093 1�u 10129 1u 10165 2L

820 1u 935 2�w 1022 1�u 1058 1�u 1094 1�u 10130 1�u
821 1u 936 2� 1023 1u 1059 1u 1095 1u 10131 1u

91 4� 937 2w 1024 2L 1060 1u 1096 1�u 10132 1u

Table 1: Algebraic unknotting number for knots with up to 10 crossings; see
Section 6.4 for an explanation of symbols.
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all have Nakanishi index 1. In fact, we were able to find an explicit generator of the
Alexander module. This allows us to compute the Blanchfield pairing for all those
knots. Since m.K/D 1 it is necessarily of the form

ƒ=pƒ�ƒ=pƒ
.v;w/ 7!xv�q�w=p
�����������!�=ƒ;

where p is the Alexander polynomial and q 2ƒ. For example, for K D 12a0050 ,

p D�K .t/D t�4
� 8t�3

C 20t�2
� 30t�1

C 33t � 30t C 20t2
� 8t3

C t4;

q D�t3
C 7t2

� 13t C 17� 13t�1
C 7t�2

� t�3
I

we refer to [4] for the other knots. Thus 12a0050 has algebraic unknotting number 1 if
and only if there exists an automorphism of ƒ=p (as a ƒ–module), which transforms
this pairing into .v; w/ 7! ˙xvw=p . This is equivalent to the existence of an f 2 ƒ
such that qf xf D˙1 .mod p/. The problem of finding such f or showing that it does
not exist, in general, is very hard.

The knots 12a1054 , 12a1141 , 12a1264 , 12n657 and 12n0260 have Nakanishi index 1
or 2. We were able to find a 2� 2 presentation matrix in each case. For example, for
12a1054 we have�

2t3 �1C 4t � 7t2C 4t3� t4

1� 5t C t2� 5t3C t4 3t

�
:

However, we could not show that the Alexander module is cyclic. If it is not, then the
algebraic unknotting number is 2.

7 Open questions

Apart from Conjecture 1.4, we state a few more questions and problems related to n.K/.

Question 1 Given any knot K , do we have the following equality:

n.K/Dminimal size of a hermitian matrix A over ZŒt˙1� with �.A/Š �.K/?

Put differently, is the condition in the definition of n.K/ that A.1/ be diagonal over Z
necessary? Note that an affirmative answer would imply that n.K/� deg�K .t/ for
any knot K . Added in proof: The question was answered in the affirmative in [5].

Question 2 Let K be a knot with m.K/ D 1; j�.K/j � 2 satisfying the Lickorish
obstruction. Does it follow that the n.K/D1 obstructions of Lemma 5.1 are necessarily
satisfied? The discussion following Lemma 5.1 is evidence that the answer is yes.
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Question 3 Is n.K/ invariant under mutation? It is an open question whether the
unknotting number is preserved under mutation .see [33, Problem 1.69(c)]/. The
S –equivalence class of a Seifert matrix (and thus the isometry type of the Blanchfield
pairing) is preserved under positive mutation (see Kirk and Livingston [34, Theo-
rem 2.1]). On the other hand the S –equivalence class (in fact the isomorphism class
of the Alexander module) is in general not preserved under negative mutation (see
Kearton [28; 29, Section 3]). We do not know whether n.K/ is preserved under
mutation. Note though that the Levine–Tristram signatures are preserved under any
mutation (see Cooper and Lickorish [12]) and note that homeomorphism type of the
2–fold branched cover is preserved under mutation (see eg [26, Proposition 3.8.2]).

Question 4 In Section 4.3 we introduce a new classical invariant �ZŒt˙1�.K/ and
we show in Proposition 4.2 that it gives a lower bound on the topological 4–genus.
Can this invariant be used to give new computable lower bounds on the topological
4–genus?

Question 5 What are the algebraic unknotting numbers of the remaining 12 crossing
knots? (See Section 6.5 for details.) It might be possible to possible to use the methods
of Kearton and Wilson [30] to show that the Nakanishi index of the five 12 crossing
knots mentioned in Section 6.5 is 2.
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